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ABSTRACT 
A nonlinear dynamical system operating in a chaotic regime 
is characterized by its sensitive dependence to initial 
conditions. This leads to state-space trajectories that exhibit 
locally exponential divergence. Though conventional 
(linear) signal analysis approaches exploit spectral 
information contained in the observable, the chaotic 
structure of an observable generated by a nonlinear 
dynamical system is best captured by studying the 
characteristics of its (reconstructed) state-space. This paper 
reviews some recent advances made by the signal processing 
community towards capturing a regular, well-behaved 
statistical structure of an irregular and chaotic deterministic 
structure. In this paper, I review two such analysis tools. The 
first one – the Perron-Frobenius operator is used to 
demonstrate how an irregular evolution in the state-space of 
a chaotic map settles down to a stable, invariant statistical 
distribution. Evidence is provided to convince the reader on 
the possibility of representing the deterministic evolution 
over the trajectory by a stochastic evolution over a Markov 
chain. Another useful characterization of some strange 
attractors is self-similarity on the trajectory. This is 
characterized by the fractal dimension, and techniques that 
capture and quantify this property are discussed.  

1. INTRODUCTION 

A nonlinear dynamical system operating in its chaotic regime 
will show a state-space evolution that has a strong signature 
of sensitive dependence to initial conditions. This behavior 
manifests itself in exponentially diverging trajectories [1] [2] 
[3] . Dynamical invariants of an attractor capture such 
signatures (e.g., the largest Lyapunov exponent provides the 
average rate of exponential divergence of nearby trajectories, 
the Kolmogorov-Sinai entropy quantifies the rate at which 
the attractor’s trajectory looses / gains information under 
evolution, etc.).  

Conventional (linear) signal analysis tools typically 
exploit information in the power spectrum of the observable. 
Since this is based only on second order statistics of the 
underlying process, such a representation may be inadequate 
for observables generated by a process with inherent 
nonlinearities. It is hence desired to use analysis techniques 
that capture the nonlinear evolution of the underlying 
system’s attractor which generated the observable. 

Recent studies suggest that the complicated, 
deterministic evolution of chaotic attractors settles down to a 
well-defined statistical structure of the state-space. It has 
been proven (e.g., using the Perron-Frobenius operator) that 
under certain conditions, well-known chaotic maps settle 
down to invariant probability density functions, that can be 
obtained in a closed form. In this paper, I review the use of 
some popular statistical methods for modeling trajectories of 
chaotic attractors. For observables known to have been 
generated by a deterministic structure, a state-space 
reconstruction, followed by statistical analysis in this space 
should provide useful statistical information for modeling 
purposes. However, it is well known that systems with 
stochastic differential equations of a fractal order are also 
capable of generating signals that exhibit strange behavior 
(e.g., a fractal or self-similar behavior). Clearly, such signals 
can not be modeled using purely deterministic tools. 
Recently, the use of fractal geometry for modeling such 
signals has been explored in the signal processing 
community. Hence, at a top level, any signal analysis design 
to capture the nonlinear dynamical structure of the 
observable must be a two pronged approach – one part that 
studies and characterizes the deterministic structure in the 
dynamics, and another part that probes for the presence of an 
underlying stochastic process, or stochastic perturbations of 
deterministic dynamical systems. 

The outline of this paper is as follows. Section 2 
provides a mathematical motivation behind using statistical 
analysis tools to model deterministic chaos. The Perron-
Frobenius operator is employed for this purpose. This section 
also provides motivation behind the potential use of Markov 
chains for modeling chaotic attractors. Section 3 provides an 
explanation of how stochastic differential equations with 
fractal orders can result in strange attractor behavior. Some 
techniques to quantify this behavior are discussed. In Section 
4, some potential future work in this direction is discussed.   

2. STATISTICAL ANALYSIS OF DETERMINISTIC 
CHAOS 

One technique for characterizing strange attractors 
statistically is to learn the probability density function of 
the attractor’s state-space by observing the trajectory over a 
long period of time. We could, for example, fit the 
distribution of the observed points on the state-space using 
a Gaussian Mixture Model (GMM) and learn the 
parameters using a gradient descent algorithm. Such an 



approach puts a lower bound on the length of the state-
space trajectory required to learn the parameters. An 
increase in the dimensionality of the state-space and the 
number of mixtures in the GMM representation will add to 
this requirement of a large data-size requirement. Another 
concern with GMM based fitting of attractors is the fact 
that strange attractors may not have a statistical distribution 
that is friendly to a GMM fit with a limited number of 
mixtures.  

