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ABSTRACT 

Unraveling the complexity arising out of even simple 
chaotic systems requires the application of tools from 
several fields of mathematics and engineering. In this 
paper, the basic concepts underlying a topological 
description of chaos are reviewed. An overview of 
dynamical systems theory is provided using a qualitative 
description of differential equations through invariant 
manifolds of hyperbolic fixed points. The generative 
mechanism of chaos from homoclinic points is explained. 
Also, the application of topological knot theory in 
developing powerful topological invariants is outlined. 

1. INTRODUCTION 

Analysis of chaotic time series originating from low 
dimensional nonlinear dynamical systems has been one of 
the most challenging problems in the scientific history. Such 
signals were traditionally discarded as contaminated by a 
high degree of noise. Some of the greatest mathematicians 
and physicists have devoted their time and energy to 
develop mathematically sound and physically useful 
theories of chaos. This has lead to renewed hope and 
interest in analyzing the noise-like chaotic signals. 

A theory for low-dimensional chaotic systems should 
consist of two interrelated components: 

1. a qualitative encoding of the topological structure 
of the chaotic attractor [1,2,3] (symbolic dynamics, 
topological invariants, etc.), and 

2. a quantitative description of the metric structure on 
the attractor [4,5] (Lyapunov exponents, fractal 
dimensions, etc.). 

Topology is a kind of geometry that studies the properties of 
a space that are unchanged under a reversible continuous 
transformation [2]. The field of topology originated from 
Poincare’s work on unraveling the complicated dynamics of 
the motion of objects in a three-body problem [6]. It is 
probably the best mathematical tool with which we can 
hope to find a breach through the complicated structures of 
chaotic systems. 

In this paper, I present an intuitive and an informal 
description of how we can understand and classify chaotic 

systems, from a topological viewpoint. The rest of this 
report is organized as two parts. In the first part some basic 
results from the theory of dynamical systems are reviewed. 
This includes discussion on invariant manifolds of the fixed 
points and periodic orbits of hyperbolic systems, the relation 
of orbits of chaotic maps to symbolic dynamics and how 
chaos can originate from intersections between stable and 
unstable manifolds. Part 2 is primarily concerned with the 
study of topological invariants for classification strange 
attractors. This discussion includes some results from knot 
theory and the use of topological entropy, linking numbers 
and relative rotation rates as invariants and the concept of 
templates.  

PART I: THEORY OF DYNAMICAL SYSTEMS 

2. FIXED POINTS AND INVARIANT MANIFOLDS  

In this and the following sections, the theory of dynamical 
systems arising from a qualitative description of solutions of 
differential equations is discussed. Specifically, the 
behavior of orbits near fixed points (and periodic orbits) 
holds the key to unraveling the complicated structure of 
chaotic systems. This is the viewpoint that will be advanced 
in the next few sections. See [2,3,5] for details. 

Consider a set of ordinary differential equations of the 
form: 

)( xFx =
•

 
 
If the vector field F does not contain time explicitly, the 
system defined by the equation is said to be autonomous; 
otherwise it is said to be nonautonomous. Any 
nonautonomous system can be converted to a higher-
dimensional autonomous system by rewriting the equation 
using more state variables to remove explicit dependence on 
the time parameter. Hence, from now on we will consider 
only autonomous systems. 
The flow, φ , through x0 at t=0, is defined as the smooth 
function that satisfies: 
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The position  is the initial condition (or initial state) and 

an individual solution through is called a solution curve, 
trajectory or integral curve. The collection of states of a 
system is called the phase space. The existence and 
uniqueness of the solution is guaranteed (by the existence 
and uniqueness theorem) under some reasonable 
assumptions on the properties of the vector field.  

0x

0x

The discrete-time analog of a flow is the map. We can 
go from a flow to a map using Poincare sections. A time-T 
map where the flow is sampled every T time units is one 
simple example of a Poincare map. The opposite process - 
making a flow out of a map, is called a suspension of map. 
The construction of suspensions is far from unique. In most 
cases, results and definitions pertaining to flows have 
equivalent counterparts for maps, and vice versa. 

We will assume that our system is dissipative. For such 
systems, the phase space is continually shrinking into a 
smaller region of the phase space. This leads to the concept 
of invariant bounded attractors. (A set S is an invariant set 
if a flow if for any  in S we have 0x Sxt ∈)( 0φ  for all 

). Poincare-Bendixson theorem states that the only 
attractors possible in a 2-D (planar) vector field are the 
fixed points and limit cycles. No chaotic attractors are 
possible for such systems. Hence, the minimum phase space 
dimension for chaotic motion is three. 

