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ABSTRACT

Factor Analysis (FA) is a multivariate statistica
technique that is often used to create new variab
that summarize all of the information that might b
available in the original variables. It is used to stud
relationships that might exist among the measur
variables in a data set. Similar to Principa
Components Ana lys is (PCA) , i t i s a
variable-directed technique. One basic objective
FA is to determine whether the response variabl
exhibit patterns or relationships with each othe
While PCA produces an orthogonal transformatio
of the variables and does not depend on a
underlying model, FA does depend on a reasona
statistical model. Multidimensional scaling (MDS
is a mathematical technique that allows us to ma
the distances between points in a high dimension
space into a lower dimensional space. It is mo
useful when we can map into a two-dimension
space as this will help us visually confirm the
different class groupings. The basic principle is t
reduce d is tances between po in ts in a tw
dimensional space. In this paper, we will cover th
basic mathematical foundations of these tw
techniques and perform a comparative analysis us
a test example.

1. INTRODUCTION

Multivariate data occur in almost all branches o
science[1]. Whenever more than one attribute
measured for each experimental unit, the data
termed as “multivariate”. The statistical method
used to analyze such data are called multivaria
statistical techniques. These are very useful f
researchers who strive to make sense of larg
complicated and complex data sets.One fundamen
distinction between multivariate methods is tha
some are classified as “variable directed technique
s
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while others are classified as “individual directe
techniques”. The former are primarily concerne
with relationships that might exist among th
response variables being measured while the lat
are primarily concerned with relationships tha
might exist among the experimental units and/o
individuals being measured. In this paper, we sha
explore two such techniques, namely, Facto
Analysis and Multidimensional scaling. The
mathematical framework of these shall be covered
detail and will be applied to a test example.

2. FACTOR ANALYSIS

2.1. FA vs. PCA

Factor Analysis (FA) is a variable-directed
multivariate statistical technique[2]. Principa
Components Ana lys is (PCA) produces a
orthogonal transformation of the variables and do
not depend on an underlying model. FA, howev
does depend on a reasonable statistical model. FA
more concerned with explaining the covarianc
and/or correlation structure among the measur
variables, whereas PCA is more concerned wi
explaining the variability in the variables.

2.2. Objectives of FA

Another basic purpose of factor analysis is to deriv
create, or develop a new set of uncorrelate
variables, calledunderlying factorsor underlying
characteristics,with the hope that these new
variables will give a better understanding of the da
being analyzed. These new variables can then
used in future analyses of data.

Whenever a large number of variables ar measur
on each experimental unit, the variables are oft
related to each other in many different ways. The F
model assumes there is a smaller set of uncorrela
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variables that, in some sense, drives or controls t
value of the variables that are actually bein
measured.

2.3. The FA model

Suppose one observes ap-variate response vector
f rom a popu la t ion tha t has mean an
variance-covariance matrix . The general F
model assumes there arem underlying factors
(cer ta in ly we want m < p) deno ted by

 such that

(1)

for .

2.3.1. Assumptions

In the preceding model we assume that

•the ‘s are independently and identicall
distributed with mean 0 and variance 1 fo

;

•the ‘s are independently distributed with
mean 0 and var iance fo r

; and

• and have independent distribution
fo r a l l comb ina t ions o f k and j ,

 and .

Also, it is almost always assumed that an
for every j. This can always be the

case if one simply standardizes the measur
variables before beginning a factor analysis. This
the default in almost all statist ical software
packages.

With the above assumptions, the new FA mod
becomes

(2)

where the ‘s have been centered about their mea

2.3.2. Matrix form

In matrix form the above model becomes

(3)

x
µ

Σ

f 1 f 2 … f m, , ,

xj

µ j λ j1 f 1⋅ λ j2 f 2⋅ …+ + +

… λ jm f m η j+⋅+
=

j 1 2 … p, , ,=

f k

k 1 2 … m, , ,=

η j
ψ j

j 1 2 … p, , ,=

f k η j

k 1 2 …m, ,= j 1 2 …p, ,=

µ j 0=
var xj( ) 1=

xj

λ j1 f 1⋅ λ j2 f 2⋅ …+ +

… λ jm f m η j+⋅+
=

x

x Λ f η+⋅=
e

d
s

l

s.

where  has been centered and

(4)

(5)

(6)

(7)

In matrix form the FA model assumptions become

•

• where
, and

•  and  are independent.

2.4. Factor Analysis Equations

Note that equation [3] implies that

(8)

(9)

(10)

(11)

(12)

Thus, to determine if , and exist that satisf
equation [3], we instead try to find and tha
satisfy equation [12].

