

 1

PROBABILISTIC CONTEXT-FREE GRAMMARS IN NATURAL LANGUAGE PROCESSING

S. Sundararajan

Center of Advanced Vehicular System
Mississippi State University
srinivas@cavs.msstate.edu

ABSTRACT

Context-free grammars (CFGs) are a class of formal
grammars that have found numerous applications in
modeling computer languages. A probabilistic form of CFG,
the probabilistic CFG (PCFG), has also been successfully
applied to model natural languages. In this paper, we
discuss the use of PCFGs in natural language modeling. We
develop PCFGs as a natural extension of the CFGs and
explain one probabilistic parser for PCFGs in detail. We
also outline two methods that are used for estimating the
PCFG probabilities. Finally, we state the limitations of
PCFGs and mention how it can be augmented for modeling
natural languages better.

1. INTRODUCTION

The field of natural language processing (NLP) is primarily
concerned with the understanding of the structure (syntax)
and the meaning (semantics and pragmatics) of spoken and
written natural languages [1]. To make a computer
understand a natural language, it is first necessary to define
a language formally, but natural languages are much too
complex for representation by any formal language. By
making simplifying assumptions, we can approximate
natural languages by formal languages. Better the
approximation we need, less relaxed the assumptions we
can make and more complex the formal language model
becomes.

Of the different types of formal grammars, one that
gives the best trade-off between complexity and degree of
approximation is the context-free grammar (CFG). By itself,
the power of CFGs is very limited due to the problem of
ambiguity [1][4][5], i.e., sentences in a natural language are
frequently ambiguous which CFGs cannot handle. To
disambiguate such sentences, CFGs should be extended to
work in a probabilistic setting, leading to probabilistic
context-free grammars (PCFGs) [1][4][5]. There has been a
plethora of research to extend parsing algorithms for CFGs,
like Earley and Cocke-Younger-Kasami (CYK) algorithms
[1, 3], to work with PCFGs. Several procedures to estimate
PCFG probabilities like inside-outside algorithm have been
proposed and successfully applied in practice.

Unfortunately, PCFGs are much too simple to model

the sentences from a natural language. To address this
inadequacy, several extensions [1][4]] to PCFG model have
been invented. While some languages including English can
be modeled by some extended form of PCFGs, there are
others for which PCFGs are totally incapable of modeling
and for which we need to resort to models that are more
stringent in their assumptions they make.

The paper is organized as follows. In section 2, the
concept of formal grammar and language is introduced in a
general setting and the types of languages are listed with a
brief description of each. Section 3 deals with CFGs in
particular. An example CFG is used to demonstrate the
problem of ambiguity. PCFGs are introduced in section 4 as
an aid to disambiguate ambiguous sentences. One algorithm
for parsing, called Cocke-Younger-Kasami algorithm is
explained in detail, in a probabilistic setting. Methods to
learn the production rule probabilities are also outlined. In
section 5, a summary of the drawbacks of PCFGs is given
along with a brief description of extensions to PCFGs to
alleviate some of its problems.

2. FORMAL LANGUAGES AND GRAMMARS

A set of strings of symbols constitutes a language
[1][2][3][4]. To define a language, we can enumerate all the
valid strings in the set, but it is more useful to specify a
language using a generative grammar or a set of production
rules (P). There are two types of symbols that are used for
writing production rules. Those symbols that appear directly
in the language are called the terminal symbols while the
non-terminal symbols appear only as intermediate
constructs in the derivations of terminal symbols. For
example, consider a “noun phrase” (NP) of an English
sentence “that book”. The symbols “that” and “book” occur
in the language and, hence, are terminal symbols. On the
other hand, the symbol NP is a non-terminal symbol
because it refers to a constituency of the two words and by
itself it is not in the language. One special non-terminal
symbol is the start symbol, S, which represents a sentence in
a language.

 2

A commonly used general form of a production rule is
[3]:

lBrlAr → (1)

In this scheme, only one non-terminal, A, on the left side of
the rule, is allowed to be replaced by a string, B, of
terminals and/or non-terminals. The non-terminals l and r
on either side of A, form the left and right contexts
respectively, and are left unmodified when moving from left
to right in the rule.