Rt ∈

A fixed point (or equilibrium point)  is a constant, 

time-independent solution. At a fixed point the vector field 
F, vanishes. The question of stability of a fixed point is of 
vital importance in determining the trajectory of a point in 
its neighborhood. Two notions of stability that are of 
concern here are the local stability and the linear stability. 
A fixed point is locally stable (e.g. sink) if solutions based 
near x remain close it for all future times. Further if the 
solution actually approaches the fixed point, then the orbit is 
called asymptotically stable. A fixed point is unstable if it is 
not stable (e.g., source, saddle). 

fx

One main approach to studying the stability near a fixed 
point is through linearization (linear stability). Considering 
Taylor expansion of small perturbations about the fixed 
point, the motion near the fixed point should be governed 
by the linear system: 

The eigenvalues of the Jacobian of the linearized 
tangent space determines the asymptotic stability of fixed 
points. Let { }iλ  denote the set of eigenvalues. A fixed 
point is said to be hyperbolic if none of the real parts of 
{ }iλ  is equal to 0. Otherwise it is said to be nonhyperbolic. 
For nonhyperbolic fixed points, though the system is 
linearly stable, the nonlinear system may or may not be 
stable. We restrict our attention mostly only to hyperbolic 
systems because they are easier to tackle. Such systems 
cannot exhibit the phenomenon of bifurcations. However, 
all systems belonging to the real world are nonhyperbolic 

and reach the chaotic regime through a series of bifurcations 
of one kind or the other. Fortunately, most of the theory 
developed for hyperbolic systems work adequately well for 
nonhyperbolic systems too. 

Now we will consider some special cases of the 
distribution of the eigenvalues about zero. If all the real 
parts of { }iλ  are negative, the linear system is stable and so 
also is the original nonlinear system. Such fixed points are 
called stable nodes or sinks. If all the real parts are greater 
than zero then the linear system and also the actual 
nonlinear system are unstable. Such fixed points are called 
unstable nodes or sources. If for a hyperbolic fixed point, at 
least one real part is greater than zero and at least one real 
part less than zero, then it is said to be a saddle point. There 
is another type of fixed point called the center that that 
occurs only in nonhyperbolic systems. For a center, the 
eigenvalues are purely imaginary. It should be mentioned 
here that all of these could be reinterpreted for maps by 
considering the behavior of the modulus of eigenvalues with 
respect to one. 

For a fixed point it makes sense to consider which set 
of points that asymptotically converge to it and which do 
not. The eigenspaces of a linear flow are invariant 
subspaces of the dynamical system. The dynamics on each 
subspace are determined by the eigenvalues of the subspace. 
If the original manifold is  then each invariant subspace 

is also a Euclidean manifold, which is a subset of . For a 
linearized system, we can classify each of these invariant 
submanifolds according to the real parts of the eigenvalues 
as: 

nR

nR

1. sE : the (stable) subspace spanned by the 
eigenvectors with 0)Re( <iλ  

2. uE : the (unstable) subspace spanned by the 
eigenvectors with 0)Re( >iλ  

3. cE : the (center) subspace spanned by the 
eigenvectors with 0)Re( =iλ . 

These are illustrated in Fig. 1 for a hyperbolic system 
(hence there is no center manifold). 

But what does the invariant manifolds of the linearized 
system tell about the original nonlinear system? The relation 
comes from the Center Manifold theorem. This states that 
for the nonlinear system, there exist smooth stable and 
unstable manifolds, called W and W , tangent to s u sE  and 

uE at , and a center manifold W  tangent to fx c cE  at 

. The manifolds W , W and W  are invariant for the 

flow. The stable (W ) and unstable (W ) manifolds are 
unique. The center manifold (W ) need not be unique. For 
hyperbolic systems we can decompose the neighboring 

fx s
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region into stable and unstable manifolds as is shown in Fig. 
2. 

