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ABSTRACT while others are classified as “individual directed

techniques”. The former are primarily concerned
Factor Analysis (FA) is a multivariate statistical With relationships that might exist among the
technique that is often used to create new variablesresponse variables being measured while the latter
that summarize all of the information that might be are primarily concerned with relationships that
available in the original variables. It is used to study Might exist among the experimental units and/or
relationships that might exist among the measuredindividuals being measured. In this paper, we shall
variables in a data set. Similar to Principal explore two such techniques, namely, Factor
Components Analysis (PCA), it is a Analysis and Multidimensional scaling. The
variable-directed technique. One basic objective of mathematical framework of these shall be covered in
FA is to determine whether the response variablesdetail and will be applied to a test example.
exhibit patterns or relationships with each other.
While PCA produces an orthogonal transformation 2. FACTOR ANALYSIS
of the variables and does not depend on an
underlying model, FA does depend on a reasonable2 1. FA vs. PCA
statistical model. Multidimensional scaling (MDS)
is a mathematical technique that allows us to mapFactor Analysis (FA) is a variable-directed
the distances between points in a high dimensionalmultivariate statistical technique[2]. Principal
space into a lower dimensional space. It is mostComponents Analysis (PCA) produces an
useful when we can map into a two-dimensional orthogonal transformation of the variables and does
space as this will help us visually confirm the not depend on an underlying model. FA, however
different class groupings. The basic principle is to does depend on a reasonable statistical model. FA is
reduce distances between points in a twomore concerned with explaining the covariance
dimensional space. In this paper, we will cover the and/or correlation structure among the measured
basic mathematical foundations of these two variables, whereas PCA is more concerned with
techniques and perform a comparative analysis usingexplaining the variability in the variables.
a test example.

2.2. Objectives of FA
1. INTRODUCTION

Another basic purpose of factor analysis is to derive,
Multivariate data occur in almost all branches of create, or develop a new set of uncorrelated
science[1]. Whenever more than one attribute is variables, calledinderlying factorsor underlying
measured for each experimental unit, the data ischaracteristics,with the hope that these new
termed as “multivariate”. The statistical methods Variables will give a better understanding of the data
used to analyze such data are called multivariateP€ing analyzed. These new variables can then be
statistical techniques. These are very useful forused in future analyses of data.

researchers who strive to make sense of large Whenever a large number of variables ar measured
complicated and complex data sets.One fundamentapn each experimental unit, the variables are often
distinction between multivariate methods is that related to each other in many different ways. The FA
some are classified as “variable directed techniques’model assumes there is a smaller set of uncorrelated



variables that, in some sense, drives or controls thewhereX has been centered and
value of the variables that are actually being

measured. X = [Xq Xgr s Xp]' (4)
2.3. The FA model fr=[fy fo. . fol (5)
Suppose one observepaariate response vector N =1[gpNg Nyl (6)

from a population that has meap and

variance-covariance matriX . The general FA _)\11 Ao - )\1m_
model assumes there aneunderlying factors
(certainly we wantm < p) denoted by N = Aog Ay oo Agy
£, fo oo, f A @)
2 mSUChthat
) _pj+)\j1Df1+)\j2Df2+... " _)‘pl}‘pz)‘pS)‘pnr_l
: o )‘jm Of o * nj In matrix form the FA model assumptions become
forj = 1,2 ...,p. «f 00, I
2.3.1. Assumptions °n D(O_, Q) where
In the preceding model we assume that P = diag(Wy, Wy .-, LIJIO) » and

sthe fk ‘s are independently and identically *f andn are independent.

distributed with mean 0 and variance 1 for 2.4. Factor Analysis Equations

k=12..m;

-ther]j ‘s are independently distributed with Note that equation [3] implies that

mean O and variance ij for _

j=1,2 .., p;and 2 = CovXx) ®)

«f.andn; have independent distributions = Cou(A Of +1) 9)

for all combinations ofk and j, _ _

k=12..mandj =12 ..p. = ANCov(f)IN+T (10)
Also, it is almost always assumed that = 0 and = A [ [A\'+ P (11)

var(xJ-) = 1 for everyj. This can always be the o
case if one simply standardizes the measured = AN\ + (12)
variables before beginning a factor analysis. This is
the default in almost all statistical software
packages.

Thus, to determine iff /_\ ang _exist that satisfy
equation [3], we instead try to findh anfl  that
satisfy equation [12].

With the above assumptions, the new FA model
becomes

)\j1Df1+)\j2Df2+...