The relationships described in equation [12] ar
called thefactor analysis equations.

2.5. Non uniqueness of the factors

If , the factor loading matrix is not unique.
That is, if and exist that satisfy equation [12]
i.e

(13)

(14)

x

x x1 x2 … xp, , ,[ ]'=

f f 1 f 2 … f p, , ,[ ]'=

η η1 η2 … ηp, , ,[ ]'=

Λ

λ11 λ12 … λ1m

λ21 λ22 … λ2m

… … … …
λp1 λp2 λp3 λpm

=

f 0 I,( )∼
η 0 ψ,( )∼

ψ diag ψ1 ψ2 … ψp, , ,( )=

f η

Σ Cov x( )=

Cov Λ f η+⋅( )=

Λ Cov f( ) Λ' ψ+⋅⋅=

Λ I Λ' ψ+⋅ ⋅=

Λ Λ' ψ+⋅=

f Λ η
Λ ψ

m 1>
Λ ψ

Σ Λ Λ' ψ+⋅=

Λ T T' Λ' ψ+⋅ ⋅ ⋅=
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for every orthogonal matrix .It then follows that

(15)

Thus, if is a loading matrix, then is also a
loading matrix for every orthogonal matrix .

Hence the factor loading matrix is not unique. Th
leads to a new concept calledfactor rotation.

2.6. Solving the factor analysis equations

In this section, we consider solutions to the facto
analysis equations. In practice, factor analys
procedures are almost always applied to theZ scores
and to the correlation matrix . This is what we sha
also assume here. Note the same techniques that
be discussed here can also be applied to t
variance-covariance matrix also.

To determine whether a set ofm underlying factors
exist, one determines if  and  exist such that

(16)

The number of unknown quantities in and i
. The number of known

quant i t ies in is (s ince is
symmetric. Thus the FA equations give rise t

equations in unknowns
that must be solved.

If or, equivalently, if
, then there are more unknowns tha

there are equations, and no unique solution exists

2.6.1. Choosing the number of factors

Before we actually begin to solve the FA equation
we should try to estimate or guess at the value ofm.
That is, guess how many underlying characteristi
or factors there really are that are driving the valu
of the variables actually being measured.

One fairly good method that can be used to make
initial guess as to the number of underlying factors
to begin with a PCA, and determine how man
principal components would be required to accou
for the variability. Then, we use this as the numb
of factors that are required. An initial guess as to th
number of factors will not always agree with a fina
determination. Still, we have to start somewhere, a
this may be as good a place to start as any.

There are also other objective methods for choosi

T

Σ Λ T⋅( ) Λ T⋅( )' ψ+⋅=

Λ Λ T⋅
T

P

Λ ψ

P Λ Λ' ψ+⋅=

Λ ψ
pm p+ p m 1+( )=

P p p 1+( ) 2⁄ P

p p 1+( ) 2⁄ p m 1+( )

p m 1+( ) p p 1+( ) 2⁄>
m p 1–( ) 2⁄>
r
s
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the number of underlying factors. One of the mor
common methods is based on a maximum likelihoo
approach, which is based on the data having
multivariate normal distribution. One advantage o
this approach is that it allows us to compute
likelihood ratio test (LRT) statistic that can be use
to test the adequacy of the chosen number
factors[3].

Many statistical software packages use a statis
called the “Akaike’s information criterion” (AIC)[4].
Supposedly the number of factors that provides t
minimum value for AIC is considered to be the be
choice.

2.6.2. Computer Solutions of the FA equations

Many different methods have been proposed f
solving the FA equations. These include

•pr incipal factor ing with or without
iteration,

•Rao’s canonical factoring,

•alpha factoring

•image factoring

•maximum likelihood,

•unweighted Least-Squares factor analys
and

•Harris factoring.

The first method is the most popular and will b
discussed here.

The principal factoring method initially requires
suitable estimates of the communalit ies, o
equivalently, estimates of the specific variance

.

Next since

(17)

must be satisfied, we must have

(18)

To obtain a unique solution for , we can forc
 to be a diagonal matrix. Let .

Then

(19)

implies

ψ1 ψ2 … ψp, , ,

P Λ Λ' ψ+⋅=

Λ Λ'⋅ P ψ–=

Λ
Λ Λ'⋅ Λ Λ'⋅ D=

Λ Λ'⋅ P ψ–=
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(20)

which implies

(21)

which by looking at the columns of both sides of thi
matrix equation, implies that

(22)

Similar equations ca be written for . This
implies

(23)

for .

The only way the above equations can be true is
the diagonal elements of are eigenvalues f
and if the columns of are their correspondin
eigenvectors.