2.1 Types of Grammars

Based on the forms of the production rules, grammars are
classified into four types [3], forming a hierarchy called
Chomsky hierarchy:
a) Type 0 grammars have rules that are unrestricted forms of
Eq. 1. Hence they are also called as unrestricted grammars.
Languages based on type 0 grammars are called recursive
languages. These grammars are equivalent to a class of
machines called Turing machines.
b) Type 1 grammars are similar to type 0 ones except that
the deletion of a non-terminal is not allowed. Such
grammars are also called context-sensitive grammars. The
equivalent machine structures that can recognize all the
strings and only the strings produced from this grammar are
the linear bounded automata.
c) Type 2 grammars have rules that do not have any context.
This can be expressed in the Chomsky normal form (CNF)
as:

aBCA |→ (2)

Here A, B and C are non-terminals while a is a terminal
symbol. Due to the absence of context, these grammars are
called context-free grammars (CFGs). Strings from a
language generated from any CFG can be recognized by a
machine called push-down automaton.
d) Type 3 grammars have type 2 rules, with the additional
restriction that replacement strings be either a single
terminal symbol or a single terminal symbol followed by a
non-terminal symbol.

xBA → (3)

Here x is a terminal symbol while B is a non-terminal
symbol, which may be an empty string. Regular languages
are equivalent to finite-state machines (FSMs).

3. CONTEXT-FREE GRAMMARS

It is well known that most natural languages including
English may not be context-free [1]. Yet, CFGs are very
commonly applied in natural language modeling because
context-sensitive grammars are very complex to deal with.
Moreover, CFGs can be extended to augment some of the

dependency issues. When applied to linguistics, CFGs are
also called phrase-structure grammars. The reason for this
terminology stems from the fact that the non-terminals of
the CFG capture the grammatical structure in the language
by dividing the sentences into phrases. For example, CFG
applied to sentences in the English language would typically
include non-terminals like noun-phrase (NP) and verb
phrase (VP). The intuition behind this is the idea of
constituency – a group of words (a phrase) behaving as a
single unit (like noun, verb, etc.).

A CFG can be defined formally as:

symbolstart
CNFin rules production ofset a

symols terminalofset a
terminals-non ofset a

),,,(

→
→
→Σ
→

Σ=

S
P

N
SPNCFG

A CFG, like any other grammar, can be used in two
ways – as a generator for sentences in the language or as a
parser for assigning structure to a given sentence. Our
concern in this paper is to use CFG as a parser.

CFGs are conventionally written in Chomsky normal
form (as in Eq. 2) or some variant of Backus-Naur form
(BNF). Any CFG can be converted to CNF form and any
grammar in CNF form is a CFG. When the CFG is specified
in CNF, the derivation of a string of length n is always 2n-1
steps long, every parse tree is a binary tree and the height of
the tree is at most the length of the string [2, 3]. These
properties make CNF the most commonly used form for
CFG representation.

There are several well-known dynamic programming-
based parsers for CFG: the Cocke-Younger-Kasami (CYK)
algorithm, the Earley algorithm and the Graham-Harrison-
Ruzzo algorithm [1][2]. CYK algorithm is presented in
detail in a probabilistic framework in the next section.

An example grammar, CFG1 that would be used for
illustrating some of the ideas behind CFGs and parse trees is
shown in Figure1. This example grammar can easily be
made to represent a grammar from a natural language by
modifying the rules, non-terminals and terminals
appropriately.

Now consider a string xxz. One possible parse tree for
this string is shown in Figure2. A little examination reveals
that there is only one tree that parses that string. Thus the
string xxz is unambiguous as for as this grammar is
concerned. This is not true always. If for instance, we
consider another string xyz, we find that there are two
possible parse trees as shown in Figure 3. The ambiguity of
which tree represents the correct parse cannot be resolved
unless we extend the concept of CFGs in a probabilistic
framework.

