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ABSTRACT accuracy required and the computational cost. If
accuracy is not a constraint then iterative methods

Optimization techniques have helped in achievingcan be used as they give an approximate solution

optimal solutions to many a problems in varioussooner than other methods in less computational

fields.Optimization methods using differential time.

calculus can be applied to solve certain problems but

as the problem becomes too cumbersome themhis paper will explore in detail various iterative

classical methods get replaced by Iterativealgorithms and their application. The mathematics

Techniques. This process of finding solutioninvolved in these algorithms is illustrated with

iteratively involves extensive computations and theresuitable examples.

are several algorithms on iteration. This paper will

focus on various Iterative algorithms and their2. NEWTON-RAPHSON METHOD

applications. ) ] )
Newton-Raphson method is an iterative method for

1. INTRODUCTION finding the roots of a non-linear and transcendental
equation [1]. It is by no means uncommon for these
Iteration is a systematic method for generatingtypes of equation to occur in practice. There are no
successive approximations to estimate one or morgimple methods available for solving these equations
unknowns, starting with assumed values for theand hence, iterative methods are frequently employed
unknowns. The process of finding the successivédor solving these equations.
approximations to estimate an unknown is called an
Iterative ProcessEach step in an iterative process is
called anlteration and each successive
approximation is called alerate. Iteration is done yA
by choosing x(0) as initial solution to the problem. y = f(x)
Then one finds a better solution, say x(1),from x(0)
and so on. The solution x(k) is the best possible
solution if it minimizes the objective function. This
objective function can be a cost function or error |
function around which the whole problem is based. If |
the successive approximations seem to converge to a |
value then the iteration is said to lsenvergent. |
Iteration can also be terminated if there are |
indications that no solution to the problem exists i.e. ! I
if the iteration process is divergent. : |
Though it is difficult to state a general rule as to X5 X1 'x0> X
when iteration is preferable to other methods, one rigyre 1: Illustration of Newton-Raphson Meth-
major factor that limits the choice of method is the od.




2.1. Basics

X =X —M 3
Newton-Raphson is mainly used because of its ' N+*1 "N f(x)
simplicity and speed of convergence. Let us consider
a function y=f(x) as shown in Figure 1. Let the In Figure 1, the initial estimatepwas chosen such
function have a continuous derivativgx) . that the successive estimatgs %, etc. were tending

, _ to the actual solution. Let us consider a case where
The roots of the non-linear equation are the values ofne njtial estimate gis chosen as in Figure 2.

the variable x such that y = f(x) = 0.
_ _ As can be seen from the Figure 2; s in the
_Tq flnd thg roots of the equation one chooses th%pposite side of A from x It may be even further
initial estimate of x as gand find f(x). The  from A than x, itself. After x, is obtained the
successive approximate of i chosen as iteration starts to converge to the exact solution. Thus
one can infer that it is advisable to do the iterative

f(xg) process for two to three iterates before deciding
X1 = XO_W (1) whether it is convergent or divergent, as a process
0 which seems to be divergent after the first iterate will

_ be convergent when proceeded further.
Proof: If 3 be the angle made by the tangent with the

x-axis then 2.2. Order of convergence

0) Let us characterize the quality of the Newton-
(20 Raphson method by judging the speed of
X0™%1 convergencel[l]. Letx.1 = 9(x,) define the iteration
method where
From this we can find the successive approximate x
as in (1). The above formula can be generalized to
find the (n+1¥" approximation given the'hestimate.

f(x

tanp =

mm=x—%% (4)

Also let s be the actual solution. Ther,x s - g,

where g is the error of x. If g is differentiable a

number of times then by Taylor’s series[1] one can
yA write

X 41 =0(x) =99+, -9+ )
1.,
5 (9)(X,=9)%+ ...
_ . 1,,.2
Xo11 = 9(9-g(9e, + 30" (9)e, (6)

The exponent of e in the first non-vanishing term

after g(s) is called the order of convergence of the

Newton-Raphson method defined by g. The order
| measures the speed of convergence. Also, we find

C /xl ™ x G0 = FRFE) -
(f/(x))2

Figure 2: Newton-Raphson method for a different choice of Equation (7) implies that'gs) = 0. Subtracting g(s)
initial estimate




from both sides of (6) implies X
e N+ X, — 10
X =X -—— (12)