Any subset ofmeigenvectors and eigenvalues woul
so lve the FA equat ions , bu t the vec to r
corresponding to them largest eigenvalues are
chosen since the elements of are communalit
and can be expressed as

, (24)

for .

By choosing vectors corresponding to them largest
eigenvalues, we can maximize the communalitie
which, in turn, tends to maximize the ‘s (the
factor loadings). Hence these vectors shou
correspond to the most important factors.

The above method can also be performed in
iterative fashion. It begins in the same way a
described above. However, after an initial solution
found, the communalities corresponding to th
solution are determined. Then these communaliti
are used as an initial guess, and the procedure st
all over again. This cycle is repeated until either a
estimates converge or a nonsensical result
obtained. These possibilities appear to be equa
likely when working with real data sets. Note tha
each iteration of this process actually produces
solution to the FA equations.

Λ Λ' Λ⋅ ⋅ P ψ–( ) Λ⋅=

Λ D⋅ P ψ–( ) Λ⋅=

d1λ1[ ] P ψ–( ) λ1⋅[ ]=

d2 … dm, ,

P ψ–( ) λk⋅ dk λk⋅=

k 1 2 … m, , ,=

D P ψ–
Λ

D

dk λ jk
2

j 1=

p

∑=

k 1 2 … m, , ,=

λ jk
if
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2.7. Factor Rotation

As stated earlier, when a set of factors is derive
they are not always easy to interpret. We may wa
to rotate the factors in hope of finding a set that
easy to interpret.

Many different orthogonal rotation algorithms hav
been developed. Orthogonal rotation procedur
keep the factors uncorrelated whenever we start w
a set of uncorrelated factors. Some orthogon
rotation methods that have been proposed a
Quartimax, Varimax, Transvarimax, Equamax, an
Parsimax. The most popular of these is the Varim
rotation procedure, which is described below.

Suppose

(25)

where is an orthogonal matrix. The sum of th
variances of the squared loadings within each colum
of the factor matrix is a measure of simple structur
The Varimax criteria to maximize would then be

(26)

Note that the quantity within the larger parenthes
in this expression is the variance of the square
loadings within theqth column of . Since the
squared loadings are all between 0 and 1, trying
maximize the variance of the squared loading
within a column is somewhat equivalent to trying t
spread out the squared loadings within a colum
across the columns. The orthogonal matrix th
produces a maximum to this sum of colum
variances results in the Varimax rotation of the fact
loading matrix .

Some research has been done into rotation meth
that are not orthogonal but oblique. The resul
obtained are not encouraging and hence the
methods are not discussed here.

2.8. Factor Scores

Factor Analysis is frequently used to reduce a lar
number of responses to a smaller set of uncorrela

B Λ T⋅=

T

V
°

bjq
4

j 1=

p

∑ bjq
2

j 1=

p

∑
 
 
  2

– p⁄

p
-----------------------------------------------------------------

 
 
 
 
 
 
 

q 1=

m

∑=

B

T

Λ
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variables. If this new set of variables is going to b
used in subsequent statistical analyses, it
necessary to assign a score or value for each of
new variables for each experimental unit in the da
set.

Evaluation of factor scores is not simple because t
model for each individual is

(27)

with unknown and estimated. Thus for a give
observation vector , it is not actually possible t
determine explicitly, although things should b
improved if we consider only nontrivial factors.Two
formal methods have been proposed for estimati

for a given individual. One of these is known a
Bartlett ’s methodand the other is known as
Thompson’s method.These are describe in the
following sections.

2.8.1. Bartlett’s method

After solving the FA model, we have

(28)

where . Bartlett suggested that the ne
step be to find the  that minimizes

(29)

where is the standardized data vector for therth
individual. For a given , the preceding equation
minimized when

(30)

Then is taken as the vector of estimated fact
scores for therth individual, .

2.8.2. Thompson’s method

Thompson noted that for normally distributed dat
the joint distribution of  (standardized) and  is

(31)

This implies that the conditional expectation of
given that  is

(32)

x Λ f η+⋅=

η Λ
x

f

f

x Λ f η+⋅=

η 0 ψ,( )∼
f

zr Λ f⋅–( ) ψ 1–
zr Λ f⋅–( )⋅ ⋅

zr
zr

f r Λ' ψ 1– Λ⋅ ⋅( )
1–

Λ ψ 1–
zr⋅ ⋅ ⋅=

f r
r 1 2 … N, , ,=

x f

z

f
N

0

0

P Λ

Λ' I
,

 
 
 

∼

f
z z

°
=

E f z z
°

=⁄[ ] Λ' P
1–

z
°⋅ ⋅=
s
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Therefore, Thompson’s method estimates the vec
of factor scores for therth individual as

(33)

There are also a couple of ad hoc methods f
scoring factors. Even though both of these are ad h
procedures, they hold some advantages over
formal procedures described. One advantage th
hold over the formal procedures suggested above
that it is easy to explain what each means and it
very clear how each can be interpreted. The
methods assume that only orthogonal rotations ha
been used.

