
 
Problem 1: 
 
Create different two dimensional phase portraits of a time series of the Henon map 
(Example 3.2) using delay times tau = 1, 2, 3, ... (here, the sampling time is 1). Which 
picture gives the clearest information?  Rewrite the map in delay coordinates with unit 
delay. 
 
Solution: 
 
The Henon model or Henon map is interesting in that it consists of two variables. 
Both chaotic and periodic attractors may be found for the Henon model depending on the 
choice of the control parameters a and b.  
 
X n+1 = 1 – aXn^ 2+ Yn 
 
Y n+1 = b X n 
 
The first plot shows Henon map for the initial conditions ( a = 0.9 and b = 0.3).. 
henon_1 shows the plot. 
 

 
Fig 1.1: Henon at a = 0.9 and b = 0.3 

 



 
The plot 2 (henon_2) shows the Henon attractor for a = 1.4 and b = 1.3). 

 
 

Fig 1.2: Henon at a = 1.4 and b = 1.3 
 

 
Fig 1.3: Henon map iterated time series 

 
The plot 4 (henon_4) shows the whole attractor. Using the same initial conditions as a = 
1.4 and b = 0.3, it can be observed that the strange attractor has a shape of the letter C  



 
Fig 1.4: Henon map state space 

 
 

 
MATLAB CODE: 
 
% Henon map 
% Initial conditions 
N = 500;     
M = 50;      
 
% Henon map parameters  
% henon map is usually very sensitive to the intital  
%conditions 
a = 1.4; 
b = 0.3; 
 
% Initial conditions 
x(1) = 0; 
y(1) = -0.3; 
 
% Iterate the map 
for n = 1:(N-1) 
   x(n+1) = 1-a*x(n)^2+y(n); 
   y(n+1) = b*x(n); 
end 
 
% Plot iterated time series of x and y 
figure; 
plot(1:M, x(1:M), 'b.-', 1:M, y(1:M), 'k.-'); 
title('Henon map iterated time series'); 
legend('x(n)','y(n)'); 
xlabel('n'); 
ylabel('x(n),y(n)'); 
 



% Plot of state space 
figure; 
plot(x, y, 'r.'); 
title('Henon map state space'); 
xlabel('x(n)'); 
ylabel('y(n)'); 
 
Problem 2: 
 
Create a scalar time series of flow data numerically by integration of the Lorenz system 
described by the set of differential equations: 
dx/dt = sigma*(y-x)  
dy/dt = r*x - y - y*z 
dz/dt = -b*z +x*y 
with parameters sigma = 10, r = 28, b = 8/3. Use the Runge-Kutta(**) numerical 
integration technique to solve these set of equations to obtain one scalar observable (e.g., 
x). 
Plot the reconstructed attractor in 2-D delay coordinates with different time lags. 
Convince yourself (by the plots) that the reconstruction is best when the lag is about one-
quarter of the mean cycle time (note that if a time series has a strongly periodic 
component, an optimal time delay is approximately a quarter of the cycle time). 
Compute the autocorrelation function(as required in problem 4 below) as a function of 
tau for this time series and confirm this impression. 
 
Solution: 
 
The Lorenz attractor is plotted varying the number of points first. But the actual Lorentz 
time series is shown in the figure Lorenz_time_series. As can be seen from the plot, we 
cannot say that Lorentz is periodic.  
 



 
Fig 2.1: Lorenz time series 

 
 
The plots lorentz_1 and lorentz_2 show the lorentz time series for varying number of data 
points and in different axes. Clearly from the plots N = 10,000 has given out a better 
attractor than N = 500 case. 

 
Fig 2.2: Lorenz attractor for N = 500 points 

 



 
Fig 2.3: Lorenz attractor for N = 10,000 points 

 
The Lorentz attractor that is shown above is the actual attractor. With variation in the 
value of tau, the attractor also varies. This can be shown in the plots below. 
 

 
Fig 2.3: Attractor when tau = 1 (almost at 45 degrees) 

 
This is the attractor when the value of time delay that is chosen in 1. As can be seen, the 
attractor is not spread out at all. The attractor is closed up and aligned at 45 degrees. 
With increase in tau value, the attractor starts spreading. It can be observed here: 
 



 
Fig 2.4: Attractor at tau = 2 

 
With only slight increase in the tau value the attractor appers to be spread out. The spread 
can be observed clearly as the value of tau keeps increasing. The plots below show the 
attractor with increasing tau value. 

 
 
 

 
Fig 2.5: Attractor at tau = 10 

 
The attractor completely opens up when the tau value is 15, which is approximately 1/4th 
the time period of Lorenz time series.  