 

sE  

uE  

 
Figure 1: Local stable ( sE ) and unstable ( uE ) invariant 
manifolds of the linearized dynamics about a fixed point. Here there
are two distinct stable eigenvalues – hence stable manifold is a
plane. The unstable manifold is a line because there is only one 
unstable eigenvalue 

Until now we focused our attention only on fixed 
points. The notions of invariant manifolds can also be 
extended to periodic orbits. A periodic orbit can be 
identified as a fixed point of an appropriate Poincare 
section. Hence the stability of the periodic orbit can be 
studied by analyzing its corresponding fixed point of the 
map defined by the Poincare section. In this case, 
characteristic exponents called Floquet multipliers play the 
role of eigenvalues. 
 

3. HOMOCLINIC AND HETEROCLINIC POINTS 

Informally, we can define the stable (unstable) manifold 
about a fixed point as those points in its neighborhood, 
which asymptotically reach it in the positive (negative) flow 
of time. In the previous section we learnt that these are 
tangent to the eigenvectors of . fx

The local invariant manifolds just by themselves are not 
so fascinating. But these become very interesting when the 
stable (W ) and unstable (W ) invariant manifolds (of the 
same fixed point or of different fixed points) intersect 
[2,3,5]. One possible scenario occurs when the stable 
manifold exactly matches the unstable manifold. Such 
interactions are exceptional. The more common and also 
interesting scenario is the transversal intersection between 
the stable and unstable manifolds. If this transversal 
intersection point is between the stable and unstable 
manifolds of the same fixed point (or periodic orbit), then it 
is called a homoclinic point. If the stable and unstable 
manifolds are from different fixed points (or periodic orbits) 
then it is called a heteroclinic point. It should be noted that 
we do not consider the intersection of two stable manifolds 
or of two unstable manifolds as these are not possible; such 

an intersection would violate the theorem of uniqueness of 
solutions through any point. An example of a highly 
simplified set of homoclinic and heteroclinic points is 
shown in Fig. 3. 

s u

Figure 2: Local stable (W ) and unstable (W ) invariant 
manifolds of the nonlinear system about a fixed point. Here there 

are two stable eigenvalues – hence it is a 

s u

2R manifold. The 

unstable manifold is 1R  because there is only one unstable 
eigenvalue. The nonlinear manifolds are tangent to the linearized 
manifolds  (reprinted from [3]). 

The properties of homoclinic and heteroclinic points 
make them highly interesting and can be use to describe the 
generative process of chaos. (Henceforth we speak only of 
homoclinic points although all of the following are true for 
heteroclinic points as well). A homoclinic point, by 
definition, lies on both the stable and unstable invariant 
manifold. The forward and backward map of this point 
should again be on both the stable and unstable manifolds, 
and hence should itself be a homoclinic point. This means 
there exists an infinity of such homoclinic points. Moreover, 
the stable (W ) and unstable (W ) manifolds must 
oscillate more and more wildly between the iterations of the 
map,  as 

s

)x

u

(M n ∞→n . Also, between any two 
intersections there exists a dense set of intersections. 
Another important fact is that in any neighborhood of a 
homoclinic point (or its associated fixed point), there are an 
infinite number of periodic points of the map. But how does 
all this lead to chaos? This link comes from a study of 
symbolic dynamics. 

4. SYMBOLIC DYNAMICS AND CHAOS 

Consider the sequence space  on the two symbols 0 and 
1: 

2Σ

{ }10|...)( 102 or===Σ jssss  
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The shift map on this space 

...)(...( 321210 ssssss =σ  is defined 

as ...)(...)( 321210 ssssss =σ . The shift map simply 

“forgets” the first entry in a sequence, and shifts all other 
entries one place to the left. There are several interesting 
properties of the shift map [2,5]. First, it is exhibits 
sensitivity to initial conditions. Two points sitting close to 
each other in the sequence space eventually separate. There 

exists a dense set of periodic orbits in  and even more 
“number” of aperiodic orbits. (In fact, the set of periodic 
points can be mapped to the set of rational numbers in a real 
interval and the set of aperiodic orbits to the irrational 
numbers in the same interval). Another interesting property 

of  is that there are nonperiodic orbits that come 
arbitrarily close to any given sequence in the space. Such 
orbits are called dense and maps that possess dense orbits 
are said to be topologically transitive (leading to the 
phenomena of mixing). 

2Σ

2Σ

In our construction of the sequence space we 
considered only two symbols, 0 and 1. We can extend this 
to a more general setting containing N symbols. The 
dynamics on the sequence spaces of these symbols is called 
symbolic dynamics. 