When scoring a selected factor, all you really need
some variable that is

•highly correlated with the selected factor

•uncorrelated with other factors

Any procedure that produces factor scores havi
these two properties should be acceptable.

One way to score factors that would generally ha
the two properties listed earlier would be to take a
adjusted average of all of the variables that have hi
correlation with that factor. The word adjusted i
used here to mean that variables that have hi
positive correlations with the factor would be adde
whereas those that have high negative correlatio
would be subtracted.

A second ad hoc way to score factors is to take t
variable that has the highest correlation with th
factor and use its value for the score of the factor.

3. MULTIDIMENSIONAL SCALING

Multidimensional Scaling (MDS) is a mathematica
technique that allows us to map the distanc
between points in a high dimensional space into
lower dimensional space[6]. It is most useful whe
we can map distances from a high dimensional spa
into a two-dimensional space. In this case, the da
points can be plotted in a two-dimensional spac
and we can examine the plot to see which points te
to fal l c lose to one another. Consequent ly
multidimensional scaling can be used as anoth
technique to use when we want to c lus te
observations into groups.

f r Λ' P
1–

zr⋅ ⋅=
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To apply multidimensional scaling to a set of dat
points (possibly a set of group means), we must fir
calculate the distances between all pairs points. O
of the most reasonable distance measures to use i
standardize the data, and then use the standardi
ruler distance formula. A few common distanc
measures are described here:

•Ruler Distance: One simple measure o
dissimilarity is the standard Euclidean
distance, also called theruler distance.This
is the distance between two observations
we were able to plot the two observations i
the p-dimensional sample space an
measure the distance between them using
ruler. The formula that calculates the
Euclidean distance between two points
and is

(34)

•Standardized ruler distance: Anothe
possibility for measuring the distance
between a pa i r o f po in ts is to fi r s t
standardize all of the variables and the
compute the Euclidean distance betwee
points using their standardizedZ scores. For
most situations, this is probably the bes
choice for measuring dissimilarities. The
formula that calculates this is

(35)

•Mahalanobis distance: A third possibility is
to compute a Mahalanobis-type distanc
between points . This would requi re
es t imates o f w i th in c lus te r
variance-covariance matrices, after whic
these matrices would be pooled acros
clusters. The formula that calculates
Mahalanobis type distance is

(36)

• Note that has to be replaced by a
suitable estimate.

In the next section, mathematical formulas are give
that reduce dis tances between poin ts to
two-dimensional space. Note that these argume
can be extended to cases where we are attemptin

xr
xs

drs xr xs–( )' xr xs–( )⋅[ ]1 2⁄
=

drs zr zs–( )' zr zs–( )⋅[ ]1 2⁄
=

drs xr xs–( )' Σ 1–
xr xs–( )⋅ ⋅[ ]

1 2⁄
=

Σ

t
e
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f
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reduce ap-dimensional data set toq dimensions
whereq is any number less thanp. Because of a
desire for simplicity, only the case where i
considered here.

3.1. MDS Mathematical Formulation

Suppose that represents the actual distan
be tween the and the po in t in a
p-dimensional sample space for
and where is the total numbe
of data points

Let and be the standard ized score
(measurements) corresponding to the and
data points

Standardized ruler distance between these two poi
is

(37)

These distances can be ordered from smallest
largest. Let be the distance between the tw
closest points, be the distance between t
nex t two c loses t po in ts , , and

be the distance between th
farthest points. Note that the number of distinct pa
of points is equal to , so there are

 possible pairwise distances

Nex t cons ider p lo t t i ng po in ts in a
two-dimensional space and let the distance betwe
the and the points be denoted by . I
this two-dimensional space, let be th
distance between the two closest points, b
the distance between the next two closest poin

, and be the distance
between the two farthest points. Multidimensiona
scaling tries to locate points in a two-dimension
space so that the distances between the pairs
points in this space match as closely as possible w
the true ordered distances between the observ
points, namely,

(38)

To assess the quality of the fit, it is customary to pl
the actual differences between pairs of points agai
their modeled distances[7]. If the plot of these pai
of distances reveals a monotonically increasin

q 2=

Drs
r
th

s
th

r 1 2 … N, , ,=
m 1 2 … N, , ,= N

zr zs
r
th

s
th

Drs zr zs–( )' zr zs–( )⋅[ ]1 2⁄
=

Dr1s1Dr2s2 ……
Dr N N 1–( ) 2⁄ sN N 1–( ) 2⁄

N N 1–( ) 2⁄
N N 1–( ) 2⁄

N

r
th

s
th

drs
dr1s1dr2s2

…… dr N N 1–( ) 2⁄ sN N 1–( ) 2⁄

N

Dr1s1
Dr2s2

… Dr N N 1–( ) 2⁄ sN N 1 2⁄–
< < <
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trend, then we can deduce that the two-dimension
plot accurately illustrates the closeness of the pair
points.