Xj =
+)\ijfm+r]j

The relationships described in equation [12] are
called thefactor analysis equations.

2) 2.5. Non uniqueness of the factors
If m> 1, the factor loading matrix is not unique.

Thatis, if A and(l exist that satisfy equation [12],
2.3.2. Matrix form ie

where thex ‘s have been centered about their means

In matrix form the above model becomes AN +

™M
I
=

(13)
X =AOf +1 ©)

>
=

O CN' + @ (14)



for every orthogonal matriX .It then follows that  the number of underlying factors. One of the more
common methods is based on a maximum likelihood

= (AON)OQALDT) + P (15)  approach, which is based on the data having a
Thus, if A is a loading matrix, thed LT is also a Multivariate normal distribution. One advantage of
loading matrix for every orthogonal matrix . this approach is that it allows us to compute a

likelihood ratio test (LRT) statistic that can be used
to test the adequacy of the chosen number of
factors[3].

Hence the factor loading matrix is not unique. This
leads to a new concept callfsdttor rotation.

2.6. Solving the factor analysis equations Many statistical software packages use a statistic
called the “Akaike’s information criterion” (AIC)[4].

In this section, we consider solutions to the factor Supposedly the number of factors that provides the

analysis equations. In practice, factor analysis minimum value for AIC is considered to be the best

procedures are almost always applied toZteeores  choice.

and to the correlation matrlk . This is whatwe shall 5 g > - computer Solutions of the FA equations

also assume here. Note the same techniques that wi

be discussed here can also be applied to the

variance-covariance matrix also.

Many different methods have been proposed for
solving the FA equations. These include

To determine whether a set ofunderlying factors *principal factoring with or without
exist, one determines/& anfl  exist such that lteration,
_ _ *Rao’s canonical factoring,
P=AD\N+UQ (16) _
R _ alpha factoring
The number of unknown quantities iy ad is ) )
pm+ p= p(m+1). The number of known *image factoring
quantities inP isp(p+1)/2 (sinceP is emaximum likelihood,

symmetric. Thus the FA equations give rise to
p(p+1)/2 equations inp(m+ 1) unknowns
that must be solved.

If p(m+1)>p(p+1)/2 or, equivalently, if ' _ _
m> (p—1)/2, then there are more unknowns than T.he first method is the most popular and will be
there are equations, and no unique solution exists. discussed here.

2.6.1. Choosing the number of factors The principal factoring method initially requires
suitable estimates of the communalities, or,

sunweighted Least-Squares factor analysis,
and

eHarris factoring.

Evif(s):]%rﬁ {ar;ttjoagt?égg tc())r Zﬂgg;g‘f tlt:é nga;:gps’ equivalently, estimates of the specific variances,
That is, guess how many underlying characteristicswl’ LIJ_Z’ o Wp-
or factors there really are that are driving the values Next since
of the variables actually being measured. N
y being P=ADN+T 17)

One fairly good method that can be used to make an -
must be satisfied, we must have

initial guess as to the number of underlying factors is
to'be_gin with a PCA, and determi_ne how many A jnr = P-0 (18)
principal components would be required to account _

for the variability. Then, we use this as the number T0 obtain a unique solution foA , we can force
of factors that are required. An initial guess as to the /A L\ to be a diagonal matrix. L&« L\' = D
number of factors will not always agree with a final Then

determination. Still, we have to start somewhere,and _

this may be as good a place to start as any. NN = P-J (19)

There are also other objective methods for choosingimplies



AN A = (P—0) A 20y  2.7. Factor Rotation

which implies As stated earlier, when a set of factors is derived,

= _ = —~ they are not always easy to interpret. We may want

ADD = (P-9)IA (1) to rotate the factors in hope of finding a set that is
which by looking at the columns of both sides of this easy to interpret.

matrix equation, implies that Many different orthogonal rotation algorithms have

Y1 — (D _ x been developed. Orthogonal rotation procedures
[dl)\l] = [(P=9) (A4l (22) keep the factors uncorrelated whenever we start with
Similar equations ca be written f(m“2, dm . This a set of uncorrelated factors. Some orthogonal
implies rotation methods that have been proposed are
_ _ _ Quartimax, Varimax, Transvarimax, Equamax, and
(P-1) I\ = dk [Nk (23) Parsimax. The most popular of these is the Varimax

fork =12 ..m rotation procedure, which is described below.

