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ABSTRACT 

Dimension reduction techniques are widely used for the 
analysis and visualization of complex sets of data. 
Contrarily to the traditional linear Principle Component 
Analysis (PCA), the non linear methods work like 
Multidimensional Scaling (MDS), by reproducing in the 
projection space the pairwise distances measure in the data 
space, which is called Isomap. Isomap differs from the 
classical linear MDS by metrics they use and by the way 
they build the mapping. I describe an approach to solving 
dimensionality reduction problems that uses easily 
measured local metric information to learn the underlying 
global geometry of a data set. The proof of the existence of 
Isomap is explained in Section 3. The Isomap algorithm is 
performed on human handwriting and face images, so the 
algorithm discovers the nonlinear degrees of freedom that 
underlying complex natural observations. 

1. INTRODUCTION 

While complex stimuli of complex data can be represented 
by points in a high dimensional vector space, they typically 
have a much more compact description. Coherent structure 
in the world leads to strong correlations between inputs, 
generating observations that lie on or close to a smooth low 
dimension manifold. Several dimension reduction 
techniques has been studied by the respect of linear method, 
like PCA and MDS, and these techniques allow the user to 
better analyze or visualize complex data sets in linear data 
space. A collected data points has an irregular time series, 
and then non linear tool needs to be employed to analysis 
the data.   

The task of recovering meaningful low dimensional 
structures hidden in high dimensional data is main task for 
this paper. Classical techniques for manifold learning, such 
as PCA or MDS, are designed to operate when the 
submanifold is embedded linearly in the observation space. 
More generally there is a wider class of techniques, 
involving iterative optimization procedures, by which 
unsatisfactory linear representations obtained by PCA or 
MDS may be improved toward more successful non linear 
representation of the data.  

The PCA or MDS fail when non linear structure cannot 
simply be regarded as a perturbation from a linear 
approximation. The iterative approach has a tendency to get 
stuck at locally optimal solutions that grossly misrepresent 
the true geometry of the situation.  

The Section 2 describes basic concepts of MDS. The 
MDS enables that we can find the intrinsic manifolds 
dimensions. The Section 3 is main task for this paper to 
explain about Isomap and proof for existence of Isomap. 
The Section 4 gives a result for high dimensional face 
images and hand written data sets. One goal of this paper is 
to describe a class of practical techniques for dealing with 
nonlinear distributed signals. 

2. MULTIDIMENSIONAL SCALING 

MDS can explore the underlying structure of relations 
between entities by providing a geometrical representation 
of each data inputs. MDS algorithm has three main steps to 
gain insight of relations of data [1]. First, the algorithm 
computes a scale of comparative distances between all pairs 
of data points. The comparative distances, which are relative 
to one another from data, are lack of null point to measure 
absolute distances. The second step involves estimating an 
additive constant and using this constant estimate to convert 
the comparative distances into absolute distances. In the 
third step, the absolute distances between data points are 
projected onto the real Euclidean space.  The third step 
makes the MDS technique unique compared to PCA 
analysis. The next paragraph provides more rigorous 
background to support the existence of projected dimension 
of Euclidean space. 

Young and Householder proposed the method, which 
states the absolute distances in any space can be considered 
to be the distances lying in Euclidean space [2]. The 
distance in Euclidean distance determines the dimension of 
the space by projection of points on a set of orthogonal axes 
of the space. For example, the three points, which are i, j, 
and k, be alternate scripts for n points (i, j, k = 1, 2, …, n) 
and dij, dik, and djk be the absolute distance between the 
points, then Bi is an (n-1)x(n-1) symmetric matrix with 
elements.  
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The element bjk can be considered to be the scalar product 
of vectors from point i to points j and k. Matrix Bi is a 
matrix of scalar products of vectors with origin at point i. 
 
Young and Householder have shown that: 

1. If any matrix Bi is positive semidefinite, the distanc
es may be considered to be the distances between p
oints lying in a real Euclidean space. 

2. The rank of any positive semidefinite matrix Bi is  
equal to the dimensionality of the set of points. 

3. Any positive semidefinite matrix Bi may be  factor-
ed to obtain a matrix Ai such that Bi = AiAi

T. If the 
rank of Bi is r, where r ≤ (n-1), then matrix Ai is a  
(n-1) x r matrix of projections of points on r orth-o
gonal axes with origin at the ith point of the r-dimen
sional, real Euclidean space. 

 
Young and Householder’s Euclidean model enables the 
absolute distance to project the mapped data points onto true 
dimension of the underlying manifold. 