MDS programs attempt to locate the observed da
points in a reduced dimensional space so that

(39)

is minimized where is the distance between th
and the observations and is the distan

between those same two points in the reduced sp

The quality of this data embedding is measured
means of the stress function . This formulatio
also gives rise to an alternate definition of MDS:

•MDS takes a set of dissimilarities and
returns a set of points in a two-dimensiona
space such that the distances between th
points are directly proportional to the
corresponding dissimilarities.

The minimization problem discussed above
sensitive to local minima and care should be taken
avoid this[6].

4. COMPARISON

4.1. FA vs. PCA

FA tries to explain the covariance and/or correlatio
structure whereas PCA tries to account for th
variability structure. FA and PCA both perform
transformations on the correlation matrix but FA
assumes an underlying model unlike PCA.

4.2. FA vs. MDS

FA and MDS are both useful for cluster ing
purposes[8]. When we have actual data points, it
always preferable to use FA. In cases where t
distances between points is available rather than
actual data points, MDS is more useful fo
clustering.

E
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5. EXAMPLE

We shall illustrate the applications of FA and MDS
by way of a small example. The data for the examp
is shown in Table [1]. Nine subjects are asked s
questions and their responses constitute the d
points. Our objective is to determine which two
subjects’ answers are the closest - which tw
subjects are of a similar nature. This is a classic ca
of the need for clustering[9] and we shall perform
the same using both FA and MDS. We use th
software package SAS[10] to perform these analys
and study the detailed output.

5.1. FA Solution

The first step would be to calculate the correlatio
matrix from the given data. Once we have this
eigenvalue computation is done on the correlatio
matrix[11]. The next step would involve choosing
the appropriate number of factors. For this examp
hypothesis testing allows only two factors to b
used. Then principal factoring with iteration is use
to solve the FA equations.The values of the tw
factors obtained for each subject are given in Tab
[2]. The plot obtained is also shown in Figure [1]
t

n
e
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e

he

Q1 Q2 Q3 Q4 Q5 Q6

SUBJECT1 7 2 3 4 5 6

SUBJECT2 6 3 2 1 3 2

SUBJECT3 3 6 7 3 6 3

SUBJECT4 2 2 2 5 3 4

SUBJECT5 3 4 2 4 2 3

SUBJECT6 6 3 4 2 3 2

SUBJECT7 1 2 3 7 2 2

SUBJECT8 3 3 2 3 4 3

SUBJECT9 2 1 1 6 2 5

Table 1. Example Data



Figure 1. FA plot for the example described in section 5.
Figure 2. MDS plot for the example described in section 5.
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From the table and the plot, it can be inferred th
subjects 4 and 9 are the closest.

5.2. MDS solution

The first step here would be to calculate the distan
matrix using the standardized ruler distance metr
The next step would be do an iterative search to
the data in a two-dimensional space so that t
distances are more or less preserved. The metr
used for these are Gradient and Monoton
convergence measures. The new coordinates of
two-dimensional space for each subject are shown
Table [3]. The plot of the data in the reduced
two-dimensional space is shown in Figure [2]
According to the MDS solution, subjects 8 and
appear to be the most similar.

5.3. Comments

For the above example, the actual data points a
available and hence the FA solution is more reliab
as it has a more rigorous mathematical framewor
Note that the MDS solution is also not far from th
correct solution. Subjects 8 and 5 are also close
one another according to the FA plot also.
t

e
.

it
e
cs
e
he
in

re
e
.

to

6. SUMMARY

This paper presents an overview of two multivaria
statistical techniques, FA and MDS. FA is a usefu
technique for determining a set of underlying ne
variables, calledfactors,that appear to be driving the
measurements that are being made with the origin
variables. MDS is a technique that is useful to ma
distances into a lower dimensional space and can
in visualization of the data and clustering. Both the
techniques were applied to a test example and th
outputs were studied.

Relevant topics that can be further research
include oblique factor rotation, hypothesis testin
techniques for choosing the number of factors a
iterative search strategies in MDS.
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