_ 1. 2 n+1 n
€ht1 = 59 (s)eq+ ... (8) exn+1

€+1 " —%g"(s)erz]+ (9  Substituting the values of the successive
approximates, starting withpx 2 in (12), we get the
It can be seen that if the iteration is convergent i.e. ifsuccessive iterates as shown in Table 2.
e, is less than one, then the Newton-Raphson method ] ]
is of second order. The error at one iteration is & ©F @ accuracy of up to 3 decimal places we find the
multiple of the square of the error at the previousstcr’]"_f['o”_'[0 be x = 2.071 which we get at the end of
iteration. As we near the actual solution the error®  teration.

term is small and hence convergence is quite rapid.
2.4. Issues

2.3. Bxample Although Newton-Raphson method gives a faster

Let us consider an example to illustrate the NewtonCOnvergence, care should be taken while considering

Raphson method. Consider the following equation the initial estimate for the root. A good initial

estimate of the root can reduce the number of
¢ _ X iterations drastically. A bad estimate may even lead
(x) = e7+x-10 to a divergent iterative process.

To find a suitable we will find the value of the ¢ 5y agtimate of the root be a minimum point of the
function given by (10) at various points and choose;ction, then the successive estimate will be at

the x-value where the function changes sign as oUlinity[2]. In this case the whole process should be
initial estimate. started with a different initial estimate.

As can be_seen from Table 1, since the functio_n& STEEPEST DESCENT METHOD
changes sign between x=2 and x=3, the roots lie

between 2 and 3. Let the initial estimate of the rooterative methods are applied to optimization
be x, =2. Differentiating f(x) with respect to x we proplems to find the maximum or minimum, given

get, the objective function. The basic idea behind the
iterative methods of optimization is to produce a

f'(x) = eX+1 (11) sequence of improved approximations to the
optimum. One such method to optimize an objective
and 1 is given by function is the Steepest Descent Method. Given the

objective function M(x) a value of the variable vector
X = (X1,X2,...,%,) " is sought that minimizes the
objective function M(x). The constraint imposed on

X f(x) Xn Value
0 -9 Xo 2

1 -6.28 X1 2.073
2 -0.61 Xo 2.071
3 13.09 X3 2.071

Table 1: Choice of Initial estimate Table 2: Iterative Estimates to find the root



the objective function M(x) is that the function be a with respect to each of thevariables are collectively

convex function [3]. called the gradient of the function and is denoted by
OM

3.1. Basics

The descent algorithms involve iterations which oM

consist of essentially of three parts. First, a direction X,

of descent is found, then a descent steplength is 1

determined and finally the descent step is calculated. aMm

The iteration can be explained as: DMn x1 = dx2 (14)

1. Start with initial trial point X

2. Find a suitable direction;Svhich points in the am

L . dx

general direction of the minimum. L n|

3.Fnd an appropriate step length, for the The gradient is a n-component vector and it has a

movement along the direction of S very important property. If we move along the
gradient direction from any point in n-dimensional

4. Obtain the new approximation,X = X; +)\i S space, the functional value increases at the fastest
rate. Hence the gradient direction is called the

5. Test whether ¥X,is optimum. direction of steepest ascent. Since the gradient vector
represents the direction of steepest ascent, the

3.2. Theory negative of the gradient vector denotes the direction

_ o _ _ of the steepest descent [3].
The descent direction is an n-dimensional vector

s = (s, S,--5) " At the K iteration the direction 3.4, Rate of change of a function along a direction
vector & originates at the current poinkxit points
in a descent or “downhill” direction. That is, the Nextwe need to find the optimal steplength along the
value of the objective function decreases froftca  gradient direction that will minimize the objective
point at some distance in that direction.A vectbiss function M(x)[4]. The next iterate will be at a
said to be indescent directionwith respect to the distanceA; along the direction 8om the current
objective function M(x) at if it satisfies iterate X. To find the rate of change of the objective
function along the direction;&haracterized by the

M (xk + 1) — M (xk N )\sk) <M (xk) (13) parameterA ), that is,
The descent stepleng?t] is a scalar. It is a measure M n axj oM
of the distance along the descent directibbestween i Z N (07) (15)
two successive iteration point& and ¥*1 In other et J
words, at the K iteration a step of IengthK is taken 1=
from point X in the direction 'sto the point ™. where xis the J'' component of X. But

Steepest descent method is based on the premise thab
.. . . X.
the overall efficiency of the descent process is bestif ~"] _ i(x.. FAs.) = s (16)
each of the iteration is optimal. Optimal descent 0A oA 1) 1) 1)
iterations are those resulting in maximum reductions 0
in the value of the objective function M(x). where x; and g are the {" components Xand $
respectively. Hence,
3.3. Gradient of an objective function