 



 

 
 

Fig 2.6: Attractor at tau = 15 
 
As I increase the value of tau, the attractor becomes more difficult to discern and 
becomes unrecognizable. 

 
Fig 2.7 : Attractor at tau = 30 (more than optimum) 

 



 
Fig 2.8: Attractor at different views 

 
From the attractors observed, the tau value between 10 and 12 appears appropriate. 
 
MATLAB CODE: 
 
function [x,y,z]=lorentz(n,level,s,r,b,x0,y0,z0,h) 
% 
%    dx/dt=s*(y-x) 
%    dy/dt=r*x-y-xz 
%    dz/dt=x*y-b*z; 
% 
% x, y, and z are the simulated time series. 
% n is the number of the simulated points. 
% level is the noise standard deviation divided by the standard 
deviation of the 
%   noise-free time series. We assume Gaussian noise with zero mean. 
% s, r, b, and s are the parameters 
% x0 is the initial value for x. 
% y0 is the initial value for y. 
% z0 is the initial value for z. 
% h is the step size. 
% 
 
if nargin<1 | isempty(n)==1 
    n=10000; 
else 
    % n must be scalar 
    if sum(size(n))>2 
        error('n must be scalar.'); 
    end 
    % n must be positive 
    if n<0 
        error('n must be positive.'); 
    end 



    % n must be an integer 
    if round(n)-n~=0 
        error('n must be an integer.'); 
    end 
end 
 
if nargin<2 | isempty(level)==1 
    level=0; 
else 
    % level must be scalar 
    if sum(size(level))>2 
        error('level must be scalar.'); 
    end 
    % level must be positive 
    if level<0 
        error('level must be positive.'); 
    end 
end 
 
if nargin<3 | isempty(s)==1 
    s=10; 
else 
    % s must be scalar 
    if sum(size(s))>2 
        error('s must be scalar.'); 
    end 
end 
 
if nargin<4 | isempty(r)==1 
    r= 28; 
else 
    % r must be scalar 
    if sum(size(r))>2 
        error('r must be scalar.'); 
    end 
end 
 
if nargin<5 | isempty(b)==1 
    b=2.6; 
else 
    % b must be scalar 
    if sum(size(b))>2 
        error('b must be scalar.'); 
    end 
end 
 
if nargin<6 | isempty(x0)==1 
    x0=0.1; 
else 
    % x0 must be scalar 
    if sum(size(x0))>2 
        error('x0 must be scalar.'); 
    end 
end 
 
if nargin<7 | isempty(y0)==1 
    y0=0.1; 



else 
    % y0 must be scalar 
    if max(size(y0))>2 
        error('y0 must be scalar.'); 
    end 
end 
 
if nargin<8 | isempty(z0)==1 
    z0=0.1; 
else 
    % z0 must be scalar 
    if max(size(z0))>2 
        error('z0 must be scalar.'); 
    end 
end 
 
if nargin<9 | isempty(h)==1 
   h=0.01; 
else 
    % h must be scalar 
    if max(size(h))>2 
        error('h must be scalar.'); 
    end 
    % h must be positive 
    if h<0 
        error('h must be positive.'); 
    end 
end 
 
% Initialize 
y(1,:)=[x0 y0 z0]; 
 
% Simulate 
for i=2:n 
ydot(1)=s*(y(i-1,2)-y(i-1,1)); 
ydot(2)=r*y(i-1,1)-y(i-1,2)-y(i-1,1)*y(i-1,3); 
ydot(3)=y(i-1,1)*y(i-1,2)-b*y(i-1,3); 
y(i,:)=y(i-1,:)+h*ydot; 
end 
 
% Separate the solutions 
x=y(:,1); 
z=y(:,3); 
y=y(:,2); 
 
% Add normal white noise 
x=x+randn(n,1)*level*std(x); 
y=y+randn(n,1)*level*std(y); 
z=z+randn(n,1)*level*std(z); 
subplot(2,2,1); 
plot(x,y); 
subplot(2,2,2); 
plot(y, z); 
subplot(2,2,3); 
plot(z, x); 
 



Problem 3: 
The phase portrait is simplified by plotting poincare map. Points in the poincare map for 
the chaotic system never reappear at the same location. 
 

