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ABSTRACT 

This paper presents two novel methods to interpret 
nonlinear time series, interval analysis and symbolic 
dynamics. The former one is related to find unstable 
periodic orbits (UPOs), and the letter one is related for 
modeling nonlinear time-series. From these two concepts, 
we can find a possibility for modeling chaotic system in 
terms of symbolic dynamics. The UPOs have not been much 
used for modeling, but their use still restricted to control 
systems. Although the second one is still opening problem 
for modeling deterministic chaotic system, its powerful 
efficiency enables us to transform complex time-series into 
symbolic sequence. This symbolic sequence constitutes   
symbol space like embedding space. Although these two 
concepts, UPOs and symbolic dynamics, are not much 
related to each other, it can be suitable tools for modeling 
real world signals. We present the method to find UPOs 
from phase space, and briefly review the procedure for 
modeling chaotic time-series using symbolic dynamics. And 
then, we combine those two concepts and make a new 
technique for modeling nonlinear time-series. Finally, we 
discuss the drawbacks and possibilities of these techniques. 

1. INTRODUCTION 

Unstable periodic orbits (UPOs) are a well known 
characteristic of chaotic time series data. It constitutes 
fundamental building block of reconstructed phase space, 
and gives a symbolic meaning on it [1]. The detection of 
periodic orbits in chaotic systems has been continuously 
issued in many fields. A particular important application is 
in the control chaotic systems where the first essential step 
is often the determination of periodic orbits. One interesting 
application of UPOs can be found [2], where one can use 
symbolic meaning of UPOs to generating partition in 
symbol space. In practice, finding the unstable periodic 
orbits in the chaotic data is a difficult task. It usually 
requires numerical studies but there is no guarantee that 
there exists a true periodic trajectory that stays near a 
computer generated one. Here, we present one method to 
detect and locate UPOs [1], and further investigate their 
applications  [2] [3]. 

Mostly known method for reconstructing complex 
time-series is embedding space, which uses time-delay of 
measured time series and embedding dimension. Another 
different way to be issued recently is symbolic space, which 
views the dynamics as the transition between a finite set of 
symbols [2][3][4].  

Symbolic description of deterministic chaotic system 
originated from mathematical discipline of symbolic 
dynamics. The first attempt was found in Hadamard’s work 
[5], where he introduced a symbolic description of 
sequences in geodesic flows on surfaces of negative 
curvature. This work further has been extended by many 
researchers. Another point of view was started by Poincare, 
who proposed that the complex time evolution of chaotic 
system could be depicted using a kind of strobocoscopic 
sampling of the multi-dimensional phase space trajectory 
[4]. Poincare surface captures temporal evolution of time-
series in phase-space and successive intersection between 
these surfaces reduces the dimensionality of the problem.     

Topological considerations in the continuous space turn 
into grammatical considerations in the symbolic space, 
concerning the presence or absence of legal transitions and 
various “words” occurring in the symbolic sequence. So, it 
is natural to relate Unstable periodic orbits (UPOs)  
embedded in chaotic attractor to the symbolic dynamics. 
Recently, the link between UPOs and symbolic dynamics is 
proposed by Davidchack [2], where he tries to estimate a 
generating partition based on UPOs of the system. M.B. 
Kennel [3] further investigates and proposes an improved 
method for that purpose. An interesting attempt is shown in 
[9], where topological voiceprints are used for speaker 
verification. 

The rest of this paper is organized as follows. Section 2 
provides a background of interval method and finding UPOs 
from that. Section 3 briefly introduces symbolic dynamics 
and presents two novel methods for symbol sequence 
partitioning. Section 4 discusses limitations and possibilities 
of those methods. Finally, section 5 gives a conclusion. 
 

