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ABSTRACT knowledge from data. However, there are lots of

representations available for data analysis, such as
A Bayesian network is a graphical tool which decision trees, artificial neural networks and rule
contains probabilistic relationships among various bases, and there are many methods for data analysis,
random variables. When used jointly with statistical such as density estimation, classification, and
techniques, the graphical model has severalregression. So what's the advantage of Bayesian
advantages for data analysis. First, a Bayesiannetworks?

network can be used to learn probabilistic Fjrst, a Bayesian network can be used to learn
relationships, and thus can be used in a learningpropabilistic relationships from a large amount of

system to gain the understanding of a problem gata for a large amount of random variables, and
domain and to predict the consequences ofthys can be used in a learning system to gain the

intervention. Second, it is an ideal representation foryngerstanding of a problem domain and to predict
combining prior knowledge, which often comes in the consequences of intervention.

causal form, with data. Three, Bayesian statistical _

methods along with network structures can encodesecond’ Baye_3|an n(_atvvorks alloyv one to learn about
dependencies among all random variables. In thiscaugal rellatlonshlps.. Learning about causal
paper, we discuss methods for constructing BayesiarrEI‘?ltlonShIIOS are very important for at least ,tWO
networks from prior knowledge and summarize reasons. The process is useful when we are trying to

Bayesian statistical methods for learning from data 92!" _understandlng about a probl_em d_omaln. In
to improve probabilistic models of stochastic addition, knowledge of causal relationships allows

processes us to make predictions in the presence of
' interventions. For example, a marketing analyst may
1. INTRODUCTION want to know whether or not it is worthwhile to

increase exposure of a particular advertisement in

order to increase the sales of a product. To answer
this question, the analyst can determine whether or

not the advertisement is a cause for increased sales,
and to what degree. The use of Bayesian networks

helps to answer such questions even when no

experiment about the effects of increased exposure is
available.

A Bayesian network is a graphical tool for
probabilistic relationships among a set of variables.
The field of Bayesian networks, and graphical
models in general, has grown rapidly over the last
few years, with theoretical and computational
developments in many areas. More recently,
researchers have developed numerous methods fc
learning Bayesian networks from data. The Three, Bayesian statistical methods along with
techniques that have been developed are new annetwork structures can encode dependencies among
still under heavy construction, but they have beenall random variables. They can facilitate the
proven to be remarkably effective for some data combination of domain knowledge and data. Anyone
analysis problem. who has performed a real-world analysis knows the

. . . _ importance of prior or domain knowledge, especially
In this paper, we give a tutorlal_on Bayes_l_an_ when the available data is scarce or expensive.
networks and its associated Bayesian probablllstchayesian networks encode the strength of causal

techniques for extracting and encoding prior relationships with probabilities. Consequently, prior



knowledge and data can be combined witdccuracy. For example, recent experience can lead to
well-studied techniques from Bayesian statistics. assessments that do not reflect a person’s true beliefs
[2]. Methods for improving accuracy can be found is

2. THE BAYESIAN APPROACH ToO thedecision analysis literature [3].
PROBABILITY AND STATISTI . .
© S STICS 2.2. Learning with Data

To understand Bayesian networks and associa!
learning methods, it is important to understand tt
Bayesian approach to probability and statistics.
this section, we provide an introduction to th
Bayesian approach to probability and statistics.

To illustrate how the Bayesian approach learns
probabilities from the given data, let’s consider a
common coin. If we throw the coin into the air, it will
come to land either on its tails or on its heads. Suppose
we flip the coinN + 1 times, making sure that the
physical properties of the coin and the conditions under
which it is flipped remain unchangeable over time.