3. ISOMAP  

To explore a broad class of nonlinear manifolds, nonlinear 
technique is employed with MDS. Nonlinear Dimensionali-
ty reduction problem is known as “manifold learning” [6].  
This approach seeks to preserve the intrinsic geometry of 
the data, as captured in the geodesic, which is shortest path, 
manifold distances between all pairs of data points. The 
algorithm, Isomap, is estimating the geodesic distance 
between faraway points, given only input-space distances.  
Global approaches may similarly seek to map nearby points 

on the manifold to nearby points in low-dimensional space, 
but at the same time faraway points on the manifold must be 
mapped to faraway points in low dimensional space.   

The basic idea behind Isomap consists in overcoming 
the limitations of the traditional metric MDS, which is 
linear, by replacing the Euclidean distance by another 
metrics [5]. Indeed, the MDS encounters difficulties when 
projecting nonlinear structures like the spiral illustrated in 
Figure 1 (a). Actually, the spiral is embedded in a two-
dimensional space, but clearly its intrinsic dimension does 
not exceed one: only one parameter suffices to describe the 
spiral. Unfortunately, the projection from two dimensions to 
only one dimension is not easy because the spiral needs to 
be unrolled onto a straight line. This unfolding is difficult 
for MDS because the pairwise Euclidean distances after 
projection are much larger than in the embedding space: 
they cannot go through shortcuts like in Figure 1 (b).  They 
have to be measured like in Figure 1 (c) along the spiral. 

 
From a technical point of view, Isomap processes a d-

dimensional set of n data points as follows [4]: 
1. Construct neighborhood graph: Define the graph 

G over all data points by connecting point i and j   
if they are closer than ε (ε-Isomap), or if i is one   
of the K nearest neighborhoods of j (K-Isomap).   
Set edge lengths equal to dx(i,j).  Choosing the      
value of ε and K will be discussed in next section. 

2. Compute shortest paths: Initialize dG(i,j) = dx(i,j)   
if i, j are linked by an edge; dG(i,j) = ∞ otherwise.  
Then for each value of k = 1,2,…,n in turn, replace
 all entries dG(i,j) by min{ dG(i,j), dG(i,k)+dG  (k,j)}
. The matrix of final value of DG = {dG(i ,j)} will  
constant the shortest path distance  between all     
pairs of points in G. 

Figure 1 (a): Two empty circle points are 
measure by Euclidean distance as dotted line 
and by geodesic distance along the low 
dimensional manifold as solid line 

Figure 1 (b): The neighborhood graph 
G constructed by first step of Isomap 
algorithm as K=7, and the red line 
indicate graph G. 

Figure 1 (c): The two dimensional 
embedding recovered by Isomap in 
neighborhood graph. Straight line 
represents cleaner approximation to 
true geodesic distance. 
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3. Construct d-dimensional embedding: Apply the     
traditional metric MDS on matrix DG, i.e. comput-
e the eigenvectors of DG and keep the ones associ-
ated with the p largest eigenvalues, giving the coor
dinates of the landmarks points in the p-dimension
al projection space.      

 
The final step applies classical MDS to the matrix of 

graph distance DG construing an embedding of the data in a 
d-dimensional Euclidean space S that best preserves the 
manifold’s estimated intrinsic geometry. The coordinate 
vectors si for points in S are chosen to minimize the cost 
function 

                   ||)()(|| SG DDE ττ −=                    (2) 
where DS denotes the matrix of Euclidean distances. The τ 
operator coverts distances to inner products, which uniquely 
characterize the geometry of the data in a form that supports 
efficient optimization.  The global minimum of Eq (2) is 
achieved by setting the coordinates si to the top d 
eigenvectors of the matrix τ(DG). Actually, if Isomap had 
used Euclidean distances, step 3 computed with DG would 
have given the same results as PCA directly applied to the 
d-dimensional coordinates. However, the use of geodesic 
distances introduces an implicit nonlinear transform of the 
coordinates and forbids the use of PCA. 

3.1. Proof of ISOMAP 

Isomap deals with finite data sets of points in Rn which are 
assumed to lie on a smooth submanifold Md of low 
dimension d < n. The algorithm attempts to recover M given 
only the data points. A crucial stage in the algorithm 
involves estimating the unknown geodesic distance in M 
between data points in terms of the graph distance with 
respect to some graph G constructed on the data points. 

Let {xi}⊂ M be a finite set, whose elements we will 
refer to as data points. These points may be chosen 
randomly, or obtained in some other manner. The Isomap 
algorithm attempts to recover the manifold distances dM(i,j), 
given only the data points {xi}⊂ Rn. Of course, this can be 
done approximately. Suppose that the data points are chosen 
randomly, with a certain density function α.. 

For example, the sample set {xi} is chosen according to 
a Poisson process with density function α, meaning that for 
any reason measurable subset A⊆ M, 
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The expected number of points in A is just a. The Poisson 
process is constructed so that disjoint regions behave 
independently of each other. Here we start a simple 
condition on the data set {xi} and the graph G which 
guarantee that dS is a good approximation to dM. 