Another approach to this modeling problem is being 
studied in the Signal Processing and Communications 
community [4] [5] [6] . The statistical characteristics of a 
strange attractor are learned by decomposing the trajectory 
into a finite number of states, and representing the 
evolution of the system statistically by a finite Markov 
chain over these states. Such an approach uses the fact that 
the trajectory of a dynamical system represents the 
evolution of the states over a deterministic evolution 
function. Hence, if the initial conditions were chosen 
randomly from a certain probability distribution, the 
evolution of the states resulting from a random sampling of 
the initial condition will settle down to the same, invariant 
distribution.  

2.1 STATISTICAL DISTRIBUTIONS OF CHAOTIC 
TRAJECTORIES – THE PERRON-FROBENIUS 

OPERATOR 

For purposes of illustration, consider a one-dimensional 
map, , where constitutes the state-space of 
the map. Let us study the statistical behavior of a trajectory 
generated by such a map. Our goal here is to heuristically 
motivate on a fundamentally important fact – A highly 
irregular behavior of chaotic maps in terms of orbit 
evolutions typically has a remarkably regular statistical 
structure. We show that this can be extended to sampled 
flow data as well.     

XXM →: X

The Perron-Frobenius operator (PFO) describes the 
time evolution of probability densities of the state space 
under iteration of a deterministic map. This tool is thus 
useful when we wish to study how a dynamical system 
which started with initial conditions pulled from a known 
density function evolves statistically in the state-space.  

As an illustration, suppose that the chaotic map M is a 
non-singular map over a state-space X. The operator 

(where is the space of Lebesgue integrable 
functions) characterizes the evolution of the probability 
density function of the states with each iteration of the map. 
Using the continuity principle for (measure preserving) 
deterministic transformation of random variables, it can be 
shown that: 
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where )(ηφ represents the probability distribution of the 
state space before an iteration of the map was applied to it 
and )]([ ηφP represents the probability distribution of the 

state-space after an iteration of the map. Differentiating 
both sides in equation (1) yields: 
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Note that the Perron-Frobenius operator is a functional, and 
hence infinite dimensional. In [5] , a finite dimensional 
approximation to this infinite dimensional operator is 
presented, by employing a Markov operator of finite rank. 
This is equivalent to projecting the infinite-dimensional 
space (which can be represented by discretely indexed 

basis functions ) onto a finite dimensional 
subspace generated by a subset of the basis 
functions , such that
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above is equivalent to decomposing the measure space into 
N (coarse-grained) partitions. Hence, one approximates the 
probability density of the state space by the finite sum of 
basis functions 
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In such a representation of the statistics of a discrete 
dynamical system, Ulam proposed the following matrix: 
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which denotes the relative measure of points in the 
partition of the state space that are mapped to points in the 
partition under one iteration of the map.  With such a 
finite-Markov approximation in hand, we can use the Perron-
Frobenius theorem to estimate the stationary probabilities of 
the state-space. The Perron-Frobenius theorem guarantees 
stationary (i.e., independent of the initial state of the system) 
probabilities for states of a Markov chain, provided the 
stochastic matrix, for the chain is primitive (i.e., 

, for some finite value of ). For primitive 
stochastic matrices, the stationary probabilities of the states 
are given by the normalized Perron vector (the eigen-vector 
corresponding to a simple eigen-value of one in the spectral 
decomposition of the matrix). The invariant density in the 
state space of the map

iY

jY
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M corresponds to the fixed point of 
the PFO. This invariant density plays an important role in the 
estimation of time-averaged statistics of time series generated 
from nonlinear dynamics. 

Figure 1 shows the statistical properties of a state-space 
partition generated by 1000 iterations of the bend-up bend-
down map (section 5). Note that irrespective of whether we 
generate the initial conditions of the map from a normal 
distribution or a uniform distribution, the statistical 
characteristics of the state-space representing the evolution 
of the trajectory converges to an invariant density. Also 
note that though the time series generated from two 
different initial conditions are significantly different (due to 
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igure 1 (a) Statistical distribution of the state space of the Bend-Up, Bend-Down map  with initial conditions generated from 
ormal and Uniform distributions, (b) Time series generated by the same map using two different initial conditions. 
e chaotic nature of the map), the statistical properties of 
e underlying attractor are similar.  

