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Abstract 
Recent research has found that piecewise-affine 

systems can be used to accurately model attractor 
topology of certain nonlinear systems. These models are 
represented by a system of linear differential equations 
and can accurately predict the nonlinear dynamics of an 
attractor. This paper analyzes some of the recent research 
on these types of models and techniques for estimating 
the parameters for these models. This paper also includes 
an example of how this method can be used to synthesize 
the Rössler and Lorenz systems.  

1. Introduction 
The modeling of nonlinear dynamical systems is a key 

topic in research literature today. Most mathematical and 
statistical modeling techniques under study focus on 
accurately modeling the key features of the chaotic 
attractors of dynamical systems. There are two different 
approaches to the modeling problem: direct and inverse. 
The direct approach assumes that we know the equations, 
state variables and other significant parameters of the 
system of interest. In this case, it is relatively simple to 
build a model to approximate the system. The inverse 
method assumes that we only have observable 
measurements generated by the system, and the system 
itself is an unknown. In this case, the objective is to find 
the simplest approximate model that captures the most 
significant features of the trajectories derived from these 
observations. In most real-word situations where we need 
to model a system, we must take the latter approach since 
we do not usually have a recipe for the generation of the 
system’s observable time series measurements. These 
models do have drawbacks, one being that their terms do 
not usually have a meaningful physical interpretation. 
However, they can be successful in reproducing the 
observable data in a statistical sense. In other words, the 
model can be used to accurately synthesize a time series 
with the same statistical properties as the observed time 
series [1].  

This paper will review the research being done on 
using piecewise-affine (PWA) systems to model 
nonlinear dynamic systems. Research on the use PWA 
systems for system modeling has been going on since the 

1970s where they were used to efficiently model and 
simulate nonlinear circuit components [2]. More recent 
research involves the construction of PWA models from 
time-series data for synthesis and prediction of nonlinear 
dynamic systems, including statistical approaches to 
estimating model parameters [3]. 

The first section of this paper will provide a detailed 
definition of PWA systems and how they can be used to 
model nonlinear dynamics. The second section will 
discuss the significance of attractor topology and why it 
is important to the construction of a PWA model. The 
final section will cite work done by [4] and show how 
this modeling technique can be used to accurately 
synthesize the Rössler and Lorenz systems. 

2. Piecewise Affine Models 
A piecewise-affine (PWA) system is a type of hybrid 

system in which the continuous dynamics within each 
discrete mode are affine, and the mode switching is 
limited to very specific regions of the subspace and is 
known a priori. [5]. The term affine refers to a geometry 
of vectors not involving any notions of length or angle. 
Unlike normal vector space, affine space has no 
knowledge of the origin, and the idea used to be referred 
to as the theory of free vectors. In other words, in affine 
space, it is possible to subtract points to get another point, 
or add a vector to a point to get another point. However, 
since there is no origin, it is not possible to add two 
points and arrive at a new point [6].  

Many nonlinear dynamical systems can be 
characterized by regimes of different types of behavior. 
This is usually true for systems in a limited range of 
operation; modeling processes on a large domain is 
usually quite difficult. However, within small operation 
ranges, local modeling is usually simpler since there are 
fewer phenomena and hence, fewer parameters to deal 
with. This type of modeling is called operating regime-
based modeling. There are two primary research interests 
in this area. One is the identification of linear systems to 
represent the different operating regimes. The other is the 
identification of mechanism to accurately and 
automatically control the switching between the regimes 
[3]. Recent research has shown that it is possible to form 
a model of this type for a nonlinear system using a PWA 



system [1]. This is accomplished by defining a system of 
linear functions to describe the different operation 
regimes, and using a piecewise linear function to control 
the switching between the regimes. This model can then 
be used to predict the behavior of or synthesize the 
original signal. Of course, in order to use this model for 
applications, we need to be able to prove that it is a good 
model, e.g., that it is computable, stable and reproducible. 
To ensure stability, some techniques have involved 
Lyapunov-based approaches to estimate models [7][8]. 

3. Significance of Attractor Topology 
The PWA model that we estimate for a dynamical 

system depends heavily on the topology of the system’s 
attractor. When these topological characteristics are as 
simple as points or curves formulating a PWA system to 
model the attractor is relatively simple. However, strange 
attractors present much more of a modeling challenge. 
An attractor is described as strange if it as a non-integer 
dimension or if the attractors dynamics are chaotic. The 
Rössler and Lorenz attractors (Figures 1 and 2) are 
examples of strange attractors and are discussed in more 
detail later [7]. 

