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ABSTRACT

A Bayesian network is a graphical tool which
contains probabilistic relationships among variou
random variables. When used jointly with statistica
techniques, the graphical model has sever
advantages for data analysis. First, a Bayesi
network can be used to learn probabi l is t i
relationships, and thus can be used in a learni
system to gain the understanding of a proble
domain and to predict the consequences
intervention. Second, it is an ideal representation f
combining prior knowledge, which often comes i
causal form, with data. Three, Bayesian statistic
methods along with network structures can enco
dependencies among all random variables. In th
paper, we discuss methods for constructing Bayes
networks from prior knowledge and summariz
Bayesian statistical methods for learning from da
to improve probabilistic models of stochasti
processes.

1. INTRODUCTION

A Bayesian network is a graphical tool fo
probabilistic relationships among a set of variable
The field of Bayesian networks, and graphica
models in general, has grown rapidly over the la
few years, with theoretical and computationa
developments in many areas. More recentl
researchers have developed numerous methods
learning Bayesian networks from data. Th
techniques that have been developed are new a
still under heavy construction, but they have bee
proven to be remarkably effective for some da
analysis problem.

In this paper, we give a tutorial on Bayesia
networks and its associated Bayesian probabilis
techniques for extracting and encoding prio
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knowledge from data. However, there are lots o
representations available for data analysis, such
decision trees, artificial neural networks and ru
bases, and there are many methods for data analy
such as density estimation, classification, an
regression. So what’s the advantage of Bayesi
networks?

First, a Bayesian network can be used to lea
probabilistic relationships from a large amount o
data for a large amount of random variables, an
thus can be used in a learning system to gain t
understanding of a problem domain and to pred
the consequences of intervention.

Second, Bayesian networks allow one to learn abo
causal relat ionships. Learning about caus
relationships are very important for at least tw
reasons. The process is useful when we are trying
gain understanding about a problem domain.
addition, knowledge of causal relationships allow
us to make pred ic t ions in the presence o
interventions. For example, a marketing analyst m
want to know whether or not it is worthwhile to
increase exposure of a particular advertisement
order to increase the sales of a product. To answ
this question, the analyst can determine whether
not the advertisement is a cause for increased sa
and to what degree. The use of Bayesian networ
helps to answer such questions even when
experiment about the effects of increased exposure
available.

Three, Bayesian statistical methods along wi
network structures can encode dependencies am
all random variables. They can facil itate th
combination of domain knowledge and data. Anyon
who has performed a real-world analysis knows th
importance of prior or domain knowledge, especial
when the available data is scarce or expensiv
Bayesian networks encode the strength of cau
relationships with probabilities. Consequently, prio
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knowledge and data can be combined wit
well-studied techniques from Bayesian statistics.

2. THE BAYESIAN APPROACH TO
PROBABILITY AND STATISTICS

To understand Bayesian networks and associa
learning methods, it is important to understand th
Bayesian approach to probability and statistics.
this section, we provide an introduction to th
Bayesian approach to probability and statistics.

2.1. The Bayesian Probability

The Bayesian probability of an event is a person
degree of belief in that event. A Bayesian probabilit
is a property of the person who assigns th
probability (e.g., your degree of belief that the coi
will land heads), however, from the classica
viewpoint, a probability is a physical property of the
world (e.g., the probability that a coin will land
heads).

One important difference between a classic
probability and a Bayesian probability is that, t
measure the latter, we don’t need to repeat trials. F
example, suppose we are tossing a sugar cube on
wet surface, every time the cube is tossed, i
dimensions will change slightly. Thus, although th
classical statistician has a hard time measuring t
probability that the cube will land with a tail or head
the Bayesian statistician simply restricts his attentio
on the next toss, and assigns a probability. A
another example, consider the question: What is t
probability that the Chicago Bulls will win the
championship in 2001? Here, the classic
statistician must remain silent, whereas the Bayes
can assign a probability to this guess.

In general, the process of measuring a degree
belief is commonly referred to as a probabilit
assessment. One problem with probabi l i t
assessment that is the precision. Can one really
that his or her probability for event is 0.601 an
not 0.599? In most cases, he or she cannot say th
because in most cases, probabilities are used to m
decisions, and these decisions are not very sensi
to small variations in probabilities. Well-establish
practices of sensitivity analysis help one to kno
whether or not the additional precision is necessa
[1]. Another problem with probabilities is the
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accuracy. For example, recent experience can lead
assessments that do not reflect a person’s true bel
[2]. Methods for improving accuracy can be found i
the decision analysis literature [3].