The only way the above equations can be true is ifSuppose

the diagonal elements @  are eigenvalués+ B=A0 (25)
and if the columns of\ are their corresponding _

eigenvectors. where T is an orthogonal matrix. The sum of the

Anv subset ofn eigenvectors and eigenvalues would variances of the squared loadings within each column
y Subs g g u u of the factor matrix is a measure of simple structure.

solve the FA equations, but the vectors The varimax criteria to maximize would then be
corresponding to then largest eigenvalues are

chosen since the elements Bf  are communalities P b4 _E P b2 %F Y
and can be expressed as . m = Zl iq q 21 iqD p%
Q VeLE e 8@
2 —
fork = 1,2 ...,m. Note that the quantity within the larger parentheses

By choosing vectors corresponding to tindargest N this expression is the variance of the squared
eigenvalues, we can maximize the communalities,!0@dings within thegth column of B . Since the

which, in turn, tends to maximize the;, ‘s (the squared loadings are all between 0 and 1, trying to
factor loadings). Hence these veclors shouldMaximize the variance of the squared loadings

correspond to the most important factors. within a column is somewhat equivalent to trying to
spread out the squared loadings within a column

across the columns. The orthogonal maffix  that
produces a maximum to this sum of column
variances results in the Varimax rotation of the factor
loading matrix/\ .

The above method can also be performed in an
iterative fashion. It begins in the same way as
described above. However, after an initial solution is
found, the communalities corresponding to this
solution are determined. Then these communalities _ _
are used as an initial guess, and the procedure stariSome research has been done |n_to rotation methods
all over again. This cycle is repeated until either all that are not orthogonal but oblique. The results
estimates converge or a nonsensical result jsobtained are not encouraging and hence these
obtained. These possibilities appear to be equallymethods are not discussed here.

likely when working with real data sets. Note that

each iteration of this process actually produces a2-8- Factor Scores

solution to the FA equations. o
Factor Analysis is frequently used to reduce a large

number of responses to a smaller set of uncorrelated



variables. If this new set of variables is going to be Therefore, Thompson’s method estimates the vector
used in subsequent statistical analyses, it isof factor scores for theh individual as

necessary to assign a score or value for each of the 3

new variables for each experimental unitin the data f, = A'[P Dzr (33)

set.
There are also a couple of ad hoc methods for

scoring factors. Even though both of these are ad hoc
procedures, they hold some advantages over the
% = A + i 27) formal procedures described. One advantage they
o _ ) _ hold over the formal procedures suggested above is
with I unknown andA\  estimated. Thus for a given that it is easy to explain what each means and it is
observation vectoK , it is not actually possible to very clear how each can be interpreted. These

determinef explicitly, although things should be methods assume that only orthogonal rotations have
improved if we consider only nontrivial factors.Two peen used.

formal methods have been proposed for estimating
f for a given individual. One of these is known as
Bartlett’s methodand the other is known as
Thompson’s methodlhese are describe in the highly correlated with the selected factor
following sections.

2.8.1. Bartlett's method Any procedure that produces factor scores having
After solving the FA model, we have these two properties should be acceptable.

Evaluation of factor scores is not simple because the
model for each individual is

When scoring a selected factor, all you really need is
some variable that is

euncorrelated with other factors

% = NOF + A (28) One way to score factors that would generally have
B the two properties listed earlier would be to take an
wheren U(0, ) . Bartlett suggested that the next adjusted average of all of the variables that have high

step be to find thd  that minimizes correlation with that factor. The word adjusted is
T | — used here to mean that variables that have high
(z, -AOf) O~z —ATf) (29)  positive correlations with the factor would be added,

whereas those that have high negative correlations

wherez, is the standardized data vector for fttie would be subtracted.

individual. For a givenz, , the preceding equation is

minimized when A second ad hoc way to score factors is to take the
1 variable that has the highest correlation with the
PR i et e SN e factor and use its value for the score of the factor.
fo=WN0O "ON) ONOD ~ [ (30)

Then fr is taken as the vector of estimated factor 3. MULTIDIMENSIONAL SCALING
scores for theth individual,r = 1, 2, ..., N .
2.8.2. Thompson’s method Multidimensional Scaling (MDS) is a mathematical
technique that allows us to map the distances
between points in a high dimensional space into a
lower dimensional space[6]. It is most useful when
- = — we can map distances from a high dimensional space
z P N O . . . .
[_} ON ﬁo} {_ }D (31)  into a two-dimensional space. In this case, the data
f ol | A | 10 points can be plotted in a two-dimensional space,
_ and we can examine the plot to see which points tend
This implies that the conditional expectation of to fall close to one another. Consequen“y’
giventhatz = 7z is multidimensional scaling can be used as another
_ o R technique to use when we want to cluster
E[f/z=2] = N[P [& (32)  observations into groups.

