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ABSTRACT

Optimization techniques have helped in achievin
optimal solutions to many a problems in variou
fields.Optimization methods using differentia
calculus can be applied to solve certain problems b
as the problem becomes too cumbersome th
classical methods get replaced by Iterat iv
Techniques. This process of finding solutio
iteratively involves extensive computations and the
are several algorithms on iteration. This paper w
focus on various Iterative algorithms and the
applications.

1. INTRODUCTION

Iteration is a systematic method for generatin
successive approximations to estimate one or mo
unknowns, starting with assumed values for th
unknowns. The process of finding the successi
approximations to estimate an unknown is called
Iterative Process.Each step in an iterative process i
ca l led an I te ra t ion and each success ive
approximation is called anIterate. Iteration is done
by choosing x(0) as initial solution to the problem
Then one finds a better solution, say x(1),from x(0
and so on. The solution x(k) is the best possib
solution if it minimizes the objective function. This
objective function can be a cost function or erro
function around which the whole problem is based.
the successive approximations seem to converge t
value then the iteration is said to beconvergent.
I teration can also be terminated if there ar
indications that no solution to the problem exists i.
if the iteration process is divergent.

Though it is difficult to state a general rule as t
when iteration is preferable to other methods, on
major factor that limits the choice of method is th
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accuracy required and the computational cost.
accuracy is not a constraint then iterative metho
can be used as they give an approximate soluti
sooner than other methods in less computation
time.

This paper will explore in detail various iterative
algorithms and their application. The mathematic
involved in these algorithms is illustrated with
suitable examples.

2. NEWTON-RAPHSON METHOD

Newton-Raphson method is an iterative method f
finding the roots of a non-linear and transcenden
equation [1]. It is by no means uncommon for thes
types of equation to occur in practice. There are n
simple methods available for solving these equatio
and hence, iterative methods are frequently employ
for solving these equations.
012

Figure 1: Illustration of Newton-Raphson Meth-
od.
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2.1. Basics

Newton-Raphson is mainly used because of i
simplicity and speed of convergence. Let us consid
a function y=f(x) as shown in Figure 1. Let the
function have a continuous derivative .

The roots of the non-linear equation are the values
the variable x such that y = f(x) = 0.

To find the roots of the equation one chooses t
initial estimate of x as x0 and find f(x0). The
successive approximate of x0 is chosen as

(1)

Proof: If be the angle made by the tangent with th
x-axis then

(2)

From this we can find the successive approximate1
as in (1). The above formula can be generalized
find the (n+1)th approximation given the nth estimate.
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In Figure 1, the initial estimate x0 was chosen such
that the successive estimates x1, x2, etc. were tending
to the actual solution. Let us consider a case whe
the initial estimate x0is chosen as in Figure 2.

As can be seen from the Figure 2, x1 is in the
opposite side of A from x0. It may be even further
from A than x0 itself. After x1 is obtained the
iteration starts to converge to the exact solution. Th
one can infer that it is advisable to do the iterativ
process for two to three iterates before decidin
whether it is convergent or divergent, as a proce
which seems to be divergent after the first iterate w
be convergent when proceeded further.

2.2. Order of convergence

Let us characterize the quality of the Newton
Raphson method by judg ing the speed o
convergence[1]. Let xn+1 = g(xn) define the iteration
method where

(4)

Also let s be the actual solution. Then xn = s - en,
where en is the error of xn. If g is differentiable a
number of times then by Taylor’s series[1] one ca
write

(5)

(6)

The exponent of e in the first non-vanishing term
after g(s) is called the order of convergence of th
Newton-Raphson method defined by g. The ord
measures the speed of convergence. Also, we find

(7)

Equation (7) implies that g’(s) = 0. Subtracting g(s)
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Figure 2: Newton-Raphson method for a different choice of
initial estimate
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from both sides of (6) implies

(8)

(9)

It can be seen that if the iteration is convergent i.e.
en is less than one, then the Newton-Raphson meth
is of second order. The error at one iteration is
multiple of the square of the error at the previou
iteration. As we near the actual solution the erro
term is small and hence convergence is quite rapid

2.3. Example

Let us consider an example to illustrate the Newto
Raphson method. Consider the following equation

(10)

To find a suitable we will find the value of the
function given by (10) at various points and choos
the x-value where the function changes sign as o
initial estimate.