The fixed point of the PFO hence provides a means to 
timate the statistical distribution of the state-space of the 
ap being studied.  If it is desired to characterize the 

nderlying statistical structure of the underlying state-
ace, one can proceed as follows – (1) Partition the state-
ace into suitable Markov partitions, (2) Estimate the 
ochastic matrix for the system over the defined partition, 
) Estimate the long-run (i.e., after transients have died 

ut) statistical structure of the map by using the Perron-
robenius theorem (which relates the one-step transition 
atrix of the Markov chain to the invariant distribution 

ver the state-space.)  
The above procedure has been successfully applied to 

nthesis problems in signal processing and 
mmunications research [4] [5] [7] .This approach can be 
tended to an analysis paradigm (e.g. for a pattern 
assification problem, where one knows the statistical 
ructure of various maps from training data, and wishes to 
nd the distance of an observed time series from the 
arned models).  

As an illustration, consider the following – we have 
aining data (in the form of time series) from two maps 
end-up, Bend-Down map and the W-map [Appendix]). If 

e wish to assign a map-label to a test time series, we can 
btain the state-sequence of the state-space that resulted in 
e generation of a time series (e.g., by partitioning the 
ace into Markov partitions and finding the measure of 

oints being mapped from one partition to another in one 
me step). The problem of identifying the map that 
enerated the test-time series can then be treated in a 
nventional maximum likelihood framework: 
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hich maximizes the probability of the observed state 
quence , given a model (map)...321 sss M . If we know the 
ochastic matrix for every map, we can 

evaluate using the Markovian assumption of 
the chain.  
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Table 1: Illustrating a confusion matrix using the log-likelihoods 

of test-time series generated by two maps, compared against 
reference (trained) models, using a Markov chain 

 representation of the maps.  
     B.U.B.D. -Map W - Map 

B.U.B.D.        
        Map 

- 88.1 - 110.7 

W-Map - 74.5 - 49.4 

 
 
Table 1 depicts the log-likelihood of test series generated 
from B.U.B.D. map and W map respectively, computed 
using the Markov transition probabilities learned from each 
map. The log-likelihood of the test time series computed 
using the transition matrix of the correct model is 
consistently greater than the estimate of the log-likelihood 
using the wrong model. Further, Figure 2 shows the true 
statistical distribution of the state space corresponding to two 
time series, and compares it to the estimate of the distribution 
using the Perron-Frobenius theory. These results strengthen 
the claim in this paper – that chaotic maps can indeed be 
classified using a Markovian assumption.  

3. MODELING THE FRACTAL STRUCTURE IN 
SELF-SIMILAR ATTRACTORS 

Many chaotic attractors exhibit self-similarity in their 
structure. Self-similarity is a key concept in fractal 
geometry, in which, an object appears to be structurally 
similar at different scales. It is hence natural to define a 
measure that quantifies this behavior, and use it as a 



 
Figure 2: Statistical distributions of the state space of a sine wave and the x-variable of the Lorentz attractor, and the 

corresponding invariant density estimate, using the Perron vector of the Stochastic Matrix. 

signature of self-similarity. Figure 3 shows the various 
types of self-similar fractals. Deterministic self-similarity is 
composed of different features that resemble each other in 
some way at different scales. Deterministic fractals are 
typically generated through some Iterated Function System 
(IFS). Statistical self-similarity is composed of features that 
may change at different length scales, but in such a way 
that the statistical properties remain same at all resolutions. 
Statistically self-similar objects are used to model a variety 
of naturally occurring objects. These can be considered as 
having being generated by solving stochastic differential 
equations of fractional orders. The following analysis 
provides a convincing proof of the fact that fractal objects 
can indeed be generated as solutions of stochastic 
differential equations. Consider the following equation: 

),()( xnxf
dx
d

q

q
=                                                                (6) 

where is white noise. For non-integer values of , 
equation  (6) has fractional order, since it involves 
fractional derivatives. Before proceeding with the analysis, 
let’s define fractional derivatives. Although there exist 
many definitions of fractional derivatives, one definition of 
interest to us is: 
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where is the Fourier transform of . Plugging this 
back in the original stochastic differential equation, 
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)(xf can hence be obtained by employing the Liouville-
Riemann transform [8] , as: 
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It can be shown [8]  that equation (9) yields  

)],(Pr[1)](Pr[ xfxf q λ
λλ =                                               (10) 

which implies scale invariance in the statistics of the 
signal  - when viewed at a different resolution, the 
signal will be similar in it’s statistical structure. Now that 
we are convinced that stochastic differential equations with 
fractal orders leading to (statistically) fractal solutions, let 
us consider the following analysis / synthesis problems [4]: 

)(xf

1) Forward problem (Equivalent to Synthesis): Given , 
determine . 

q
f

2) Inverse Problem (Equivalent to Analysis):  Given , 
determine q . 