2.2.  Learning with Data

To illustrate how the Bayesian approach learn
probabilities from the given data, let’s consider
common coin. If we throw the coin into the air, it will
come to land either on its tails or on its heads. Suppo
we flip the coin times, making sure that the
physical properties of the coin and the conditions und
which it is flipped remain unchangeable over time
From the first observations, we want to determin
the probability of heads on the  flip.

In the classical analysis of this problem, we assum
there is some physical probability of heads, which
unknown. We estimate the probability from the first
using criteria such as low bias and low variance. W
then use this estimate as our probability for heads
the toss. In the Bayesian approach, we al
assume there is some probability of landing with head
but we interpret our uncertainty about this physic
probability using Bayesian methods, and use the ru
of probability to compute the probability of heads o
the  flip.

To examine the Bayesian analysis of this problem, w
need some notation. We denote a variable by
upper-case letter (e.g., ), and the state
value of a corresponding variable by that same letter
lower-case (e.g., ). We denote a set o
variables by a bold-face upper-case letter (e.g

) . We use a corresponding bold- face
lower-case let ter (e.g. , ) to denote a
assignment of state or value to each variable in a giv
set.

Returning to the coin tossing problem, we define
be a variable whose values correspond to th
possible true values of the physical probability. W
sometimes refer to as a parameter. We express
uncertainty about using the probability densit
function . In addition, we use to denote th
variable representing the outcome of the flip,an
we use to denote the
set of our observations. Thus, in Bayesian terms, t
co in toss ing prob lem reduces to comput in

 from .

N 1+

N
N 1th+

N

N 1th+

N 1th+

X Y Xi Θ, , ,

x y xi θ, , ,

X Y Xi, ,
x y xi, ,

Θ
θ

θ
Θ

p θ( ) Xi
lth

D X1 x1 … XN xN=, ,={ }=

p xN 1+ D( ) p θ( )
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To do so, first we use Bayes’ rule to obtain th
probabil i ty distr ibution for given and
background knowledge:

(1)

where

(2)

Next, we expand the term according to th
binomial distribution:

(3)

where and are the number of heads and tai

observed in , respect ively. The probabi l i ty

distributions and are commonly

referred to as the pr ior and poster ior for
respectively. Finally we average over the possib

values of to determine the probability that th

fl i p o f the co in w i l l be
heads :

(4)

To complete the computation, we need to assign
prior distribution for . A common approach is to
assume that the prior distr ibut ion is a bet
distribution:

(5)

Θ D

p θ D( )
p θ( ) p D θ( )

p D( )
------------------------------=

p D( ) p D θ( ) p θ( ) θd∫=

p D θ( )

p θ D( ) p θ( )θh
1 θ–( )t

p D( )
-------------------------------------=

h t
D
p θ( ) p θ D( )

Θ

Θ
N 1th+

p XN 1+ HEADS D=( )

p XN 1+ HEADS θ=( ) p θ D( ) θd∫=

θp θ D( ) θd∫=

Θ

p θ( ) Beta θ αh αt,( )=( )

Γ α( )
Γ αh( )Γ αt( )
----------------------------θ

αh 1–
1 θ–( )

αt 1–
=

s

e

a

where and are the parameters of th
beta distribution, , and is the
Gamma func t ion wh ich sa t i s fies

and . The
quantities and are often referred to a
hyper-parameters to distinguish them fromth
parameter . The and must be greater th
zero in order to normalize the distribution. Example
of beta functions are show in Figure 1.