The partial derivatives of an objective function, M,



n respect td\

S 'S ) 2
&% M(X;+A;S)) = M(-Ap Ap) = A]-2A; (24)
If A minimizes M(x) in the directiors, we have Equating (23) to zero we get
A=1 (25)
dM _ _ 1
o = gjlvlb\%sl =0 (18)
A=A to be the optimal steplength. Hence, the successive

) estimate is given by
at the poinfX; + A S

3.5. Example X, = X1+)\181 = H +1[‘1} = [‘ﬂ (26)
0 1 1

To illustrate the steepest gradient algorithm let us
consider an objective function involving two g

variables.
2 2 OM., = OM(X,,) = |3 # |9 27
M(X, y) = X—y+ 2X~ + 2xy + xy (19) 2 2 17 o 27)
with initial estimate _ _
X, is not the optimum.
X, = H (20) Iteration 2:
0
: s, =0OM, = |1 (28)
Iteration 1: 2 2 1

The gradient of M is given b
g g y To find the next iterate we need to find the optimal

steplength\,
oM
oM = |0X| = | 1+4x+2y (21) M(X5+A,555) = M(=1+A,, 1+A,) (29)
oM —-1+2x+2y 2
ay M(X2+)\282) = 5}\2—2)\2—1 (30)
and Equating (29) to zero we get
A, =2 (31)
Of, = Of(Xy) = {1} (22) 275
-1
Then the next estimate is given by
therefore,
_ _ [ 1H _ [—o.ﬂ
Xq = X5+A,S, = + = = (32)
s, = -OM, = [—1} (23) 3 T2 7272 [1} 51 1.2
1

Since the components of the gradient gt X
To find the next estimate X we need to find the
optimal steplengtﬁ\1 . For this, we minimize with



0.2
OM, =
3 [_0-2}

are not zero, we proceed to the next iteration.

(33)

Iteration 3:
Sy = -OMy = |92 (34)
0.2
Optimal steplength is found to be
}\3 = 1.0 (35)
The next iterate is
X, = 0.8 , 4|02 - [-1.0 (36)
1.2 0.2 1.4
Since
OM,#0 (37)

X4 is not the optimum and one needs to proceed t§€N0te the underlying space and lel R
the next iteration. This process is continued till the

optimum point is found.

4. THE EM ALGORITHM

Iterative algorithms also finds application in
stochastic models. One such algorithm is the
Expectation-Maximization (EM) algorithm which
estimates the parameters of the a probability function
such that it produces maximume-likelihood (ML)
estimates of the parameters. EM algorithm is used
when direct access necessary to estimate the
parameters is impossible, or some of the data is
missing.

4.1. Basics

The EM algorithm consists of two major steps: an
expectation step, followed by a maximization step.
The expectation is with respect to the unknown
underlying variables, using the current estimate of
the parameters and conditioned upon observations.
The maximization step then provides a new estimate
of the parameters. These two steps are iterated until
convergence as in Figure 3.

4.2. General Statement of the EM algorithm

Let Y denote the sample space of the observations,
and lety J R denote an observation from Y. Let

be an
outcome fromy , with m < n. The data x is referred
to as the complete data. The complete data x is not
observed directly, but only by means of y, where

The iterative process can be terminated if twoY(X), and y(x) is a many-to-one mapping.

successive iterates are very close together[3] i.e.

- (38)

wheree is a very small number.

3.6. Issues

The probability density function (pdf) of the
complete data is‘x(x| ) = f(x|,) ,wher@ isthe
set of parameters of tlge density. The pdf f is assumed
to be a continuos function & and appropriately
differentiable. The pdf of the incomplete data is

(39)

Though the steepest descent method converges faster,g(y|9) B J f(x|e)dx
its convergence is slow when compared with X(Y)
conjugate gradient techniques. Also, for the this o _
method to converge at the global minimum thel€t 1, (8) = g(y|g) denote the likelihood function
objective function needs to be a convex function [4].and fet

If the objective function is not convex, the steepest

descent method will converge at the global minimum Ly(G) = Iogg(y|9)
depending on the initial estimate. However, there are

acceleration techniques being used to speed up thgnote the log-likelihood function.
convergence of the steepest descent method.

(40)



Choose an estimate of the parameter p
pkk), k=0,1,2,...