 
Fig 3.1 : Pincare section for LorenZ Z = 21 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 3. 2: Poincare map for X = 0 



 
MATLAB CODE: 
 
function lormap = poincare(plane_d, trajec, derivative, derivative_wrt) 
% 
% Computes a Poincare map of a trajectory based on an arbitrary plane 
% 
% arguments: 
%  plane_d: the three points that define the plane, i.e.  
%  trajec: trajectory (3 dimensions) 
%  derivative: either 'positive' or 'negative' 
%  derivative_wrt: derivative with respect to what variable (1=x, 2=y, 3=z) 
% 
% return: 
%  map: a 3xm matrix containing intersection points, i.e. the Poincare map 
% 
 
% get the length of the time series 
% 
l = length(xyz(:,1)); 
 
% initialize the poincare map 
% 
map=[]; 
 
% loop over time series 
% 
for i=1:l-1 
    
    % determine the sign of the derivative between these two points 
    % 
    delta = xyz(i,derivative_wrt)-xyz(i+1,derivative_wrt); 
     
    % only continue if sign agrees with 'derivative' argument 
    % 
    if (((delta < 0) & (derivative == 'negative')) |... 
        ((delta > 0) & (derivative == 'positive'))) 
         
        % determine whether the line formed by the two points intersects 
        % the plane defined by the user 
        % 
        line = [xyz(i,:);xyz(i+1,:)]; 
 
        den = [[1 1 1 0]; 
               [plane(1,1),plane(2,1),plane(3,1),line(2,1)-line(1,1)]; 
               [plane(1,2),plane(2,2),plane(3,2),line(2,2)-line(1,2)]; 
               [plane(1,3),plane(2,3),plane(3,3),line(2,3)-line(1,3)]]; 



    
        num = [[1 1 1 1]; 
               [plane(1,1),plane(2,1),plane(3,1),line(1,1)]; 
               [plane(1,2),plane(2,2),plane(3,2),line(1,2)]; 
               [plane(1,3),plane(2,3),plane(3,3),line(1,3)]]; 
 
        t = -det(num)/det(den); 
 
        x = line(1,1) + (line(2,1)-line(1,1))*t; 
        y = line(1,2) + (line(2,2)-line(1,2))*t; 
        z = line(1,3) + (line(2,3)-line(1,3))*t; 
 
        % the point at which the line intersects the user defined plane 
        % 
        point = [x,y,z]; 
         
        % determine whether or not this point of intersection lies between 
        % the current two points 
        % 
        if (((derivative == 'negative') &...  
             (point(derivative_wrt)-xyz(i,derivative_wrt) > 0) &...  
             (point(derivative_wrt)-xyz(i+1,derivative_wrt) < 0)) |... 
            ((derivative == 'positive') &... 
             (point(derivative_wrt)-xyz(i,derivative_wrt) < 0) &...  
             (point(derivative_wrt)-xyz(i+1,derivative_wrt) > 0))) 
          
            % if so, add this point to the Poincare map 
            % 
            map = [map;[x,y,z]]; 
        end 
    end 
end 
 
 
 
 
Problem 4: 
 
Auto Mutual Information: 
 
The mutual information between xi generated from system X and yj generated from 
system Y is the amount of information that xi provides about yj. 
The mutual information is a measure of dynamical coupling or information transmission 
between X and Y. The AMI estimates the degree to which the x(t + tau) can be estimated 
from x(t) or the mean predictability of future points in the same time series from past 
points. AMI is considered the non-linear version of auto correlation function. Mutual 



Information is preferred over correlation as MI is a function of both linear and non-linear 
dependencies between two variables. 
The plot for the auto correlation for Lorentz time series (this is plotted using our IFc’s) is 
shown in fig 4.1 

 
 IFC code for finding correlation for Lorenz: 
 
// isisp include files  
//  
#include <Correlation.h>  
#include <VectorFloat.h>  
#include <Generator.h>  
  
int main() {  
  
// declare the Correlation object  
//  
Correlation acor;  
   
// declare the input and output vectors  
//  
 VectorFloat input, dummy;  
 VectorFloat output;  
 Generator gen1;  
 gen1.set(Generator::LORENTZ);  
 gen1.setSampleFrequency((float)100);  
 gen1.setGenSampleFrequency((float)100);  
 gen1.setSignalDuration(10);  
 gen1.setFrameDuration(10);  
 gen1.compute(input, dummy);  
 input.debug(Linput >>);  
  
// set the algorithm, implementation, normalization, and order  
//  
 acor.setAlgorithm(Correlation::AUTO);  
 acor.setImplementation(Correlation::FACTORED);  
 acor.setNormalization(Correlation::UNIT_ENERGY);  
 acor.setOrder(100);  
          
 // compute the autocorrelation output  
 //  
 acor.compute(output, input);  
 output.debug(Loutput>>);  
 

 



 
Fig 4.1: Auto correlation for Lorentz time series 

 
Observing for the minimum value we find that the minimum value is obtained at tau = 30 
which is not correct. 
 