2. UNSTABLE PERIODIC ORBITS 

In this section, we present the theory of interval methods for 
finding unstable periodic orbits (UPOs).  
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2.1 Principles of Interval analysis 

Interval analysis is a new and growing branch of applied 
mathematics [6][7]. It is an approach to treat an interval as a 
new kind of number. Computations in properly rounded 
interval arithmetic produce results which contain both 
ordinary machine arithmetic results and also infinite 
precision arithmetic results. Here we present a very short 
introduction to the interval analysis. In this paper, we denote 
intervals by boldface letters. Furthermore, if x  is an 
interval, we denote its endpoint by  and .x  Thus, x

 = [ , ].x x x  By an n-dimensional interval vector, we mean an 
ordered n-tuple of intervals  Thus, if is 
a two-dimensional vector, then for some 
intervals 

{ }1 2, ,..., .n=x x x x x

1 2( , )=x x x

1 1 1 2 2 2[ , ]  and [ , ].= =x x x x x x A two-dimensional 
interval vector also represent a two-dimensional rectangle of 
points 1 2( , )x x such that 1 1x≤ ≤x x1  and 2 2x≤ ≤x x2  

Next, we define basic arithmetic operations on the set 
of intervals. Given two intervals [ , ], [ , ],= =x x x z z z  the 
four operations, addition, subtraction, multiplication, and 
division, are defined as the endpoint operation 

 
[ , ]
[ , ]
[min( , , , ) max( , , , )]

1/ [1/ ,1/ ]

+ = + +
− = − −
× =
=

x z x z x z
x z x z x z
x z xz xz xz xz xz xz xz xz

x x x

          (1) 

 
where the condition of the division is the same in real 
arithmetic. It does not divide by “0”. 

    Nearly all numerical computation is carried out with 
“fixed-precision”, approximate arithmetic. The arithmetic 
hardware of computers is designed to carry out approximate 
arithmetic in “fixed-precision”. It is possible to program a 
computer to carry out the operations of interval arithmetic 
with appropriate rounding, when necessary, of left and right 
computed endpoints, so that the machine computed interval 
result always contains the exact interval result. In some 
cases, this requires adding (or subtracting) a “low order bit” 
to (or from) the right (or left) hand endpoint of a machine 
computed interval result. This can be done in such a way 
that  the machine computed interval result not only contains 
the exact interval result, but the machine computed right 
endpoint is the smallest machine number not less than the 
correct right endpoint and the machine computed left 
endpoint is the largest machine number not greater than the 
correct left endpoint. This is called “best possible” rounded 
interval arithmetic.  
 

2.2 Interval Newton operator, Krawczyk operator 

Let us consider a function  In order 
to investigate the existence of zeros of in an m -
dimensional interval vector x one evaluates the interval 
Newton operator 

.   ),( mR)f(,f ∈→ xxxx
f

                ,                            (2) )())('()( 0
1

0 xffxN −−= xx
where is the interval matrix containing all Jacobian 
matrices of the form  for 

)(' xf
)(' xf x∈x  and  is an arbitrary 

initial point belonging to the interval vector x .  
0x

The above equation simply modified the following. 
                        (3) ),()))()((' )()()()( kkkk xfxNf −=−xx

where,  is the current interval, and  is a point in the 
interior of , usually taken to be the midpoint. Once the 
initial value is set, Newton method iteratively calculate the 
solution. And we need not to compute the inverse of  
in order to evaluate  The Interval Newton operator 
has two important properties [8] which can be used to prove 
the existence and uniqueness of zeros of . 

)(kx )(kx
)(kx

)(' xf
).(xN

f
Theorem 1 :  

.in   of zeros no are re  then the  If 2.
 .in solution  unique  a  has   0   then int    If 1.

xxx
xxxx

f  )N(
)f()()N(

φ=
=⊂

∩
 

The interval Newton operator can be used only when 
the interval matrix  is regular, i.e. composed of 
nonsingular matrices. The following operator can be used 
for a wider class of systems.   

)(' xf

The Krawczyk operator is defined as  
),)()('()()( 000 xICfxCfxK −−−−= xxx            (4) 

where  is an arbitrary point belonging to x (usually one 
uses the midpoint of x ) and C is a preconditioning matrix. 
It is usually chosen as the inverse of . 