Another restriction that can be applied to the dynamics 
of symbols is by not allowing certain symbol sequences or 
transitions. For example, if there are three symbols 0, 1 and 
2, we can allow all transitions between symbols except that 

from 2 to 0. Hence, we can construct a Markov transition 
matrix whose entries are either a 1 or a 0 depending on 
whether a particular transition is allowed or not. The shift 
map for this constrained sequence space is called a subshift 
of finite type. 

Figure 3: Homoclinic and heteroclinic points of transversal 

intersections between stable (W ) and unstable (W ) invariant 
manifold  (reprinted from [3]). 

s u

What use is of symbolic dynamics in chaotic systems? 
The answer comes from the properties of hyperbolic 
systems with homoclinic points. It has been shown that for 
such systems [2,3,5], homoclinic intersections imply 
horseshoe type (a kind of map with a stretch and fold 
mechanism in one direction and squeezing in another) 
dynamics for some sufficiently high iterate of the map. The 
dynamics of the horseshoe map can be shown to have a 
direct correspondence with that of the shift map on symbol 
sequences, i.e., there is a topological conjugacy between the 
two dynamics. This link not only helps us in a qualitative 
description of chaotic systems, but we can also use symbols 
to code the trajectories and periodic orbits of chaotic signals 
to aid in their classification. 

PART II: TOPOLOGICAL INVARIANTS 

5. KNOTS, LINKS, BRAIDS, AND PERIODIC 
ORBITS 

Knot theory [2,7] studies the placements of one-dimensional 
objects called strings in a three-dimensional space. A knot is 
made by taking a rope and splicing the ends together to 
form a closed curve. A collection of knots is called a link. 
An oriented knot is a closed non-intersecting loop with a 
sense of direction associated with it. An example of a knot 
and a link is shown in Fig. 4. 

Another structure that is found very useful when 
studying knots is a braid. A braid is constructed between 
two horizontal lines with n  base points. Each base point in 
the upper line is connected to one and only one base point 
of the lower line. A braid is closed by joining the lower base 
points to the upper base points to create links (or knots). It 
is proved that any oriented link can be represented as a 
closed braid (Alexander’s theorem [2,7]. 

Two knots (or links) are said to be topologically 
equivalent (or homeomorphic) if there exists a continuous 
transformation carrying one knot (or link) to another. 
Showing that two oriented knots (or links) are equivalent is 
an extremely difficult problem. This can be simplified by 
considering the projection of knots on to a plane. This 
introduces crossings C, in the planar diagram each of which 
is assigned a sign 1)( ±=cσ  depending on whether the 
crossing is right-handed (overcross) or left-handed 
(undercross). Reidemeister observed that two different 
planar diagrams of the same knot represent topologically 
equivalent knots under sequence of just three primary 
moves, now called Reidemeister moves. But these moves 
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can be applied in an infinite number of combinations, and so 
showing knot equivalence still remains a hard problem. 

The importance of knots in a three-dimensional 
dynamical system arises from the fact that a periodic orbit 
of such a system forms an oriented closed non-intersecting 
curve, and is hence an oriented knot [2,3]. More 
importantly, the various periodic orbits form a link. In the 
chaotic regime, this link is extraordinarily complex, 
consisting of an infinite number of unstable periodic orbits 
(knots). This linking of the periodic orbits fixes the 
topological structure of a three-dimensional flow. Hence, 
knowledge about the organization of periodic orbits of the 
flow provides all the information about its strange attractor. 
If we can understand how to classify this organization of the 
periodic attractors, then we can classify strange attractors. 

6. INVARIANTS OF PERIODIC ORBITS 

The organization of periodic attractors (which form a 
link) can be classified according to certain topological 
invariants called knot and link invariants [1,2,3]. A 
topological invariant of a knot or a link is a quantity that 
does not change under continuous deformation of the 
strings. There exists very powerful knot invariants like the 
Jones polynomial and the Alexanders polynomial, but for 
our purposes simpler invariants will suffice. 