As can be seen from Table 1, since the functio
changes sign between x=2 and x=3, the roots
between 2 and 3. Let the initial estimate of the ro
be x0 =2. Differentiating f(x) with respect to x we
get,

(11)

and xn+1 is given by

en 1+–
1
2
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(12)

Subs t i tu t ing the va lues o f the success iv
approximates, starting with x0 = 2 in (12), we get the
successive iterates as shown in Table 2.

For an accuracy of up to 3 decimal places we find t
solution to be x = 2.071 which we get at the end o
4th iteration.

2.4. Issues

Although Newton-Raphson method gives a fast
convergence, care should be taken while consider
the initial estimate for the root. A good initial
estimate of the root can reduce the number
iterations drastically. A bad estimate may even le
to a divergent iterative process.

If an estimate of the root be a minimum point of th
function, then the successive estimate will be
infinity[2]. In this case the whole process should b
started with a different initial estimate.

3. STEEPEST DESCENT METHOD

Iterative methods are applied to optimizatio
problems to find the maximum or minimum, given
the objective function. The basic idea behind th
iterative methods of optimization is to produce
sequence of improved approximations to th
optimum. One such method to optimize an objectiv
function is the Steepest Descent Method. Given t
objective function M(x) a value of the variable vecto
x = (x1,x2,...,xn)T is sought that minimizes the
objective function M(x). The constraint imposed o

xn 1+ xn

e
xn xn 10–+

e
xn 1+

----------------------------------–=
xn Value

x0 2

x1 2.073

x2 2.071

x3 2.071
Table 1: Choice of Initial estimate
 Table 2: Iterative Estimates to find the root
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the objective function M(x) is that the function be
convex function [3].

3.1. Basics

The descent algorithms involve iterations whic
consist of essentially of three parts. First, a directio
of descent is found, then a descent steplength
determined and finally the descent step is calculate
The iteration can be explained as:

1. Start with initial trial point Xi

2. Find a suitable direction Si which points in the
general direction of the minimum.

3. Find an appropriate step length for th

movement along the direction of Si

4. Obtain the new approximation Xi+1 = Xi + Si

5. Test whether Xi+1is optimum.

3.2. Theory

The descent direction is an n-dimensional vect
s = (s1, s2,...,sn)T. At the kth iteration the direction
vector sk originates at the current point xk. It points
in a descent or “downhill” direction. That is, the
value of the objective function decreases from xk to a
point at some distance in that direction.A vector sk is
said to be indescent directionwith respect to the
objective function M(x) at xk, if it satisfies

(13)

The descent steplength is a scalar. It is a meas
of the distance along the descent direction sk between
two successive iteration points xk and xk+1. In other
words, at the kth iteration a step of length is taken
from point xk in the direction sk to the point xk+1.

Steepest descent method is based on the premise
the overall efficiency of the descent process is bes
each of the iteration is optimal. Optimal descen
iterations are those resulting in maximum reductio
in the value of the objective function M(x).

3.3. Gradient of an objective function

The partial derivatives of an objective function, M

λi

λi

M x
k 1+( ) M x

k λs
k

+( ) M x
k( )<=

λi

λk
a

h
n
is
d.

e

or

ure

that
t if
t

ns

,

with respect to each of then variables are collectively
called the gradient of the function and is denoted b

(14)

The gradient is a n-component vector and it has
very important property. If we move along the
gradient direction from any point in n-dimensiona
space, the functional value increases at the fast
rate. Hence the gradient direction is called th
direction of steepest ascent. Since the gradient vec
represents the direction of steepest ascent, t
negative of the gradient vector denotes the directi
of the steepest descent [3].