. . . From the firstN observations, we want to determine
The Bayesian probability of an evext is a person

degree of belief in that event. A Bayesian probabililthe probability of heads on thé + 1th  fiip.

is a property of the person who assigns thin the classical analysis of this problem, we assume
probability (e.g., your degree of belief that the coithere is some physical probability of heads, which is
will land heads), however, from the classiceunknown. We estimate the probability from the fidt
viewpoint, a probability is a physical property of thusing criteria such as low bias and low variance. We
world (e.g., the probability that a coin will landthen use this estimate as our probability for heads on
heads). the N + 1th toss. In the Bayesian approach, we also
assume there is some probability of landing with heads,
but we interpret our uncertainty about this physical

measure the latter, we don't need to repeat trials. Fprobability using Bayesian methods, and use the rules

. of probability to compute the probability of heads on
example, suppose we are tossing a sugar cube on

wet surface, every time the cube is tossed, i"¢ \ * 1th flip.

dimensions will change slightly. Thus, although thTo examine the Bayesian analysis of this problem, we
classical statistician has a hard time measuring theed some notation. We denote a variable by an
probability that the cube will land with a tail or headupper-case letter (e.gX, Y, X, © ), and the state or
the Bayesian statistician simply restricts his attentiivalue of a corresponding variable by that same letter in
on the next toss, and assigns a probability. Zlower-case (e.g.x Y, X, 6 ). We denote a set of
another example, consider the question: What is tvariables by a bold-face upper-case letter (e.g.,
probability that the Chicago Bulls will win the X, Y, X;). We use a corresponding bold-face
championship in 2001? Here, the classiclower-case letter (e.g.X, Y, X; ) to denote an
statistician must remain silent, whereas the Bayesiassignment of state or value to each variable in a given
can assign a probability to this guess. set.

In general, the process of measuring a degreeReturning to the coin tossing problem, we defi@e  to
belief is commonly referred to as a probabilitbe a variable whose value8  correspond to the
assessment. One problem with probabilitpossible true values of the physical probability. We
assessment that is the precision. Can one really sometimes refer t® as a parameter. We express the
that his or her probability for event is 0.601 anuncertainty abou® using the probability density
not 0.599? In most cases, he or she cannot say tifunction p(8) . In addition, we use&; to denote the
because in most cases, probabilities are used to mvariable representing the outcome of th flip,and
decisions, and these decisions are not very sensiwe useD = {X;= X;, ..., Xy= Xy} to denote the
to small variations in probabilities. Well-establisiset of our observations. Thus, in Bayesian terms, the
practices of sensitivity analysis help one to knocoin tossing problem reduces to computing
whether or not the additional precision is necesseP(Xy + 1| D) from p(0) .

[1]. Another problem with probabilities is the

2.1. The Bayesian Probability

One important difference between a classic
probability and a Bayesian probability is that, t
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Figure 1. several commonly used beta distributions

To do so, first we use Bayes’ rule to obtain the wherea,, >0 ando, >0 are the parameters of the
probability distribution for© givenD and beta distributiona = o, +a, ,and (*) isthe
background knowledge: Gamma function which satisfies
MN(x+1) =xF(x) and I (1) =1. The

p(6|D) = w (1) quantitiesa, anda, are often referred to as
p(D) hyper-parameters to distinguish them fromthe
where parametef . The,, and, mustbe greater than
zero in order to normalize the distribution. Examples
p(D) = [p(D|B)p(6)dd (2)  of beta functions are show in Figure 1.
Next, we expand the terrp(D|B8)  according to the The beta prior is chosen for several reasons. By
binomial distribution: Equation 3, the posterior distribution will also be a beta
distribution:
h t
p(8|D) = p(8)8 (1-6) 3) (p(6|D) = Beta6|a,, +h,a, +1)) (6)

p(D)
hereh andt h ber of head d tail We say that the set of beta distributions is a
wheref andl “are the number of heads and talls ¢ o njy gate family of distributions for binomial

observed inD , respectively. The probability sampling. Also, the expectation 6f  with respect to

distributions p(6) andp(B|D) are commonly this distribution has a simple form:

referred to as the prior and posterior f@ o+ h
respectively. Finally we average over the possible IeBeta(9|O(h, a,)do =
values of © to determine the probability that the

N+1th flip of the coin will be Hence, given a beta prior, we have a simple
heads: expression for the probability of heads in the