The beta prior is chosen for several reasons. B
Equation 3, the posterior distribution will also be a be
d is t r ibu t ion :

(6)

We say that the set of beta distributions is
conjugate family of distributions for binomial
sampling. Also, the expectation of with respect t
this distribution has a simple form:

(7)

Hence, given a beta prior, we have a simp
expression for the probability of heads in th

 flip:

(8)

3. BAYESIAN NETWORKS

So far we are only talking about simple problem
with one or a few variables. In real learning
problems, we are typically interested in looking fo
relationships among a large number of variables,
that case, the Bayesian networks is a ideal solutio
It is a graphical tool that efficiently interprets the
joint probability distribution for a large set of
variables. In this section, we define a Bayesia

αh 0> αt 0>
α αh αt+= Γ *( )

Γ x 1+( ) xΓ x( )= Γ 1( ) 1=
αh αt

θ αh αt

p θ D( ) Beta θ αh h αt t+,+( )=( )

θ

θBeta θ αh αt,( ) θd∫
αh h+

α N+
---------------=

N 1th+

p X HEADS D=( )
αh h+

α N+
---------------=
Figure 1. several commonly used beta distributions
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prior knowledge.

3.1. Definition

A Bayesian network for a set of var iab le
consists of a network structure

that encodes a set of conditional independen
assertions about variables in , and a set of loc
probability distributions associated with eac
variable. Together, all these components define t
joint probability distribution for . The network
structure is a directed aryclic graph. The nodes
the network are in one-to-one correspondence w
the variables . We use to denote both th
variable and its corresponding node, and
denote the parent nodes of in as well as th
variables corresponding to these parents. In gene
the joint probability distribution for  is given by

(9)

The local probabi l i ty d ist r ibut ions are the
distribution corresponding to the terms in th
product of Equation 9. So, the network structure
and the local distributions decide the join

X X1 … Xn, ,{ }=
S

X

X
S

X Xi
Pai

Xi S

X

p x( ) p xi Pai( )
i 1=

n

∏=

S
P

e
l

e

n
h

e
al,

distribution .

3.2. Constructing a Bayesian Network

To illustrate the process of building a Bayesia
network, consider the problem of detect in
credit-card fraud. We begin by determining th
variables to model. One possible choice of variabl
for our problem is Fraud ( ), Gas , Jewelry

, Age , and Sex , representing whethe
or not the current purchase is fraudulent, whether
not there was a gas purchase in the last 24 hou
whether or not there was a jewelry purchase in t
last 24 hours, and the age and sex of the card hold
respectively. The states of these variables are sho
Figure 2. Of course, in a realistic problem, we wou
include many more variables. Also we could mod
the states of one or more of these variables a
higher level of detail. For example, we could get Ag
be a continuous variable.

As part of the initial task, we must

• Correctly identify the goals of modeling
• Identify all possible observations that may b

relevant to this problem
• determine what subset of these observations

worthwhile to model

p x( )

F G( )
J( ) A( ) S( )
Figure 2. A Bayesian network for detecting credit-card fraud. The local probability distribution associated with a
adjacent node
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• organize the observations into the variable
having mutually exclusive and collectively
exhaustive states.

In the next step, we will build a directed aryclic
graph that shows the conditional independen
among those variables. One way to do that is bas
on the following observations. From the chain rul
of probability, we have

(10)

Now, for every , there will be some subse
such tha t and

are conditionally independent
given subset . That is, for any ,

(11)

Thus, we get

(12)

We see that the var iab les sets
correspond to the Bayesian network paren

, which are able to fully describe
the arcs in the network structure . So, to determi
the structure of a Bayesian network we need to ord
the variables somehow and determine the variab
sets that satisfy Equation 12 for . In
our example, using the ordering
we have the conditional independencies

(13)

Thus, we obtain the network structure shown
Figure 2.

This approach has a serious drawback. If we choo
the variable order carelessly, the resulting netwo
structure may fai l to show the condi t iona
independence among the variables. For example
we construct a Bayesian network for the frau
problem using the ordering , we
obtain a ful ly ordering to find the best one

p x( ) p xi x1 … xi 1–, ,( )
i 1=

n

∏=

Xi
i∏ X1 … Xi 1–, ,{ }⊆ Xi

X1 … Xi 1–, ,{ }
i∏⁄

i∏ x

p xi x1 … xi 1–, ,( ) p xi πi( )=

p x( ) p xi πi( )
i 1=

n

∏=

Π1 …Πn,( )

Pa1 … pan, ,( )
S

i 1 … ṅ, ,=
F A S G J, , , ,( )

p a f( ) p a( )=

p s f a,( ) p s( )=

p g f a s, ,( ) p g f( )=

p j f a s g, , ,( ) p j f a s, ,( )=

J G S A F, , , ,( )
s

e
d

s

e
r
s

se
k

if

Fortunately, there is another technique to constru
Bayesian networks that does not require an ord
among the variables. The new technique is based
two observations, first, people can often readi
assert causal relationships among variables, a
second, causal relationships typically correspond
assertions of conditional dependence. In particul
to construct a Bayesian network for a given set
variables, we simply draw arcs between the variab
pair which has the asserted conditional dependen
from the cause to the result. For example, given t
assertions that Fraud is a direct cause of Gas, a
Fraud, Age and Sex are direct causes of Jewelry,
obtain the network structure in Figure 2.