3.4. Rate of change of a function along a direction

Next we need to find the optimal steplength along th
gradient direction that will minimize the objective
function M(x)[4]. The next iterate will be at a
distance along the direction Si from the current
iterate Xi. To find the rate of change of the objective
function along the direction Si(characterized by the
parameter ), that is,

(15)

where xj is the jth component of X. But

(16)

where xij and sij are the jth components Xi and Si
respectively. Hence,
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If  minimizes M(x) in the directionSi, we have

(18)

at the pointXi + Si

3.5. Example

To illustrate the steepest gradient algorithm let u
consider an objective function involving two
variables.

(19)

with initial estimate

(20)

Iteration 1:

The gradient of M is given by

(21)

and

(22)

therefore,

(23)

To find the next estimate X2, we need to find the
optimal steplength . For this, we minimize with

λd
dM
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s
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(24)

Equating (23) to zero we get

(25)

to be the optimal steplength. Hence, the success
estimate is given by

(26)

As

(27)

X2 is not the optimum.

Iteration 2:

(28)

To find the next iterate we need to find the optima
steplength

(29)

(30)

Equating (29) to zero we get

(31)

Then the next estimate is given by

(32)

Since the components of the gradient at X3,

λ1
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(33)

are not zero, we proceed to the next iteration.

Iteration 3:

(34)

Optimal steplength is found to be

(35)

The next iterate is

(36)

Since

(37)

X4 is not the optimum and one needs to proceed
the next iteration. This process is continued till th
optimum point is found.

The iterative process can be terminated if tw
successive iterates are very close together[3] i.e.

(38)

where  is a very small number.

3.6. Issues

Though the steepest descent method converges fa
its convergence is slow when compared wit
conjugate gradient techniques. Also, for the th
method to converge at the global minimum th
objective function needs to be a convex function [4
If the objective function is not convex, the steepe
descent method will converge at the global minimu
depending on the initial estimate. However, there a
acceleration techniques being used to speed up
convergence of the steepest descent method.
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4. THE EM ALGORITHM

Iterative algorithms also finds application in
stochastic models. One such algorithm is th
Expectation-Maximization (EM) algorithm which
estimates the parameters of the a probability functi
such that it produces maximum-likelihood (ML
estimates of the parameters. EM algorithm is us
when direct access necessary to estimate t
parameters is impossible, or some of the data
missing.

4.1. Basics

The EM algorithm consists of two major steps: a
expectation step, followed by a maximization ste
The expectation is with respect to the unknow
underlying variables, using the current estimate
the parameters and conditioned upon observatio
The maximization step then provides a new estima
of the parameters. These two steps are iterated u
convergence as in Figure 3.

4.2.  General Statement of the EM algorithm

Let Y denote the sample space of the observatio
and let denote an observation from Y. Let
denote the underlying space and let be a
outcome from , with m < n. The data x is referre
to as the complete data. The complete data x is n
observed directly, but only by means of y, wher
y(x), and y(x) is a many-to-one mapping.

The probability density function (pdf) of the
complete data is , where is the
set of parameters of the density. The pdf f is assum
to be a continuos function of and appropriatel
differentiable. The pdf of the incomplete data is

(39)

Let denote the likelihood function
and let

(40)

denote the log-likelihood function.

y R
m∈ χ

x R
n∈

χ

f X x θ( ) f x θ( )= θ

θ

g y θ( ) f x θ( ) xd
χ y( )
∫=

l y θ( ) g y θ( )=

Ly θ( ) g y θ( )log=
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Choose an estimate of the parameter p
                   p(k), k = 0,1,2,...

E-step: Find the unobserved data using
                              p(k)

M-step: Compute the ML estimate of
the parameter p(k+1) using the
estimated data

             if p(k) = p(k+1),then exit

Exit
The basic idea behind the EM algorithm is that w
would like to find to maximize , but we
do not have the data x to compute the log-likelihoo
So instead, we maximize the expectat ion o

given the data y and our current estima
of . This can be expressed in two steps. Let b
our estimate of the parameters at the kth iteration.

For the Expectation step compute:

(41)

For the Maximization step let be that value o
 which maximizes Q( ):

(42)

4.3. The EM Theorem

The theorem is based on a special case of Jense
inequality[5]. If p(x) and q(x) are two discrete
probability distributions, then

θ f x θ( )log

f x θ( )log
θ θk

Q θ
θk 

 
 

E f x θ( )

y θk,

log=

θk 1+

θ θ
θk

θk 1+
maxθQ θ

θk 
 
 

arg=
e

d.
f

te
e

f

n’s

(43)

 with the equality if and only if p(x) = q(x) for all x.