f

The inverse problem can be solved if one assumes a certain 
structure of the characteristic Power-Spectral Density 
Function (PSDF - 2)()( kFkP = ). Assuming qkkP 2)( −∝  
(which is a typical spectral representation of fractal 
signals),  

,2,)( q
k

ckP == ββ                                                       (11) 

where is a constant of proportionality. Consider the case 
where

c
)( ii kPP ≡ is estimated from the FFT of the digital 

fractal signal. Such a representation can again be 
approximated by: 

 .2,ˆ q
k
cP
i

i == ββ                                                         (12) 

We can use the conventional least-squares formulation to 
estimate β and c . To convert this into the linear least 



squares setting, let’s consider the following error function 
(on the log scale, instead of the linear scale): 
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Using the fact that and solving 
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In [8] , [9] , the fractal dimension of the attractor is related 
to the Fourier dimension asq qD 2,25 =−= ββ , 
where β is estimated using equation (14). This hence 
provides us with a reliable way to estimate the signature of 
self-similarity in fractal signals. 

Many naturally occurring signals have a high frequency 
decay of the form β−∝ kkP )( , for which the fractal model 
derived as the solution of a stochastic differential equation 
is sufficient. Some signals do not have a simple power-law 
decay of the spectrum. It is hence sometimes desirable to 
perform a pre-filtering to conform to the requirement of 
a spectrum decaying with a power law. Alternatively, we 
need a more general model to incorporate a wider variety of 
PSDFs. In [8] , the PSDF of the Bermann process is 
considered.  
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for which the corresponding fractal dimension estimate is 
given by: 
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4. CONCLUSIONS AND FUTURE WORK  

An analysis on the statistical distributions of chaotic maps 
reveals that they can be well represented by discrete Markov 
chains. This Markovian property can be extended to multi-
dimensional maps, e.g., using a Vector-Quantization 
approach. Alternatively, the partitioning of the state-space 
into Markov partitions can be done using a Hidden Markov 
Model, where the state-space trajectories are treated as 
observables (emissions) of the hidden states.  

Any statistical analysis method that uses a reconstructed 
phase space (in other words, assumes a purely deterministic 
system behavior) can not be used to model systems with 
stochastic inputs. The solution of a stochastic, fractional 
order differential equation provides a useful tool to quantify 
the self-similar structure generated by such systems. An 
important concern that arises when using fractals in signal 
processing applications is that the analysis of the signal 
should proceed using the true statistics of the signal, and 
should not be based on an assumption that the signal obeys 
some model (e.g., fractal structure). However, if such a 
model is assumed, and it provides results consistent with the 
theory, and, it also provides a useful measure for feature 
extraction and pattern recognition, then such a model-based 
approach may be desirable. As a note of caution, it must be 
pointed out that the techniques for modeling / quantifying the 
fractal structure in an object assume that the underlying 
structure of the system is indeed of a fractal nature (e.g., a 
stochastic differential equation of a fractal order). In [9] , the 
fractal structure in a class of speech sounds has been 
employed for a satisfactory speech segmentation task. In this 
work, an analysis window (used to estimate the fractal 
dimension) is moved by one sample, and regions showing 
distinct similarity in the fractal structure estimates are 
segmented. 

5. APPENDIX 

For completeness, a description of the two chaotic maps used 
for illustration in this paper is discussed. Some properties of 
the Perron-Frobenius operator in context to the estimation of 
the underlying invariant density under chaotic evolution are 
also discussed.  

The bended up-down map is defined as 
[ ]1,0,: ∈→ XforXXM , where,  
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The W-map is defined as [ ]1,0,: ∈→ XforXXM , where, 
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Figure 3: Different types of Self-Similarities. 
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Some important properties of the Perron-Frobenius 
operator (P.F.O.), P  are summarized for completeness. 

• P is a functional (and hence infinite dimensional) 
linear operator. 

• P is positive, i.e., 0)]([ ≥ηφP if 0)( ≥ηφ . 
• P is measure preserving, i.e., 

  ∫∫ =
XX

dxxdxxP )([)]([ φφ

• The P.F.O. corresponding to the k’th iterate of the 
map, kM is . k

k PP =
Another interesting point worth mentioning here is the 

Markovian behavior of chaotic maps vs. chaotic flow. If we 
partition the state-space of a chaotic map into Markov 
partitions and build the one-step transition probability matrix, 
we are likely to generate a full matrix, since there is no 
restriction (e.g., continuity) on the evolution of data over a 
map. However, for flow data (which is obtained as the 
solution of differential equations), due to the requirement of 
continuity in the evolution, the corresponding state-transition 
matrix exhibits a strong block-diagonal structure.  
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