 3

 S A B | CA
A E | F
B E F
C D E
D x
E x | y
F z

Figure 1: An example CFG grammar, CFG1

S

C A

E

z x

D

x

F

Figure 2: Parse tree for string xxz with CFG1

S

C A

E

z y

D

x

F

S

A B

E

z y

E

x

F

T1

T2

Figure 3: Parse trees for string xyz with CFG1

The reason behind the success of CFG and its variants
in competing with other models like hidden Markov models
(HMMs) and N-grams, in natural language modeling, is due
to the occurrence of non-local dependencies [5]. While
HMMs and N-grams can do a good job of modeling local
dependencies, they cannot model the dependencies between
parts of a sentence that are separated far apart. CFGs can
complement the other models in this aspect.

4. PROBABILISTIC CONTEXT-FREE
GRAMMARS

The most commonly used type of grammar in natural
language modeling is a probabilistic version of the CFG,
called probabilistic (or stochastic) context-free grammar
(PCFG). A PCFG is a 5-tuple [1][5]:

Pin ruleeach toiesprobabilit assigningfunction
symbolstart

CNFin rules production ofset a
symols terminalofset a

terminals-non ofset a
),,,,(

→
→
→
→Σ
→

Σ=

D
S
P

N
DSPNPCFG

The function D expresses the probability P that a given non-
terminal A derives the sequence β .

The main reason for augmenting a CFG with
probabilities for production rules is that PCFGs can be very
useful in disambiguation [1][5]. Ambiguity arises when
more than one parse-tree spans the input string and this
phenomenon occurs commonly in natural language parsing.
With our example CFG grammar, we found that two trees
can parse the string xyz. In such cases, knowledge of
probabilities concerning a sentence and its parse-trees can
help choose the correct tree that is most probable, i.e., we
choose:

)|(
)(

)(argmax
^

STP
ST

ST
τ∈

= (4)

where)(Sτ is the set of all parse trees for S. Another
advantage of PCFGs is that it can assign a probability to the
string of words in a sentence, which can be very useful in
language modeling.

Let us now try to disambiguate the string xyz with our
example grammar. But to do this, we need to first augment
CFG1 by assigning probabilities for each production rule
and form PCFG1, defined as in Figure 4.

Given the two possible trees for the string xyz, the
probability for each of them can be computed by
multiplying together each of the rules used in the derivation.

 4

 L : length of input string
M : number of non-terminals in grammar G

• Create and clear p(L,L,M) and back_ptr(L,L,M).
• Base case

for i=1:L
for A=1:M

if iwA → is in G

p(i, i, A) =)(iwAP → ;
• Recursive case

for span = 2:L
 for start=1:L-span+1

end=start+end-1;
for k=start:end-1

for A=1:M
for B=1:M
for C=1:M

prob=p(start,k,B)*p(k+1,end,C)*)(CBAP →
if (prob > p(start, end, A))

p(start,end,A)=prob;
back_ptr(start,end,A)={k, B, C};

Figure 5: Probabilistic CYK algorithm (adapted from [1][2])

 S A B 0.7
S C A 0.3
A E 0.6
A F 0.4
B E F 1.0
C D E 1.0
D x 1.0
E x 0.3
E y 0.7
F z 1.0

Figure 4: An example PCFG grammar, PCFG1

0882.00.1*7.0*3.0*0.1*6.0*7.0)(
09.00.1*3.0*0.1*0.1*0.1*3.0)(

2

1

==
==

TP
TP

As 1T has higher probability of occurrence than 2T , a
disambiguation algorithm that selects the parse with the
highest PCFG probability would choose 1T .

4.1. Probabilistic CYK parsing of PCFGs

CYK algorithm [1][2] is a bottom-up dynamic programming
approach. It assumes that the input, output and data
structures are in the following form:

Input:

- PCFG in the Chomsky Normal form, with m non-
terminals having indices 1, 2, …, M. Start symbol S has
index 1. It is assumed that the probabilities for all the
rules,)(CBAP → is known.

- L words 1w … Lw .

Data Structure: An array p(i, j, A) that holds the probability
of the most probable tree that has non-terminal A as the root
node and spans the input words from i to j. An array,
back_ptr, is used for storing the back-pointers to links
between the non-terminals in the parse tree.