A crude invariant that resembles the metric invariants 
(like Lyapunov exponents, fractal dimensions and 
correlation entropy [4,5]) more than the other topological 
invariants is the topological entropy [1,2]. Consider two 
different periodic orbits of the same period. The two 
periodic orbits could just be cyclic permutations of one 
another, in which case they are not really distinct orbits. The 
other case is when they are distinct orbits. For maps in one 
dimension, the topological entropy is defined as a measure 
of the growth of the number of distinct periodic cycles as a 

function of period, i.e., 
n

Nh n

n
lnlim

∞→
= , where is the 

number of distinct periodic orbits of period n. This invariant 
is a function of the parameter and has high positive values 
for chaotic regimes and low negative values in non-chaotic 

regimes. Positive entropy is usually taken as an indication 
for the amount of chaos. 

nN

i) A trefoil knot                             ii) A Hopf link 

Figure 4: Example of i) a (trefoil) knot, ii) a (Hopf) link 

The (Gauss) linking number [1,2,3] is a simple 
topological invariant defined for a link on two oriented 
strings A and B as the sum of the crossing numbers (sign) 
for each cross between A and B: 

∑=
C

CBAL )(
2
1),( σ  

An n-component link is an ordered collection of n disjoint 
knots. For an n-component link, there is a linking number 
associating every pair of components. 

When the phase space in 3R  is a solid torus ( , 
where  is a planar disc and is the circle), another 
related invariant called the relative rotation rate can be 
defined [1,2,3]. For two periodic orbits A and B with 
respective topological periods (the number of distinct points 
a periodic orbit intersects the Poincare section)  and 

, the relative rotation rate is computed as: 

SD ×2
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Here  and i j  denote the starting points for the 
computation of the relative rotation rates. Hence there are 

 such relative rotation rates possible between A and 
B. Linking number is related to the relative rotation rate by: 
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The relative rotation rates of all pairs of periodic orbits 
of a map can be placed in a matrix called intertwining 
matrix. This matrix is a powerful invariant for low-
dimensional chaotic signals and can be used for classifying 
chaotic attractors. The relative rotation rates can be 
computed from an experimental chaotic signal and arranged 
into an intertwining matrix. This can be compared with the 
inter-twining matrices of known chaotic systems, and hence 
can be used for classifying strange attractors. The symbolic 
dynamics described in section 4, has been extremely useful 
in coding these periodic orbits and has facilitated the 
computation of the above-mentioned invariants greatly. 

Mathematicians have developed a neat way of 
representing all the unstable periodic orbits (knots) of a 
chaotic attractor in a single structure called as a template (or 
a branched manifold or a knot holder) [1,2,3]. The key idea 
behind constructing a template is to recognize that for low-
dimensional chaotic systems, one of the directions should be 
a stable one (i.e., negative Lyapunov exponents). Two 
points on a stable manifold shrink asymptotically to a fixed 
point. Thus by projecting the flow along the stable 
direction, we can reduce it to a planar diagram. There are 
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two components to constructing a template: a joining chart 
(to identify the squeezing process) with a one-dimensional 
singularity called the branch line and a splitting and a 
splitting chart with a zero-dimensional singularity called a 
splitting point (that identifies initial conditions that flow into 
a fixed point). These are shown in Fig. 5. An example of 
such a template constructed from the Lorentz strange 
attractor is shown if Fig. 6. 

i) joining chart                               ii) splitting chart 
 

        
Figure 5: Template building charts i) joining chart and ii)
splitting chart 

Figure 6: Lorentz attractor and its template (reprinted from
from [3]). 

The template provides complete information regarding 
the organization of all possible periodic orbits on the 
attractor in a compact form. Every attractor structure can 
simply be represented by a template that describes the 
periodic orbits and the stretching and squeezing 
mechanisms that forms the attractor. It is hoped that we can 
list out all the possible templates like the periodic table of 
chemical elements and that this would lead to a complete 
description of chaos arising in low (<4) dimensional 
systems. 

 
 

7. CONCLUSIONS AND FUTURE WORK 

In this report, an overview of how to understand chaotic 
systems was presented from a topological viewpoint. An 
introduction to a qualitative description of solutions of 
differential equations of dynamical systems was provided. 
The role played by homoclinic and heteroclinic points of 
hyperbolic systems in describing chaotic systems was 
explained through symbolic dynamics. Applications of 
results from knot theory in finding topological invariants 
from periodic orbits were also described. 
 
This description of topological chaos provided here was by 
no means exhaustive. The concept of templates needs to be 
better understood. New approaches should be sought out to 
make this study more practical. For instance, the use of the 
knot invariants would be meaningless if the attractor does 
not confine itself to a subspace of three dimensions. Also, a 
more complete understanding of nonhyperbolic systems is 
needed to understand the phenomenon of bifurcations. 
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