There has been some research on the use of fuzzy 
logic models as local predictors, but these models tend to 
subdivide the phase space into a large number of 
neighbors. New research has shown, however, that 

attractors can be described using bounding tori and that 
the majority of the attractor is organized around a number 
of fixed points surrounded by the attractor’s flow 
trajectories. It can also be shown that the attractor can be 
divided into a number of domains, each associated with 
one of the fixed points. These types of fixed points are 
known as focal points. The remaining fixed points are 
known as saddle points and link the different flow 
domains together [4].  

To form a PWA model for such an attractor, an 
separate affine subsystem must be estimated for each of 
the fixed points. Likewise, based on the saddle points, a 
piecewise switching surface is estimated to control the 
switching of the system between the different domains. 
Most of the research emphasis is focused on the choice of 
the switching mechanism [1][4]. 

To formulate the switching mechanism, we need to 
determine several things about the attractor’s topology. 
As an example, we will be referring to the Rössler and 
Lorenz attractors. The first thing we need to compute the 
first return map to the Poincare section. The first-return 
map can help analyze the mixing caused by the “twist” in 
the attractor by plotting the position of the trajectory as it 
crosses the Poincare section against the position as it 

 

Figure 1. Rössler Attractor 

     

Figure 2. Lorenz Attractor 

 

Figure 3. Poincare Section of Rössler Attractor 

 

Figure 4. First-Return Map 



crosses the Poincare section the next time. This is 
illustrated in Figures 3 and 4 [4]. More specifically, we 
are using the y-z plane for the Poincare section, and 
recording y each time the trajectory crosses this plane. 
For Rössler, this is formally defined as: 

 

 
 

Notice that the first-return map is made up of two 
branches, each separated by a single critical point at the 
maximum. From these branches, we can split the phase 
portrait into two partitions. We can associate each side of 
this branch with a symbol, in this case, 0 and 1. The 
symbol 0 will correspond to increasing branch, and the 
symbol 1 to the decreasing branch. Now, trajectories can 
be encoded using strings of these symbols. For example, 
a period-n orbit would be represented by a symbol string 
of length n. Each element of the symbol string would 
correspond to the branch associated with the particular 
orbit. All of this information can be used to define a 
template for the attractor flow, which is a standard way to 
predict topological invariants of the attractor. The 
template can synthesize all of the topological properties 
of the attractor and the organization of the periodic orbits 
within it. It must also remain valid for the range of 
parameters where the number of branches of the first-
return maps does not change [4].  

Let us now define the term linking number. The 
linking number is one of the useful topological invariants 
predicted by the template. The attractor’s periodic orbits 
can be thought of as knots, and the template can be 
viewed as the knot holder. The linking number is an 
indication of the number of times certain knots are 
crossing each other, not counting the crossing of a knot 

with itself. The definition of a linking number is: 
 

 
 
The terms α and β refer to the two knots in question, and 
the Є(p) is the manner in which the two knots are 
crossing. In the case of a negative crossing, knot α 
crosses underneath β. Likewise, a positive crossing means 
that knot α crosses above β. In the case of a negative 
crossing, Є is -1. For positive crossings, Є is +1 [4]. 

The Lorenz system has two important topological 
mechanisms that are worth noting: folding and tearing. In 
Figure 6, p- and p+ are the fixed focal points and p0 is 
the saddle point. Tearing is the most prominent feature in 
the Lorenz system, and is induced by the saddle points 
mentioned earlier. Tearing is responsible for splitting the 
attractor flow into the two different “loops”. Tearing is 
easy to detect in a first return map. It shows up as a non-
differentiable point that shows up as a cusp. Folding, as 
we have seen earlier with the Rössler system, appears as 
an increasing branch and decreasing branch separated by 
a differentiable maximum (Figure 4) [4].  

All of these topological observations are important to 
the design of a model for one of these systems. The next 
section will show how to use the information discussed so 
far to form a PWA model for the Rössler and Lorenz 
systems. 

4. Models for Rössler and Lorenz Systems 
We will now show how PWA models can be derived 

for the Lorenz and Rössler systems. This work was done 

 

Figure 5. Rössler Template 
 

Figure 6. Rössler Template 



by Amaral, Letellier, and Aguirre in [4]. The Rössler 
system is actually a simplified version of the Lorenz 
system, so the derivation of models for both of these 
systems will use a similar procedure. The Rössler system 
is defined by: 

 

 
 
and has fixed points at: 
 

 
 

The points p+ and p- correspond to fixed focal points. 
When the trajectory for the Rössler system is plotted, it is 
difficult to see both fixed points. The fixed point p- is 
obvious (Figure 1) and is the point around which the flow 
revolves. The second fixed point is responsible for 
influencing the folding behavior. In the first-return map 
(Figure 4), the increasing mode corresponds to the 
influence of p- and the decreasing mode corresponds to 
the influence of the point p-.  