Y

E-step: Find the unobserved data usi<ng
p(k)

Y

M-step: Compute the ML estimate of
the parameter p(k+1) using the
estimated data

Y

if p(k) = p(k+1),then exit

+ Exit

Figure 3: Flow diagram of an Expectation-Maximization algorithm.

The basic idea behind the EM algorithm is that we

would like to find® to maximizdog f(x|.) , but we p(x)logp(x) = Z p(x)loga(x) (43)
do not have the data x to compute the %g-likelihood. X X

So instead, we maximize the expectation of

log f (x\1 ) given the data y and our current gstimate with the equality if and only if p(x) = q(x) for all x.

of 8. This can be expressed in two steps. Bet be

our estimate of the parameters at tHeteration. Let y denote observable data. LBp.(y)  be the
probability distribution of y under some model

For the Expectation step compute: whose parameters are denoted®y . Bg(y) be
the corresponding distribution under a different

setting 6 of the same parameters. By EM theorem,
QEB Ez E Iogf(x| ) (41) We prove that y is more likely to occur und@r  than
O ‘ekD 0 ‘ K under®' .
y, 0

K+ 1 Let t be another variable whose value is determined
For the Maximization step | be that value of in the same process that generates y. Then because
® which maximizes Qi‘ K ): Pe.(t|y) is a probability distribution that sums to 1,
G

logPg(y) —logPg(y) =

k+1 g 0O

0 = argmaer[B‘ W (42
0 g™

Z P(t],)ogPg(y) - Z P(t],)I0gPg (y144)

4.3. The EM Theorem

The theorem is based on a special case of Jenser&ince we can multiply by 1 without altering the
inequality[5]. If p(x) and q(x) are two discrete equation, (44) becomes
probability distributions, then



Pa(t,y) distribution Pe.(t| ) and then maximize that

0 , .
= Z . I tat fuction of th ent
Pe (t|y)logPe(y) Pe(t, Y (45) expectation as a furiction of the argumeén

Pe(t y) 4.4, Convergence of the EM Algorithm

Z Po(t],)09Ps V5 i)

- Z Pe.(t|y)log =) (t| ) (46) is, at every iteration the estimated parameter provides
6% ly an increase in the likelihood function until a local
_ P_.(t )Iogpel(t’ y) maxi.mum is a(_:hieved, at which the likelihood
Z e' |y Pe'(tly) function cannot increase.

_ P (1] )logPa(t, y) 7) The rate of convergence of the EM algorithm is
Z Gl |y 9FelhY slower than the Newton’s method. However,
convergence near the maximum is rapid. Even with

potentially slow convergence there are advantages of
EM over other Newton’s algorithms. There is no
chance of “overshooting” the target or diverging

- Z Pg(t],)IogPg ()

+ Zpev(t|y)|ogpe-(t|y)— away from the maximum. The EM algorithm is
guaranteed to be stable and to converge to an ML
estimate.

Z Pe(t],)logPg(t])

4.5. Example
Hence, Let us consider an practical problem [6] to illustrate
the application of the EM algorithm. Suppose that in
an image pattern-recognition problem, there are two
- (y) 2 S .
10gPg(y) ~logPg (y) “8) " Classes to be distinguished: a class of dark objects

and a class of light objects. The class of dark objects
may be further subdivided into two shapes: round
and square.

Z Pi(t],)IogPg(t. ¥)

- Z Pi(t],)IogPg(t,y)

(48) is positive then,

For the EM algorithm, at every iteration of the
algorithm, a value of the parameter is computed so
Pe(t’ y) that the likelihood function does not decrease. That

Let us assume the objects are known to be
trinomially distributed. Let X be the random

variable that represents the number of round dark
objects, X% represent the number of square dark

We have thus proven that if the right hand side ofobjects, X represent the number of light objects and
let [X4, X, Xg] | =x be the vector of values the random

variables take for a particular image. Therefore

Pe(Y) > Pev(Y) (49)

which is the basic EM theorem. It states that if we P%’(l = Xq X5= Xo, Xg= Xg E

start with the parameter settingg and find a
parameter settin§ such that right hand side of (48)
is greater than zero, then the observed data y will be
more probable under the regime ®f than they were
under @' . The reason for the name Expectation-
Maximization is that we take the expectation of the
random variabldogPe(t, y) with respect to the old

(50)



where p is an unknown parameter of the distributiorSimilarly,
andn=x+x%X+X3

k+1 k
Let [y1, y2]" =y be the number of dark objects and X[2 I E[XZ/ %/1, p[ ]E} (56)
number of light objects detected, respectively, so that K
Vo = Xq+X (51) 1+ 2
17 %%% X[2k+ 1] _ yl4 2k (57)
1,0
and 5 + 5
Y = %3 (52) X3 need not be computed as it is uniquely known
from ys.