Asymptotic Convergence Theorem   
Given λ1, λ2, μ > 0, then for α sufficiently large the 

inequalities 

21 1
distance geodesic

distancegraph 1 λλ +≤≤−        (4) 

hold with probability at least 1-μ.  Since the Poisson 
distribution is constructed in disjoint regions, the probability 
at least hold 1-μ. 
 

Let’s prove that the λ1 and λ2 can be defined by the 
inequality properties.  Let M = Md is a compact d-
dimensional smooth submanifold of the Euclidean space Rn.  
The natural Riemannian structure on M (induced from the 
Euclidean metric on Rn) gives rise to a manifold metric dM 
defined by: 

                 )}({inf),( γ
γ
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where r varies over the set of smooth arcs connecting x to y 
in M. Notes that dM(x,y) is generally different from the 
Euclidean distance ||x-y||. 

The construction makes use of a graph G on the data 
points. Given such a graph we can define two further 
metrics, just on the set of data points.  Let x, y belong to the 
set {xi}. We define: 
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where P=(x0, … , xp) varies over all paths along the edges of 
G connecting x to y. Given the data points and graph G, one 
can compute dG without knowledge of the manifold M.  
This is the key stage in the Isomap algorithm. 

Following Sampling Theorem exemplifies that there is 
an upper limit, λ2.   
 
Sampling Theorem  

Let δ and ε be positive, with 4δ < ε. Suppose: 
1. The graph G contains all edges x and y for which 

dM(x,y) ≤ ε. 
2. For every point m in M there is a data point xi for 

which dM(m,xi) ≤ δ. 
Then for all pairs of data points x, y we have  
              dM(x,y) ≤ dS(x,y) ≤ (1+4δ/ε) dM(x,y)           (7) 
We refer to the second condition in the theorem as the 

“δ-sampling condition”. 
 
Using the geometry property of M in addition with 

distribution property, we defined the some parameter. The 
minimum radius of curvature is r0=r0(M). Any Euclidean 
sphere of radius r0 has minimum radius of curvature equal to 
r0; in particular this is true of circles of radius r0 contained in 
some 2-dimensional plane. Intuitively, geodesics in M curl 
around “less tightly” than circles of radius less than r0(M). 
The minimum branch separation s0= s0 (M) is defined to be 
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the largest positive number for which ||x-y||< s0 implies 
dM(x,y)≤πr0, for x,y∈ M. 

To prove the lower limit, λ1, we use following Lemma 
and Corollary.  
 
Lemma 

If r is a geodesic in M connecting points x an y, and if l 
= length(r) ≤ π then: 

          lyxrlr     ||||    )2/sin(2 00 ≤−≤                 (8) 
 

Using the fact that sin(t) ≥ t – t3/6 for t > 0, we can write 
down a weakened form of Lemma: 

          lyxlrl     ||||    )24/1( 2
0

2 ≤−≤−               (9) 
Finally, using the first-order weakening: 

                      ,    ||||    )/2( lyxl ≤−≤π               (10) 
which is valid in the range l ≤ πr0. 
 
Corollary  

Let λ > 0 be given, Suppose the points xi, xi+1 in M 
satisfy the conditions: 

λπ 24)/2(    ||||
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Suppose also that there is a geodesic arc of length dM(xi, 
xi+1) connecting xi  to xi+1.  
Then:

),(    ||||    ),()1( 111 +++ ≤−≤− iiMiiiiM xxdxxxxdλ   (11)  
 

The corollary condition results and equation (9) gives the 
more clear condition for λ, which is 1 – λ ≤ 1 – l2/24r0

2.  
Finally we can decide the lower limit of λ. 

               lr ≥024λ  where 2
0

2

24r
l

≥λ                (12) 

Using sampling theorem, lemma, and corollary can 
provide how we can set the λ1 and λ2. 
 
Main Theorem for ε   

Let M be a compact submanifold of Rn isometrically 
equivalent to a convex domain in Rd.  Let λ1, λ2 and μ be 
given, and ε > 0 be chosen so that ε < s0 and ε ≤ 

10 24)/2( λπ r . A sample data set {xi} is chosen 
randomly from a Poisson distribution with density function 
α, and the ε–rule is used to construct a graph G on {xi}. 

 
By viewing geometry point of view, we can set the 

volume formula Vmin(r) = ηdrd, where ηd is the volume of 
the unit ball in Rd. 
lmax Theorem 

Let lmax be chosen to satisfy: 
)1(2)2/( maxminmin +> KlVα  

Then, with probability at least 1 – μ, no ball Bx(lmax) of 
radius lmax contains fewer than K + 1 data points. 