0x

)(' 0xf

2.3 Finding Unstable periodic orbits (UPO’s) 

The Krawczyk operator can be used for proving the 
existence of period-n cycles of by applying it to the map 

 defined by 

f
nmnm RRF )()( 6=

         )()]([ mod)1( knkk xfxzF −= +                      (5) 

for  0,....., 1 k n= − where  [1]. The zeros 

of F correspond to fixed points of 
0 .. nz (x ,.. .,x )−= 1

nf . Using a higher 
dimensional map F allows us to deal with longer periodic 
orbits.  
       In order to find all period-  cycles of  in the region n f
Ω , we use the combination of the generalized bisection 
[15] and Krawczyk method described above. At the 
beginning the set Ω is covered by boxes ( -dimensional m
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interval vectors). For each interval vector x , we produce 
the sequence ,  1

0)( −
=

n
iix

where , set  and then the interval 
operator  is evaluated. Finally, we use theorem 1 to 
prove that there is exactly one fixed point of  in (if the 
assumption of the first part holds) or that there are no fixed 
points of in (if the assumption of the second part 
holds). If neither of these two assumptions is fulfilled, the 
interval vector x is divided into smaller parts and the 
computations are repeated. Below is this algorithm using 
simple model language [1]. 

)(f i
i xx = ,10 ),...,( n-xxz =

)(zK
f x

nf x

 

d
o
w
O
c
t

symbolization as the process to convert time-series data into 
symbolic space. Also, there are some similarities between 
symbolic analysis and time-delay embedding. Whenever the 
points come out, we mention it. In the subsequent section, 
we will link UPOs and symbolic dynamics for modeling 
chaotic time series. 
                 

 

3.1 Procedure for mapping to symbolic space 

The procedure for symbolization starts with the following 
questions. What information in measurement data is 
significant for our purpose, and how can we efficiently 
convert them into appropriate symbols? The answer to these 
questions has been suggested by many researchers. Usually, 
the first step of symbolization is to define symbols, i.e., 
assign the range of original data into a specific symbol 
value. Then, how can we decide the range of time-series? 
This is the key ingredient of symbolization. 

One can define symbols in scalar time series, and the 
other does that in phase space [2][3]. Due to the irregular 

Define symbols 

Define Symbol Sequences 

Collect Statistics from 
Symbol sequences 

Figure 2:  Illustrating the flow of symbolization. 
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    end
    , ,
    compute  ;
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    end
end of FindPeriodi

m

i

x

 K( ) φ

x y ,....., y
i { ,..., }

y

=

∈

z z∩

cOrbitsInBox

 

 
Figure 1 : Procedure for finding periodic orbits 

 
Q is a global variable, which at the beginning of the 
computations is initialized to be zero, and at the end is equal 
to the number of fixed points of in the region considered. nf
In a typical implementation of generalized bisection for 
finding all zeros of the map F defined by equation (5), the 

ivision is performed on the box z . This means that in 
rder to find all periodic orbits of an m -dimensional map, 
e are searching the -dimensional space. mn
nce the box enclosing the periodic point x  is found, we 

an find a very narrow enclosure of its position by iterating 
he Krawczyk operator ).)(( xx ⊂∈Kx  We can also find an 

enclosure of the Jacobian matrix of  at the periodic point 
and decide the stability of the orbit. 

nf

3. SYMBOLIC DYNAMICS  

In this section, we present a guideline using symbolic 
dynamics for modeling chaotic time series. We use 

behavior of chaotic data, the letter method will be more 
desirable in some applications. Our goal in this step is to 
minimize the loss of information of original data. In this 
purpose, one can use the entropy to measure the information 
loss. How can we acquire the number of symbols and the 
choice of partition? When the entropy is maximized, 
optimal choice of two factors is possible [10]. Also, we 
must be careful not to lose important information. 

After deciding the number of symbols and partition 
between them, we need to collect groups of symbols such 
that it should give a well defined structure. Then, how can 
we capture all information – finite symbol sequence length? 
This is similar to choosing time delay and embedding 
dimension in phase space. In order to find optimal time 
delay and embedding dimension in phase space, we use 
autocorrelation function, mutual information function. The 
same methods can be applied to symbolic space.  