N + 1th flip:
p(XN+1: HEADS Q
= [p(Xy+1= HEADS®)p(8|D)d®  (4) p(X= HEADS D =
= [6p(6|D)d®

T+ N ()

ah+h
a+N

(8)

3. BAYESIAN NETWORKS
To complete the computation, we need to assign a

prior distribution for® ; A common e_lpprqach Is to So far we are only talking about simple problems
assume that the prior distribution is a beta \yith gne or a few variables. In real learning

distribution: problems, we are typically interested in looking for
relationships among a large number of variables, in
(p(8) = Beta(elah, O‘t)) that case, the Bayesian networks is a ideal solution.
(o) h—1 a-1 () It is a graphical tool that efficiently interprets the
0 (1-96) joint probability distribution for a large set of

r(O(h)r(O(t) variables. In this section, we define a Bayesian
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Figure 2. A Bayesian network for detecting credit-card fraud. The local probability distribution associated with a
adjacent node

network and show how one can be constructed fromdistribution p(x) .
prior knowledge.

3.2. Constructing a Bayesian Network
3.1. Definition

To illustrate the process of building a Bayesian
A Bayesian network for a set of variables network, consider the problem of detecting
X = {Xl, Xn} consists of a network structure credit-card fraud. We begin by determining the
S that encodes a set of conditional independencevariables to model. One possible choice of variables
assertions about variables a , and a set of localfor our problem is Fraudk ), GakG) , Jewelry
probability distributions associated with each (J), Age (A) , and SexXS) , representing whether
variable. Together, all these components define theor not the current purchase is fraudulent, whether or
joint probability distribution forX . The network not there was a gas purchase in the last 24 hours,
structureS is a directed aryclic graph. The nodes inwhether or not there was a jewelry purchase in the
the network are in one-to-one correspondence withlast 24 hours, and the age and sex of the card holder,
the variablesX . We us&; to denote both the respectively. The states of these variables are shown
variable and its corresponding node, aRa, to Figure 2. Of course, in a realistic problem, we would
denote the parent nodes &  # as well as theinclude many more variables. Also we could model
variables corresponding to these parents. In generalthe states of one or more of these variables at a
the joint probability distribution foX is given by higher level of detail. For example, we could get Age

be a continuous variable.

n
p(x) = M p(xi | Pai) (9) As part of the initial task, we must
i=1 » Correctly identify the goals of modeling

The local probability distributions are the * ldentify all possible observations that may be
distribution corresponding to the terms in the  relevantto this problem o
product of Equation 9. So, the network struct@e  ° determine what subset of these observations is
and the local distribution® decide the joint worthwhile to model



e organize the observations into the variables Fortunately, there is another technique to construct

having mutually exclusive and collectively
exhaustive states.

In the next step, we will build a directed aryclic

graph that shows the conditional independence
among those variables. One way to do that is basec

on the following observations. From the chain rule
of probability, we have

p(x) = .|‘| p(xi|xl, e Xi_q)

Bayesian networks that does not require an order
among the variables. The new technique is based on
two observations, first, people can often readily

assert causal relationships among variables, and
second, causal relationships typically correspond to
assertions of conditional dependence. In particular,
to construct a Bayesian network for a given set of

variables, we simply draw arcs between the variable
pair which has the asserted conditional dependence,

(10) from the cause to the result. For example, given the
i=1 assertions that Fraud is a direct cause of Gas, and
Now, for every X. , there will be some subset Fraud, Age and Sex are direct causes of Jewelry, we
I 04 Xqo oo X3 _1} " such that X; and obtain the network structure in Figure 2.
{Xy X _4}/[]; are conditionally independent In the final step of constructing a Bayesian network,
given subseﬂi . That is, for any we assign the local probability distribution
(% |X % ) = p(x|T) 1 P(%|P&) . In our fraud example, where all
P Xi| v Xiog) =P Xi| i (1) variables are discrete, we assign one distribution for
Thus, we get X; for each of its parent nodes. Example
N distributions are shown in Figure 2.
P(x) = _ﬂlp(’ﬂ”i) (12 4 INFERENCE
| =
We see that the variables setbly, ---T15)  after a Bayesian network is constructed (from prior