Let y denote observable data. Let be th
probability distribution of y under some mode
whose parameters are denoted by . Let
the corresponding distribution under a differen
setting of the same parameters. By EM theore
we prove that y is more likely to occur under tha
under .

Let t be another variable whose value is determin
in the same process that generates y. Then beca

 is a probability distribution that sums to 1,

=

(44)

Since we can multiply by 1 without altering the
equation, (44) becomes

p x( ) p x( )log

x
∑ p x( ) q x( )log

x
∑≥

Pθ' y( )

θ' Pθ y( )

θ
θ

θ'

Pθ' t
y

( )

Pθ y( )log Pθ' y( )log–

Pθ' t
y

( ) Pθ y( )log

t
∑ Pθ' t

y
( ) Pθ' y( )log

t
∑–
Figure 3: Flow diagram of an Expectation-Maximization algorithm.
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(45)

(46)

(47)

Hence,

(48)

We have thus proven that if the right hand side o
(48) is positive then,

(49)

which is the basic EM theorem. It states that if w
start with the parameter setting and find
parameter setting such that right hand side of (4
is greater than zero, then the observed data y will
more probable under the regime of than they we
under . The reason for the name Expectatio
Maximization is that we take the expectation of th
random variable with respect to the old

Pθ' t
y

( ) Pθ y( )
Pθ t y,( )

Pθ t y,( )
-------------------log

t
∑
Pθ' t

y
( ) Pθ' y( )

Pθ t y,( )

Pθ t y,( )
-------------------log

t
∑

–=

Pθ' t
y

( )
Pθ t y,( )

Pθ t
y

( )
-------------------log

t
∑

Pθ' t
y

( )
Pθ' t y,( )

Pθ' t
y

( )
--------------------log

t
∑–

=

Pθ' t
y

( ) Pθ t y,( )log

t
∑=

Pθ' t
y

( ) Pθ' t y,( )log

t
∑–

Pθ' t
y

( ) Pθ' t
y

( )log

t
∑

Pθ' t
y

( ) Pθ t
y

( )log

t
∑

–+

Pθ y( )log Pθ' y( )log–

Pθ' t
y

( ) Pθ t y,( )log

Pθ' t
y

( ) Pθ' t y,( )log

t
∑–

t
∑

≥

Pθ y( ) Pθ' y( )>

θ'
θ

θ
θ'

Pθ t y,( )log
f

e
a
8)
be
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e

distr ibution and then maximize that
expectation as a function of the argument

4.4. Convergence of the EM Algorithm

For the EM algorithm, at every iteration of the
algorithm, a value of the parameter is computed
that the likelihood function does not decrease. Th
is, at every iteration the estimated parameter provid
an increase in the likelihood function until a loca
maximum is achieved, at which the likelihood
function cannot increase.

The rate of convergence of the EM algorithm i
slower than the Newton’s method. Howeve
convergence near the maximum is rapid. Even wi
potentially slow convergence there are advantages
EM over other Newton’s algorithms. There is n
chance of “overshooting” the target or divergin
away from the maximum. The EM algorithm is
guaranteed to be stable and to converge to an M
estimate.

4.5. Example

Let us consider an practical problem [6] to illustrat
the application of the EM algorithm. Suppose that
an image pattern-recognition problem, there are tw
classes to be distinguished: a class of dark obje
and a class of light objects. The class of dark objec
may be further subdivided into two shapes: roun
and square.