Thompson noted that for normally distributed data
the joint distribution ofX (standardized) arid



To apply multidimensional scaling to a set of data reduce gp-dimensional data set tg dimensions
points (possibly a set of group means), we must firstwhereq is any number less tham Because of a
calculate the distances between all pairs points. Onedesire for simplicity, only the case whetg= 2 s
of the most reasonable distance measures to use is tconsidered here.

standardize the data, and then use the standardize

ruler distance formula. A few common distance 3.1. MDS Mathematical Formulation

measures are described here:

Suppose thaDr& representst%he actual distance
between ther and thes point in a
p-dimensional sample space for= 1,2, ..., N
andm = 1, 2, ..., N whereN is the total number
of data points

*Ruler Distance: One simple measure of
dissimilarity is the standard Euclidean
distance, also called theler distance.This

is the distance between two observations if
we were able to plot the two observations in
the p-dimensional sample space and Let z and z, be the standardit%ed scgres
measure the distance between them using é(measurements) corresponding to the and
ruler. The formula that calculates the data points

Euclidean distance between two points

_ Standardized ruler distance between these two points
and X is i

IS

, 172
drs = [(Xr - Xs) [(Xr - XS)] (34) DI’S = [(Zr - Zs)' l:(zr - ZS)]1/2 (37)

*Standardized ruler distance: Another Thege distances can be ordered from smallest to
possibility for measuring the distance |ggeqt. LetD, . be the distance between the two

between a pair of points is to first jggest pointsDh be the distance between the
standardize all of the variables and then next two C|0255%3t points, ...... and

compute the Euclidean distance between be the distance between the

points using their standardiz&dscores. For 5 i@t B4t Nud¥e that the number of distinct pair
most situations, this is probably the best of points is equal toN(N—1)/2 , so there are

choice for measuring dissimilarities. The N(N—1)/2 possible pairwise distances
formula that calculates this is } ) ) )
Next consider plotting N points in a

— - 172 two-dimensional space and let the distance between
drs = [(z—2) Uz —2))] (25) the rqh and thastﬂO points be denoted by, . In
*Mahalanobis distance: A third possibility is this two-dimensional space, led, ¢ be the
to compute a Mahalanobis-type distance distance between the two closest p&ir]ni§, be
between points. This would require the distance between the next two cIosé? points,
estimates of  within cluster ...... , anddr s be the distance
variance-covariance matrices, after which between the tWo AR5 es. Multidimensional
these matrices would be pooled across scaling tries to locat®  points in a two-dimensional
clusters. The formula that calculates a space so that the distances between the pairs of
Mahalanobis type distance is points in this space match as closely as possible with
X 12 thg true ordered distances between the observed
ds = [(X, —x9) X X, —xJ)] (36)  Points, namely,
* Note thatZ has to be replaced by a Drlsl< Dr2
suitable estimate.

<..<D 38
S, IN(N=1)/25NN-1/2 (38)

. . ~ To assess the quality of the fit, it is customary to plot
In the next section, mathematical formulas are giventhe actual differences between pairs of points against
that reduce distances between points to atheir modeled distances[7]. If the plot of these pairs

two-dimensional space. Note that these argumentsf distances reveals a monotonically increasing
can be extended to cases where we are attempting t



trend, then we can deduce that the two-dimensional5. EXAMPLE
plot accurately illustrates the closeness of the pair of

points. We shall illustrate the applications of FA and MDS
MDS programs attempt to locate the observed dataPy way of a small example. The data for the example
points in a reduced dimensional space so that is shown in Table [1]. Nine subjects are asked six
guestions and their responses constitute the data
N r-1 5 points. Our objective is to determine which two
{ > Y (Dg—dy) /Drs} subjects’ answers are the closest - which two
E = = 1s=1 (39) subjects are of a similar nature. This is a classic case

N r—1 of the need for clustering[9] and we shall perform
y $D the same using both FA and MDS. We use the
1 rs software package SAS[10] to perform these analyses

and study the detailed output.
isﬂr]ninimizedtwhereDrs is the distance between the

r  andthes observations arnijS is the distance5.1. FA Solution
between those same two points in the reduced spac

The quality of this data embedding is measured byThe first step would be to calculate the correlation

means of the stress functidd . This formulation Matrix from the given data. Once we have this,
also gives rise to an alternate definition of MDS: eigenvalue computation is done on the correlation
matrix[11]. The next step would involve choosing