correspond to the Bayesian network parentsiknowledge, data, or a combination of these two),
(Pay, ..., pa,), which are able to fully describe ysuyally we want to decide the probability of a

the arcs in the network structuf® . So, to determineparticular interest, which is corresponding to a node
the structure of a Bayesian network we need to orderin our network. For example, in our credit-card fraud
the variables somehow and determine the variablesjetecting problem, we are interested in the
sets that satisfy Equation 12 for= 1,...,n . In probability of a purchase being a fraud given all

our example, using the orderind=, A,'S G J , other available observations. The probability cannot
we have the conditional independencies be obtained directly from the network and needs to
be computed. The computation of a probability of an
interest is called “probabilistic inference”. In this

p(a f) = p(a) section, we will illustrate the basic idea of
p(s| f, @ = p(s) computing the desired probability in a Bayesian
network.

p(glf, a9 = p(gf)
p(ilf,a,s 9 = p(j|f,a 9

Thus, we obtain the network structure shown in
Figure 2.

(13)  4.1. Definitions

In this section, we are going to using multinomial
distribution to show how we actually proceed the
This approach has a serious drawback. If we chooseprobability computation in a Bayesian network.

the variable order carelessly, the resulting network
structure may fail to show the conditional
independence among the variables. For example, i
we construct a Bayesian network for the fraud
problem using the orderingJ, G, S A B , we
obtain a fully ordering to find the best one.

In our case, each variablXi O XI_ is discrete,
havingr; possible valuesct , ..., x.! , and each
local probability distribution is a collection of

multinomial distributions, one distribution for each
parent node oX; , Namely, we assume



sample 1

sample 2

Figure 3. A Bayesian network structure describes the assumption of parameter independence for learning the
parameters of the network structure X — Y. Both variables X and Y are binary. We use X and Xto denote
the two states of X, and Yy and Y to denote the two states of Y.

K| ] 0 - g that the network structur& — Y . encodes the joint
p(% P&, 8;,9) = 6, >0 (14)  probability distribution of random variab¥
where pa]-l, o PRy 'Bq, X, 0 pa denote Under this assumption, we can compute the

the configurations ofpa1 : ancﬁ are the posterior distribution 08 given a random sample
parameters. For convenience, we deflne the vector oD and network structur®

parameters q
n i
8 = (B2 -6 ) (15) P(6gD.S) = ] [] p(6;|D,s) (a7)
=1j=1
foralli andj . 1=1)=

Hence, we can update each parameter veétor
independently, just as in the one variable case.
Assuming each vectdi) has the prior distribution

Given this set of distributions, we can compute the Dir i @ija - IJr,D , we obtain the individual
posterior distribution p8|(D, S) efficiently. posterior distribution is given by the following:
Before we start, we need to make an assumption in P(8,;[D.S) = pir BB, % LN E(18)
order to proceed the probability computation. The J 1 I
assumption is that the parameter vecték: aréwhere Njjc is the number of casesB  in which
independent. The corresponding mathematical
interpreting is:

4.2. Learning Probabilities

X =xf and pa = paJ

n G

P(6.|S) = 0..1S 16
el i'l,-'lp( i - P(Xy+1|D: S) (19)

which was introduced by Spiegelhalter and
Lauritizen (1990)

Given the joint probability distribution factors
according to some network structui® , the
assumption of parameter independence itself can b
represented by a network. For example, the network P(Xy + 1l D,S)

structure in Figure 3 shows the assumption of

parameter independence for = [([8;jcP(8¢|D. S)dle (20)
X = {X Y}(X, Y binary) and the hypothesis _ ﬂfeijkp(eij\D' sde

In order to compute our goal

wherexy , ;1 is the next case to be seen diter

To compute this distribution, we first use the fact that
the parameters remain independent gilzen
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Figure 4. A Bayesian network representation of an HMM. There is a distinct state and observation variable at
each point in time. A node in the graph represents a variable, and the arcs leading into a node specify the vari-
ables on which it is conditionally dependent. A valid assignment of values to the state variables for the word “no”
is shown. Observation variables are shaded.