 
Main Theorem for K  

Let M be a compact submanifold of Rn isometrically 
equivalent to a convex domain in Rd.  Let λ1, λ2 and μ be 
given, and ε > 0 be chosen so that ε < s0 and ε ≤ 

10 24)/2( λπ r .  A sample data set {xi} is chosen 
randomly from a Poisson distribution with density function 
alpha, which has bounded variation A=αmin/αmax.  Fix the 
ratio 

2
)2/(1

min

d
d

a
K εη

=
+

 

And use the K-rule to construct a graph G on {xi}. 
 
The proof of Theorem for ε and K are explicitly provided in 
paper [3]. 

How quickly dG(x,y) converges to dM(x,y) depends on 
certain parameters of the manifold as it lies within the high-
dimensional space (radius of curvature and branch 
separation) and on the density of data points.  To the extent 
that a data set presents extreme values of these parameters 
or deviates from a uniform density, asymptotic convergence 
still holds in general, but the sample size required estimating 
geodesic distance accurately may be impractically large.   

 

4. EXPERIMENTAL RESULTS 

The Isomap performs its dimensionality reduction analysis 
on high dimensional person’s face images and handwriting 
images. The face input consists of many images of a 
person’s face observed under different pose and lighting 
conditions in no particular order. These images can be 
thought of as points in a high-dimension corresponding to 
the brightness of on a pixel in the image. The handwriting 
inputs consists of bottom loop and top arc of 2’s in any 
order. Although the input dimensionality may be quite high 
(i.e., 4096 for these 64 pixel by 64 pixel images), the 
perceptually meaningful structure of these image has many 
fewer independent degrees of freedom. Applying the 
Isomap technique, underlying manifolds or intrinsic dimen-
sions are appreciated. 

To analysis the face images, Isomap takes 698 raw 
images, and neighborhood value is set to 6 to learn the 
embedding dimension of data’s intrinsic data 
structure. Figure 2 (a) shows that person’s face images 
within the 4096-dimensional input space lie on an 
intrinsically three dimensional manifold that can be 
parameterized by two pose variables plus an azimuthal 
lighting angle. For handwritten data, Isomap apply for total 
number of images as 1000.  We use ε  Isomap, because we 
do not expect a constant dimensionality to hold over the 
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whole data set. Figure 2 (b) similarly shows handwritten 
“2”s images place on two dimensional space which can be 
parameterized by bottom loop articulation and top arch 
articulation. Our goal is to discover, given only the 
unordered high-dimensional inputs, low-dimensional 
representations such as Figure 2 with coordinates that 
capture the intrinsic degrees of freedom of a data set.  The 
Figures 2 clearly indicate the Isomap can extract the 
intrinsic lower dimensional features from high dimensional 
data inputs. 

 Comparing the linear tool and nonlinear tool for 
estimating the true underlying factors, the residual variance 
with dimensionality experiment results are shown in Figure 
3 and 4. The residual variance is decreased as the 
dimensionality increasing. Linear tool, PCA and MDS, and 
nonlinear tool, Isomap, is applied to face images and hand 
written images. In Figure 3, the Isomap clearly points out 
that the 3 dimension can reduce the variance error close to 
zero.  In the mean time, the PCA and MDS do not give 
same variance until at dimension as 10. The handwritten 
image has more dimension requirement, since the 
handwritten data has successive exaggerations of an extra 
stroke or ornament in the digit. In Figure 4, the empty circle 
and triangle represent the MDS and PCA, and the linear tool 
takes much higher residual variance than Isomap. 

 

 

 

Figure 3:  Face images varying in pose and 
illumination. (empty triangle: PCA and MDS, and dark 
circle: Isomap) 

Figure 4:  Handwritten “2” images. (empty triangle: 
PCA empty circle: MDS, and dark circle: Isomap) 

 

Figure 2 (a):  N = 698 raw images, K = 6 Isomap to 
represent 3 dimensions, which are left right pose, up down 
pose and lighting directions. 

Figure 2 (b): N = 1000 handwritten images, ε = 4.2 Isomap to 
represent 2 dimensions, which are bottom loop articulation and 
top arch articulation. 

 



                                                                                                                                                                       

                                                                                        6                                                                                                

5. CONCLUSIONS AND FUTURE WORKS 

In this paper we have presented how the higher dimensional 
data can be analyzed to find the lower dimensional 
embedding of the data’s intrinsic geometric structure. 
Isomap shows the ability to estimate the most dominant 
parameters to describe the nonlinear data points. Using a 
proper value of K or ε , Isomap is able to construct the 
underlying manifold. The phone or power spectral of speech 
signal can be distinguished from well trained Isomap in 
further study. The way we approach by topological method 
is one of interesting area in non linear system. 
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