Let us assume the objects are known to b
trinomially distributed. Let X1 be the random
variable that represents the number of round da
objects, X2 represent the number of square dar
objects, X3 represent the number of light objects an
let [x1, x2, x3]

T =x be the vector of values the random
variables take for a particular image. Therefore

(50)

Pθ' t
y

( )
θ

P X1 x1 X2 x2= X3 x3=, ,=
p

 
 

n!
x1! x2! x3!
------------------------ 

  1
4
--- 

 
x1 1

4
--- p

4
---+ 

 
x2 1

2
--- p

4
---– 

 
x3

f x1 x2 x3, ,
p

 
 

=

=
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where p is an unknown parameter of the distributio
and n = x1 + x2 + x3

Let [y1, y2]T = y be the number of dark objects an
number of light objects detected, respectively, so th

(51)

and

(52)

As already discussed, there is a many-to-on
mapping between {x1, x2} and y1. If y1 = 3, then
there are more than one possibility for x1 and x2 like
x1=1 and x2 = 2 or x1 = 2 and x2 = 1. The EM
algorithm is specifically designed for problems wit
such many-to-one mappings. Then

(53)

The idea behind the EM algorithm is that, eve
though we do not know x1 and x2 direct ly,
knowledge of the underlying distribution f(x1,x2,x3/
p) can be used to determine an estimate for p. This
done by first estimating the underlying data, the
using these data to update the estimate of t
parameter. Let pk indicate the estimate after kth

iteration, k = 1,2,.... An initial parameter value p0 is
assumed.

First the expectation step is performed to compu
the expected value of the x data using the curre
estimate of the parameter. The expected value of1,
given the measurement y1 and current estimate of the
parameter [6]

(54)

(55)

y1 x1 x2+=

y2 x3=

P Y1 y1=
p

 
  n!
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-------- 
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2
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4
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4
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2
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------+

----------------=
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Similarly,

(56)

(57)

x3 need not be computed as it is uniquely know
from y2.

Next, perform the maximization step using the da
from the expectation step to find the new estimate
the parameter. This is done by taking the derivati
of log f(x1

k+1,x2
k+1,x3/p) with respect to p, equating

it to zero, and solving for p,

(58)

Solving for p we get the next estimate p[k+1] as

(59)

Expressing the next estimate of the parameter
terms of the current estimate of the parameter we g
[6],

(60)

If the actual values of p, x1, x2 are 0.5, 25, 38
respectively and if we start with an initial estimate o
p i.e. p0 = 0, then the algorithm proceeds as shown
the Table 3.

4.6. Remarks

The EM algorithm can be employed when there is a
underlying set with a known distribution function
that is observed by means of a many-to-one mapp
[6]. Analytically, the most difficult portion of the EM
algorithm is the E-step. This also expensive i

x2
k 1+[ ]

E x2 y1 p
k[ ], 

 ⁄=

x2
k 1+[ ]

y1

1
4
--- p

k

2
------+

1
2
--- p

k

2
------+

----------------=

d
dp
------ f x1

k 1+
x2
k 1+

x3 p⁄, , 
 log 0=

p
k 1+ 2x2

k 1+
x3–

x2
k 1+

x3+
------------------------------=

p
k 1+ p

k
4y1 2x1–( ) 2y1 2x1–+

p
k

2y1 2x3+( ) y1 2x3+ +
-------------------------------------------------------------------=



n

”

e
”
,

k x1
[k] x2

[k] p[k]

1 31.500000 31.500000 0.379562

2 26.475460 36.524540 0.490300

3 25.298157 37.701843 0.514093

4 25.058740 37.941260 0.518840

5 25.011514 37.988486 0.519773

6 25.002255 37.997745 0.519956

7 25.000441 37.999559 0.519991

8 25.000086 37.999914 0.519998

9 25.000017 37.999983 0.520000

10 25.000003 37.999997 0.520000
computation as the expectation must be comput
over all values of the unobserved variables.In mo
instances, where the EM algorithm applies, there a
other algorithms like gradient descent which can al
be applied. Though the EM algorithm is slower i
convergence, it is easy to compute when compar
with other algorithms as it does not require highe
order derivatives to be calculated.

5. SUMMARY

In this paper, we reviewed various iterat iv
algorithms and their application to various problem
While a particular problem can be solved usin
different algorithms, a proper choice of algorithm i
required so that computations are minimized. Ca
should be taken so that the iteration does not diver
or overshoot the required value. The choice of a
algorithm for a particular application also depend
upon the accuracy required and the rate
convergence.
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