In the final step of constructing a Bayesian networ
we assign the local probabi l i ty distr ibut ion

. In our fraud example, where al l
variables are discrete, we assign one distribution f

fo r each of i ts parent nodes. Exampl
distributions are shown in Figure 2.

4. INFERENCE

After a Bayesian network is constructed (from prio
knowledge, data, or a combination of these two
usually we want to decide the probability of a
particular interest, which is corresponding to a nod
in our network. For example, in our credit-card frau
detect ing problem, we are interested in th
probability of a purchase being a fraud given a
other available observations. The probability cann
be obtained directly from the network and needs
be computed. The computation of a probability of a
interest is called “probabilistic inference”. In this
sect ion, we wil l i l lustrate the basic idea o
computing the desired probability in a Bayesia
network.

4.1. Definitions

In this section, we are going to using multinomia
distribution to show how we actually proceed th
probability computation in a Bayesian network.

In our case, each variable is discrete
having possible values , and eac
local probability distribution is a collection of
multinomial distributions, one distribution for each
parent node of , Namely, we assume

p xi pai( )

Xi

Xi X⊆
r i xi

1 … xi

r i, ,

Xi
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Θx Θx y Θx y

X Y

X Y

sample 1

sample 2
(14)

where denote
the configura t ions of , and are the
parameters. For convenience, we define the vecto
parameters

(15)

for all  and .

4.2. Learning Probabilities

Given this set of distributions, we can compute th
posterior distribution efficiently.
Before we start, we need to make an assumption
order to proceed the probability computation. Th
assumption is that the parameter vectors a
independent. The corresponding mathematic
interpreting is:

(16)

which was introduced by Spiegelhalter an
Lauritizen (1990)

Given the joint probability distribution factors
according to some network structure , th
assumption of parameter independence itself can
represented by a network. For example, the netwo
structure in Figure 3 shows the assumption
paramete r independence fo

and the hypothesis

p xi
k

pai
j θi S, ,( ) θijk 0>=

pai
1 … pai

qi qi ΠXi pai⊆ r i= 
 , ,

pai θi

θij θij 2 …θijr i
,( )=

i j

pθs D S,( )

θij

P θs S( ) p θij S( )
j 1=

qi

∏
i 1=

n

∏=

S

X X Y,{ } X Y binary,( )=
of

e

in

e
l

be
rk
f

that the network structure . encodes the joi
probability distribution of random variable .

Under this assumption, we can compute th
posterior distribution of given a random sampl

 and network structure

(17)

Hence, we can update each parameter vector
independently, just as in the one variable cas
Assuming each vector has the prior distributio

, we obtain the individual
posterior distribution is given by the following:

(18)

where is the number of cases in in whic
 and ,

In order to compute our goal

(19)

where  is the next case to be seen after .

To compute this distribution, we first use the fact th
the parameters remain independent given :

(20)

X Y→
X

θ
D S

p θs D S,( ) p θij D S,( )
j 1=

qi

∏
i 1=

n

∏=

θ

θij
Dir θij αij 1 … αijr i

, , 
 

p θij D S,( ) Dir θij αij 1 Nij 1 … αijr i
Nijr i

+, ,+ 
 =

Nijk D
Xi xi

k= pai pai
j=

p xN 1+ D S,( )

xN 1+ D

D

p xN 1+ D S,( )

θijk p θs D S,( )∏( ) θd∫=

θijk p θij D S,( ) θd∫∏=
Figure 3. A Bayesian network structure describes the assumption of parameter independence for learning the
parameters of the network structure . Both variables and are binary. We use and to denote
the two states of , and  and  to denote the two states of .