The Lorenz system is defined by: 
 

 
 
and has fixed points at: 

      
The role of the fixed points for Lorenz is different than 
that for Rössler. The two fixed-focal points are p+ and p- 
and the point p0 is a fixed saddle point. It has been 
shown that the only way two fixed-focal points can be 
surrounded by flow is if they are connected by a saddle 
point. The saddle point is also the primary contributing 
factor to the decision of a switching surface. The primary 
goal will be to assign an affine subsystem to each of the 
fixed points. 

There are several steps to the procedure of building a 
PWA model. The first step is to determine how many 
affine subsystems will comprise the model. As mentioned 
earlier, this is determined by the number of fixed focus 
points. In the case of Rössler and Lorenz, these points are 
p+ and p-. Thus, there will be two affine subsystems. The 

next step is to determine the switching law. The overall 
structure of a PWA model can be described as: 

 

 
 

where x is the state vector, m is the number of affine 
subsystems and p is the fixed points associated with the 
subsystem. The function s(x) is the switching law that 
determines which subsystem is active, and the matrix A 
defines the linear dynamics of the corresponding 
subsystem. The function f[.] is the Boolean function: 

 

 
 
From the above definitions we see that there are four 
things that need to be determined. 
 

1. The fixed points p 
2. The number of subsystems (based on the number 

of fixed points p) 
3. The dynamics of each subsystem 
4. The switching surface s(x) 

 
For Rössler, we know that there are two fixed points and 
that we will have a subsystem for each. To determine the 
matrices A, we find the Jacobian matrices of the Rössler 
system evaluated at the two fixed points. Therefore the 
PWA model for the Rössler system is for a given set of 
parameters (a,b,c) is: 
 

 
 
Now, we need to find the switching surfaces. The specific 
details for estimating switching surfaces can be found in 
[3]. Basically, it is determined by all of the topology 
properties discussed previously, but the surface must lie 
beyond the threshold at which the nonlinearity is active. 
The surface must also take into consideration the findings 
in the first-return map to the Poincare section. In this 
case, the folding influenced by p+. For Rössler, the 
optimal switching surface was found to be: 
 



 
 
It is now possible to use this model to synthesize the 
Rössler system. Figure 7 shows the synthesized attractor 
and resulting first-return map. Although the synthesized 
attractor is not identical to the actual attractor given the 
same parameters, the topological invariants are the same.  

Recall that the fixed points for the Lorenz system are 
much different than those for the Rössler system. The 
Lorenz system has three fixed points, two being focal 
points and the remaining one a saddle point. The saddle 
results in a tearing attribute between the two attractor 
flows around the focal points. For the model we build in 
this example, we use the parameters (s,r,b)=(10,28,8/3) 
and calculate the fixed points to be: 

 

 
 

The ease at which these models are estimated is due to 
the fact that we know the fixed points of the system. In 
cases where the fixed points are not known, they will 
have to be estimated from the attractor, and the model 
may not be as topologically equivalent to the original 
attractor.  

Since we again have two focal fixed points, we will 
have two affine subsystems. The saddle point will 
contribute to the switching surface. To determine the 
dynamics matrices A, the Jacobian matrices are 
calculated at each of the focal fixed points, p- and p+. 
Now, we can define the PWA system for Lorenz similar 
to the way we did for Rössler. 
 

 
 

Notice that the affine subsystems are simply 
transformations of each other based on the rotation 
symmetry of the Lorenz system. The switching surface is: 
 

 
 

where the θ parameter allows the switching surface to be 
rotated around the z axis. By varying θ, the population of 
unstable orbits can be adjusted. The plots in Figure 8 
show the synthesized Lorenz attractor and its 
corresponding first-return map to the Poincare section. 
For this example, a value of 1.346 was used for θ. Notice 

Figure 7. Synthesized Rössler System 

 
 



the non-differentiable “cusp” in the first-return map. As 
mentioned before, this corresponds to the tearing 
mechanism between the two flows in the attractor. Again, 
the topology characteristics are the same in the 
synthesized attractor as they are in the original attractor 
[4]. 

5. Summary 
This paper has briefly explained how the PWA 

systems can be used as models for nonlinear dynamical 
systems. There is obviously a great deal more research 
needed in this area. The work in [4] has shown that PWA 
models can be used to synthesize and predict the attractor 
topology of nonlinear dynamic systems with known 
parameters and topology, but the building of models from 
observed data still presents a challenge. 
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Figure 8. Synthesized Lorenz System 