As already discussed, there is a many-to-one
mapping between {¥ x5} and y;. If y; = 3, then Next, perform the maximization step using the data
there are more than one possibility forand % like ~ from the expectation step to find the new estimate of

x=land =2o0rx; =2and % =1. The EM the paramketer kThls is done by taking the derivative
+1 ., k+1

algorithm is specifically designed for problems with of log f(x,"",x>""*,x5/p) with respect to p, equating
such many-to-one mappings. Then it to zero, and solving for p,
n-y k+1 k +1
PEY,= gt 151 PO és) d f% ) ' X3/ DE =0 (58)
0'1° y1| 07 G B 55
Solving for p we get the next estimat&'pl as
= %, g
99| O
p 5 k+1
k+1_T2 773 59
The idea behind the EM algorithm is that, even P T k+1 (59)
though we do not know xand x, directly, Xy tXg

knowledge of the underlying distribution f(,,xs/
p) can be used to determine an estimate for p. This iExpressing the next estimate of the parameter in
done by first estimating the underlying data, thenterms of the current estimate of the parameter we get
using these data to update the estimate of th§g],
parameter. Let pindicate the estimate aft(eef'k
iteration, k = 1,2,.... An initi [ k
assume;j 2, n initial parameter value g i1 P (4y1—2x1) + 2y1—2x1

' p = (60)
First the expectation step is performed to compute P (2yg +2X3) +yq +2X3
the expected value of the x data using the current
estimate of the parameter. The expected valug pf x If the actual values of p, ¥ x, are 0.5, 25, 38
given the measuremen wnd current estimate of the respectively and if we start with an initial estimate of

parameter [6] pi.e. P =0, then the algorithm proceeds as shown in
the Table 3.
k+1 k
Xg_ ] = E[xl/ %/1, p[ ]E} (54) 4.6. Remarks
o The EM algorithm can be employed when there is an
[k+1] a0 underlying set with a known distribution function
1 = yl““T( (55)  that is observed by means of a many-to-one mapping
1. p [6]. Analytically, the most difficult portion of the EM
+ . -
2 2 algorithm is the E-step. This also expensive in



[2] A. C. Bajpai, I. M. Calus, J. A. Fairley, “Numeric
al Methods for Engineers and Scientists,” John
Wiley & Sons, 1978

K x4 %, pl

1 31500000 31.500000 0.379562 [3] S.?.Rao, Optimization:TheoryandApplications,
2"Y% Edition, John Wiley and Sons, 1978.

2 26.475460 36.524540 0.490300

3 25 298157 37 701843 0.514093 [4] S.L.S. Jacoby, J.S. Kowalik, J.T. Pizzo,“Iterative
Methods for Nonlinear Optimization Problems,”

4 25.058740 37.941260 0.518840 Prentice-Hall Series in Automatic Computation,

5 25011514 | 37.988486 | 0.519773 1972.

6 25.002255 37.997745 0.519956 [5] Frederick Jelinek,“Statistical Methods for

7 | 25000441 | 37.999559 | 0.519991 Speech  Recognition,” The MIT  Press
Cambridge, Massachusetts, 1997.

8 25.000086 37.999914 0.519998

9 25 000017 37.999983 0.520000 [6] T. K._ Moon, .“The Expectqtlon-Maxmlzatlon
Algorithm,” Signal Processingvol. 13, no. 6,

10 25.000003 37.999997 0.520000 pp.47 - 60, November 1996.

Table 3: Calculations involved in estimating an unknown
parameter using the EM algorithm

computation as the expectation must be computed
over all values of the unobserved variables.In most
instances, where the EM algorithm applies, there are
other algorithms like gradient descent which can also
be applied. Though the EM algorithm is slower in
convergence, it is easy to compute when compared
with other algorithms as it does not require higher
order derivatives to be calculated.

5. SUMMARY

In this paper, we reviewed various iterative
algorithms and their application to various problems.
While a particular problem can be solved using
different algorithms, a proper choice of algorithm is
required so that computations are minimized. Care
should be taken so that the iteration does not diverge
or overshoot the required value. The choice of an
algorithm for a particular application also depends
upon the accuracy required and the rate of
convergence.
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