There are two possible ways to define symbol sequence, 
code series [11] and symbol tree [12]. The former approach 
divides the measured time series into finite set of discrete 
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values (Figure 3) and then evaluate relative frequency of all 
possible sequences in the data defined by a symbol-

sequence vector of L cycles length. For example, if we let 
L=5, we determine the relative frequency of occurrence for 
each possible sequential combination of five symbols.  

The letter one is explained as the following. We have a 
stream of symbols, which are quantized from continuous-
valued observations. And then the symbol tree is composed 
of parallel branches, each of which represents a possible 
sequence of the available symbols (Figure 4).  
 

 
The length of the sequences determines the depth of the tree 
and thus the number of braches. For a fixed sequence length 
of L successive symbols, the total number of braches is Ln , 
and thus the number of possible sequence increases 
exponentially with tree depth. However, this has some 
drawbacks for any given dynamical system. All sequences 
are not realizable sequence such that we have nonoccurring 
sequences. This was improved by context tree [12][13], 
which allows some of the possible sequences to be 
shortened to reflect reduced predictability over long times  
(Figure 4). 

The ultimate focus on symbolic dynamics in time-series 
analysis is to get the statistics from the symbol-sequence 

series. According to no intersection theorem in chaotic 
system, all time-series with different initial condition have 
unique trajectory in phase space. Following orbit, the 
relative frequencies for the intersections in various regions 
can be statistically quantified, and the resulting temporal 
sequence of symbols could be studied as a replacement for 
original variables [4]. 

Figure 3: Process of code series method 

Various types of statistics can be determined from the 
estimated symbol-sequence probability distribution. The 
most frequently used method is histogram, which is easy 
and convenient to calculate. From the statistics of symbol 
sequence, it often results in redundancy configuration 
between the frequencies of different sequences that reduces 
actual degree of freedom. In [14], weighted context tree 
method is proposed by Kennel and Mees to minimize such 
redundancy.  

Examples of information measures for symbol-
sequence frequencies include the Shannon and order-q 
Renyi entropies defined, respectively, as 

2logi
i

iH p= − p∑                                 (6) 

and 

   2
1 log

1
q

i
i

qH p
q

=
− ∑                            (7) 

where  is the histogram of symbol-sequence frequencies. 
The base-2 logarithm places the entropies in units of bits. 

p

 

3.2 Two generating partition algorithm 

Sequence partitioning is the central issue in symbolic 
dynamics, when time-series data map into symbolic space.  
There have been many methods for this purpose, here I 
introduce two recent methods. One is using UPOs [2], the 
other one is using the concept of global energy [3]. From 
these examples, we can see the possibility of UPOs in 
nonlinear time series analysis. Here, we reduce the detailed 
explanation and equation for that. 
 

3.2.1 UPOs algorithm 

As we said in the introduction, UPOs give symbolic 
meaning on the chaotic attractor. Until now UPOs have 
been mainly used for control systems. So, this attempt is 
really valuable for the future research. The notion of 
generating partition is based on splitting of the phase space 
in terms of measurable set. The coarse features of chaotic 
attractors are typically revealed by a relatively small number 
of short UPOs, while increasingly longer orbits refine the 
feature without altering the general structure. Therefore, 
orbit points of longer UPOs are the most likely to be 
assigned the same symbols as the nearby points belonging 
to shorter UPOs.  
 

Root 

B 

No history 

1 step history 

2 step history 

A C

AA BA CA AC BC CC 

Figure 4. Example of small context tree 
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Consider an N-dimensional dynamical system 

 and assume that we know the location of the 
UPOs of up to a relatively large period. The number K of 
symbols necessary for the symbolic representation must be 
large enough to allow for unique encoding of all UPOs in 
the system: 

)(1 nn f xx =+

max ,p
p pK N≥   

where pN is the total number of orbit points of period p , 
including orbit points with periods that are factors of . 
Our goal is to assign each orbit point  a symbol 

p

ix

1  { ,....., }is A Kα α∈ = , such that all the UPOs are 
represented by distinct symbol sequences.  