Then, we use Equation 8 to obtain n
N o+ N P(0.9 = P(s)P(0ysy) [ CCIEEECIEY (22)
- I I i=2
sl = Mgl e | e
i+1 j ij In the case of speech, the state variable is usually

identified with the phonetic state, i.e., the current

These computations are very straightforward phone being pronounced.

because the multinomial distributions are in the _
exponential family. Computation for linear 5.1.2. Bayesian Networks

regression with Gaussian noise are equally simplea Bayesian network is a general way of representing

[4] [5]. joint probability distributions with the chain rule and
conditional independence assumptions. The
5. APPLICATION IN SR advantage of the Bayesian network framework over

HMMs is that it allows for an arbitrary set of hidden
In this section, we apply Bayesian networks to the variabless , with arbitrary conditional independence
speech recognition problem. The factored stateassumptions. Often there is a significant decrease in
representation of Bayesian networks allows us tothe computational load if the conditional
explicitly represent acoustic context in addition to independence assumptions result in a sparse network
the phonetic information maintained by Hidden [7][8] [9].
Markov Models (HMMs) [6] (Rabiner & Juang \,qre precisely, a Bayesian network represents a
1993). Furthermore, it enables us to model the ;2 pijity distribution over a set of random
multiple observation streams within single variablesV = V., ...V . The variables are

time-frames. connected by a directed acyclic graph whose arcs
specify conditional independence among the

5.1. Background variables, such that the joint distribution is given by

The task of a statistical speech recognition system is P(Vl’ Vn) =1 P(Vi | Parentg \{)) (23)
to learn a parametric model from a large body of [

training data, and then to use the model to recognize
the words in the test data.

5.1.1. HMM

A hidden Markov Model is a simple representation
of a stochastic process. The hidden state of the
process is represented by a single state varigble  a
each pointin time, and the observation is representec
by an observation variablei . Furthermore, a
Markovian assumption is made, so that we can
obtain the following equation to compute the
probability over the state sequence.

where Parentg V) are the parents &, in the
graph.

5.2. Acoustic Modeling

The reason for using a Bayesian network is that it
allows the hidden state to be factored in an arbitrary
way. This enables several approaches to acoustic
modeling that are awkward with conventional
HMMs [10] [11]. The simplest approach is to
augment the phonetic state variable with one or more
variables that represent articulatory-acoustic context.
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Figure 5. A Bayesian network for speech recognition. The index, transition, phone, and end-of word variables
encode a probability distribution over phonetic sequences. The context and observation variables encode a dis-
tribution over observations, conditioned on phonetic sequence.

This is the structure shown in Figure 5.

5.3. Performance

Table 1 shows the word-error rates with the basic
phoneme alphabet. The results for the DBNs clearly
dominate the baseline HMM system. The
articulatory network performs slightly better than the

The Bayesian networks are tested by using fourchain network. However, most of the differences
different model structure on a large-vocabulary, among the augmented networks are not significant.

isolated-word recognition task.

An “articulator” network in which the context

variable depends on both the phonetic state anc

its own past value
A “chain” network in which the phonetic
dependence is removed.
A “phone-dependent-correlation”
(PD-Correlation) which results from removing
the temporal links from the articulator network.
A “correlation” network which further removes

the phonetic dependence.

network

Network Parameter WER
HMM 127k 4.8%
Correlation 254k 3.7%
PD-Correlation 254k 4.2%
Chain 254k 3.6%
Articulator 255k 3.4%

Table 1. Test results with basic phoneme alphabet

6. SUMMARY

In this paper we discussed different methods for
constructing Bayesian networks from prior

knowledge and how to use Bayesian approach for
using given data set to improve the models
associated with Bayesian networks. In addition, we
demonstrate that Bayesian networks are a flexible
tool that can be applied effectively to speech
recognition, and show the use of this graphical
representation can improve speech recognition
results.
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