X Y→ X Y x x
X y y Y
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 n n  o o

O1 O2 O3 O4

s1 s2 s3 s4
Then, we use Equation 8 to obtain

(21)

These computations are very straightforwar
because the multinomial distributions are in th
exponential family. Computat ion for l inear
regression with Gaussian noise are equally simp
[4] [5].

5. APPLICATION IN SR

In this section, we apply Bayesian networks to th
speech recognition problem. The factored sta
representation of Bayesian networks allows us
explicitly represent acoustic context in addition t
the phonetic information maintained by Hidde
Markov Models (HMMs) [6] (Rabiner & Juang
1993). Furthermore, it enables us to model th
mult ip le observat ion streams within single
time-frames.

5.1. Background

The task of a statistical speech recognition system
to learn a parametric model from a large body o
training data, and then to use the model to recogn
the words in the test data.

5.1.1. HMM

A hidden Markov Model is a simple representatio
of a stochastic process. The hidden state of t
process is represented by a single state variable
each point in time, and the observation is represen
by an observation variable . Furthermore,
Markovian assumption is made, so that we ca
obtain the following equation to compute th
probability over the state sequence.

p xN 1+ D S,( )
αijk Nijk+

αij Nij+
--------------------------

i 1+

n

∏=

si

oi
le

e
e
o

e

is
f
e

e
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d

n

(22)

In the case of speech, the state variable is usua
identified with the phonetic state, i.e., the curren
phone being pronounced.

5.1.2. Bayesian Networks

A Bayesian network is a general way of representin
joint probability distributions with the chain rule and
condit ional independence assumptions. Th
advantage of the Bayesian network framework ov
HMMs is that it allows for an arbitrary set of hidden
variables , with arbitrary conditional independenc
assumptions. Often there is a significant decrease
the computa t iona l load i f the cond i t iona
independence assumptions result in a sparse netw
[7] [8] [9].

More precisely, a Bayesian network represents
probability distribution over a set of random
variables . The variables are
connected by a directed acyclic graph whose ar
specify conditional independence among th
variables, such that the joint distribution is given b

(23)

where are the parents of in the
graph.

5.2. Acoustic Modeling

The reason for using a Bayesian network is that
allows the hidden state to be factored in an arbitra
way. This enables several approaches to acous
modeling that are awkward with conventiona
HMMs [10] [11]. The simplest approach is to
augment the phonetic state variable with one or mo
variables that represent articulatory-acoustic conte

P o s,( ) P s1( )P o1 s1( ) p si si 1–( ) p oi si( )
i 2=

n

∏=

s

V V1 …Vn,=

P v1 … vn, ,( ) P vi Parents Vi( )( )
i

∏=

Parents Vi( ) Vi
Figure 4. A Bayesian network representation of an HMM. There is a distinct state and observation variable at
each point in time. A node in the graph represents a variable, and the arcs leading into a node specify the vari-
ables on which it is conditionally dependent. A valid assignment of values to the state variables for the word “no”
is shown. Observation variables are shaded.
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This is the structure shown in Figure 5.

5.3. Performance

The Bayesian networks are tested by using fo
different model structure on a large-vocabular
isolated-word recognition task.

• An “articulator” network in which the context
variable depends on both the phonetic state a
its own past value

• A “chain” network in which the phonetic
dependence is removed.

• A “phone-dependent-correlation” network
(PD-Correlation) which results from removing
the temporal links from the articulator network.

• A “correlation” network which further removes
the phonetic dependence.

Table 1. Test results with basic phoneme alphabet

Network Parameter WER

HMM 127k 4.8%

Correlation 254k 3.7%

PD-Correlation 254k 4.2%

Chain 254k 3.6%

Articulator 255k 3.4%
r
,

d

Table 1 shows the word-error rates with the bas
phoneme alphabet. The results for the DBNs clea
domina te the base l ine HMM sys tem. Th
articulatory network performs slightly better than th
chain network. However, most of the difference
among the augmented networks are not significan

6. SUMMARY

In this paper we discussed different methods f
construct ing Bayesian networks from prio
knowledge and how to use Bayesian approach f
using given data set to improve the mode
associated with Bayesian networks. In addition, w
demonstrate that Bayesian networks are a flexib
tool that can be applied effectively to speec
recognition, and show the use of this graphic
representation can improve speech recogniti
results.
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