In order to have a quantitative measure, we define the 
following proximity function of order p for an arbitrary 
point x in the phase space: 

               ∑
≤

=

=
−

=
p

ik

N

i i

sk
p xZ

1
2

,)( K,1,.....,k  ,
||

)(
xx

αδ            (8) 

where N is the total number of orbit points whose periods 
are less than or equal to and p

k , isαδ is the Kronecker delta, 

which select for the sum only those points encoded by the 
symbol kα  . The choice of the function 2

i- −x x is not 
unique, as long as it satisfies the following requirement: it 
must be a positive monotone decreasing function which 
tends to +∞   in the limit .  We can now divide the 

phase space into K domains 
i→x x

1
K

k k{B } =  such that 

,  ,(k) (j)
p pZ ( ) ( ) j k≥ ≠x xZ and, therefore, define a partition 

which distinguishes all UPOs up to at least period  p
 

3.2.2 Relaxation algorithm 

Here, we briefly presents relaxation algorithm to generating 
partitions for chaotic time series. Detailed procedure can be 
found in [3]. We have a time series of points d

ix R∈ , and 
we wish to assign symbols is to each observed point. Our 
final objective is to choose a partition where neighbors in 
the symbolic representation ∑  are neighbors in continuous 
state space . Similar to other optimization problem, first 
define initial neighbors in ∑ , and then update the partition 
until the above criterion satisfied. We can view this as the 
similar problem to finding a ground state of a spin glass in 
statistical mechanics. Each point is assigned a 
configuration-dependent energy: points whose symbolic 
neighbors are close physical neighbors are given lower 
energy. The optimal partition is defined as the configuration 
of 

dR

is  which yields the lowest global energy.  

4. LIMITATIONS AND POSSIBILITY 

We reviewed Newton family methods for finding unstable 
periodic orbits in section 2. This method is a well known 
classical way to approximate solutions to an equation.  
While it is very feasible method to perform, it assumes the 
followings. We know the equation of motion and the 
equation is differentiable and continuous equation. Since we 
often do not know the equations of motion in many cases, it 
is difficult to estimate UPOs from observed time series 
using that method. One possible way is to use close returns. 
Whenever the trajectory approaches any UPO, we can 
capture the point for periods. It is still problematic that it 
requires large amount of data and it gives the unclear 
definition of closeness.  

When generating partition in chaotic data, each point in 
the attractor defines a unique bi-infinite symbolic sequence. 
Thus each UPO should have a unique periodic symbolic 
sequence. As we said in the first paragraph, it is often 
difficult to find the UPOs with sufficient accuracy and 
quantity to apply the UPOs algorithm. Most UPO locating 
methods use the points in the time series to create a model 
of the dynamics and then find UPOs from the model. 
However, an accurate model requires a large amount of 
rather noise free data. In particular, with noisy, finite length 
time series, it is especially hard to find the high period orbits 
which are necessary to localize the partition boundary.  In 
spite of these defects and uncertainty, UPOs and symbolic 
dynamics embedded in chaotic time series is still attractive 
research area for modeling and will eventually progress. 
 

5. CONCLUSION 

This paper starts with the possibility of Unstable periodic 
orbits (UPOs) for modeling nonlinear time series. Although 
it’s not easy to find the link between UPOs and modeling, 
the fact that UPOs give the hierarchical meaning in the 
phase space has always stimulated us. We first looked into 
interval analysis for finding unstable periodic orbits (UPOs) 
on the chaotic attractor. This method can successfully find 
all cycles with lower period as well as higher period.  
The idea of symbolization is to map specific time-series 
ranges into symbol space. Although this has some 
uncertainty in nonlinear system, it will be a very powerful 
tool for modeling. 

Until now, active researches have performed in these 
fields, but the existence of actual link between two is not 
guaranteed. However, recent experimental result shows that 
the hierarchical structure and symbolic dynamics of 
nonlinear time-series link together such that generates 
realizable modeling tools in the near future. Symbolic 
dynamics also combined other topological methods such 
that it results in more reliable modeling technique. One 
more we want to mention is the following. After we convert 
time series into symbolic space, we can treat it as a usual 
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character. So, we also apply various grammars on it and try 
to modeling it. 
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