*MDS takes a set of dissimilarities and he appropriate number of factors. For this example,

returns a set of points in a two-dimensional pynoihesis testing allows only two factors to be

space such that the distances between thesy,seq Then principal factoring with iteration is used

points are directly proportional to the 4 gglye the FA equations.The values of the two

corresponding dissimilarities. factors obtained for each subject are given in Table
The minimization problem discussed above is [2]. The plot obtained is also shown in Figure [1].
sensitive to local minima and care should be taken to

r=1s=

avoid this[6].
4. COMPARISON Q1| Q2| Q3| Q4| Q5| Q6
4.1. FAvs. PCA SUBJECT1 | 7 2 3 4 5 6
FA tries to explain the covariance and/or correlation SUBJECT2 | 6 3 2 1 3 2
structure whereas PCA tries to account for the SUBJECT3 | 3 6 7 3 6 3
variability structure. FA and PCA both perform
transformations on the correlation matrix but FA| SUBJECT4 | 2 2 2 5 3 4
assumes an underlying model unlike PCA.

SUBJECTS | 3 4 2 4 2 3
4.2. FAvs. MDS SUBJECT6| 6 | 3| 4| 2| 3| 2
FA and MDS are both useful for clustering| SUBJECT7 | 1 2 3 7 2 2
purposes[8]. When we have actual data points, it is
always preferable to use FA. In cases where theSUBJECT8 | 3 | 3 | 2 | 3| 4| 3
distances between points is available rather than the
actual data points, MDS is more useful for SUBJECTY | 2 1 1 6 2 5

clustering. Table 1. Example Data
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Figure 1. FA plot for the example described in section 5.
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FACTOR 1 | FACTOR 2 DIM1 |DIM 2
SUBJECT 1 -0.869 1.881 SUBJECT 1| -0.671| 1.688
SUBJECT 2 -0.443 1.094 SUBJECT 2| 0.630 | 0.595
SUBJECT 3 2.439 -0.235 SUBJECT 3| 2.529 | -0.401
SUBJECT 4 -0.294 -1.181 SUBJECT 4| -0.942| -0.313
SUBJECT 5 0.604 0.111 SUBJECT 5| 0.084 | -0.568
SUBJECT 6| 0.168 0.730 SUBJECT 6| 0.635| 0.606
SUBJECT 7 -0.604 -0.746 SUBJECT 7| -0.727 | -1.499
SUBJECT 8 -0.313 -0.184 SUBJECT 8| 0.045 | -0.068
SUBJECT 9| -0.686 -1.468 SUBJECT 9| -1.585| -0.036
Table 2. Factor values for each subject Table 3. New coordinates of the two-dimen-
sional space

From the table and the plot, it can be inferred that 6. SUMMARY
subjects 4 and 9 are the closest.

This paper presents an overview of two multivariate
5.2. MDS solution statistical techniques, FA and MDS. FA is a useful

technique for determining a set of underlying new
The first step here would be to calculate the distanceyariables, calledactors,that appear to be driving the
matrix using the standardized ruler distance metric. measurements that are being made with the original
The next step would be do an iterative search to fit yariables. MDS is a technique that is useful to map
the data in a two-dimensional space so that thegjstances into a lower dimensional space and can aid
distances are more or less preserved. The metricip, yvisualization of the data and clustering. Both these

used for these are Gradient and Monotonetechniques were applied to a test example and their
convergence measures. The new coordinates of thigytputs were studied.

two-dimensional space for each subject are shown in | ) h be furth hed
Table [3]. The plot of the data in the reduced R€l€vanttopics that can be further researche

two-dimensional space is shown in Figure [2]. include oblique factor rotation, hypothesis testing

According to the MDS solution, subjects 8 and 5 techniques fOLChOOS'Og thel\;llgrgber of factors and
appear o be the most similar. iterative search strategies in .

For the above example, the actual data points are[l] D.E. JohnsonApplied Multivariate Methods
available and hence the FA solution is more reliable for Data Analysts,Duxbury Press, Pacific
as it has a more rigorous mathematical framework. Grove,California,1998.

Note that the MDS solution is also not far from the o1 ¢ E. Spearman, “General Intelligence Objec-
correct solution. Subjects 8 and 5 are also close to tively Determined and MeasuredAmerican

one another according to the FA plot also. Journal of Psychologyol. 15, pp. 201-293,
1904.
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