Output: The maximum probability of the parse will be in
p(1, L, 1), as this is the maximum probability among all
trees starting at non-terminal with index 1, i.e. S, and
spanning all the words in the sentence. The set of back-
pointers will be in the matrix back_ptr from which the
maximum likelihood tree can be constructed.

The algorithm as shown in Figure 5, proceeds in two
stages. Here, ijw is used to represent the sequence of words

from iw to jw .

• Base case: In this all the rules of the form

iwA → are considered for each word in the
input sentence and for each non-terminal A. The
corresponding probability is stored in p(i, i, A).

• Recursive case: For every subsequence of the input
string, ijw and for every non-terminal, A, A

derives ijw if and only if there is a rule

CBA → and a k, jk <≤1 , such that B

derives ikw and C derives kjw . k acts as the

splitting point that splits the word sequence ijw

into ikw and kjw . For every non-terminal A, the

inner loops consider all possible splitting points
and all possible non-terminals for B and C. When

there is more than one such rule that can parse ijw ,

the maximum probability of all such parses is
stored in p(i, j, A), while back_ptr(i, j, A) stores the
corresponding k, B and C. Once all the loops are
executed, the most probable parse tree can be built
by going through the set of back-pointers starting
from the S node and going down the tree.

Informally stated, what this algorithm does can be

summarized as follows:
Every substring of the input sequence is considered starting
from substring length 1, then going on to substring length 2
and so on. For every substring of length l and for every non-
terminal symbol, it finds all rules that span the substring for

 5

each possible split point in the substring. It remembers only
the rule with the maximum probability among all the rules
and among all the split points. Once the whole length of the
string is processed, all the remembered best paths
(maximum probability) can be traversed through, to
reconstruct the parse tree.

4.2 Learning PCFG probabilities

When laying out the structure of the input for CYK
algorithm, it was assumed that the production rule
probabilities,)(βα →P are known. Now two methods
to learn these probabilities are outlined [1][5].

There is a simple way to find the rule probabilities if we
have a corpus called a treebank. This is a database of parse
trees of sentences from a language. Given a treebank,
estimating the rule probabilities becomes just counting and
normalization.

)Count(/)Count()(αβαβα →=→P (5)

When a treebank is not available, the counts for rule
probabilities can be found by first parsing the corpus. This
is simple for unambiguous sentences. In effect, we create a
treebank by parsing each sentence in a database and storing
the parse trees. Once we have this treebank, we can proceed
in a similar fashion as that of the previous method. If the
sentences are ambiguous and we need to find the PCFG
probabilities, then we get into a deadlock: to find the
probabilities we need to be able to parse ambiguous
sentences but to parse ambiguous sentences we need to
know the probabilities first. We can think of this as similar
to missing data (PCFG probabilities) problem, and use the
expectation-maximization (EM) algorithm to find the parse
trees (E-step) and the PCFG probabilities (M-step)
iteratively. In practice, a dynamic programming instance of
the EM algorithm, called the Inside-Outside algorithm, is
used for learning the probabilities.

5. LIMITATIONS AND EXTENSIONS OF PCFGS

PCFGs were introduced as an extension to CFGs to aid in
sentence disambiguation, but they have a number of
problems. Due to this, in practice, most current probabilistic
parsers use some augmented form of PCFGs. The main
drawback of PCFGs is that they do not model dependencies
[1].

Although it was not stated explicitly, it is clear that the
formulation of PCFGs assumes that the derivation from
each non-terminal node to a set of input words, is not only
independent of the nodes outside the sub-tree but also
independent of the words on both sides of the subsequence
of input string that the sub-tree considers. The first one

refers to structural independence while the other implies
lexical independence. Natural languages are not that simple
and have both kinds of dependencies [1][4].

All extensions of PCFG try to include the dependencies
between words and parse trees some way or the other. One
drawback of extended PCFGs is that they need an extremely
large corpus for estimating that probabilities. To avoid this,
the various extensions consider some simplifying
assumptions of independence. A commonly used solution to
incorporate dependencies into PCFGs is the probabilistic
lexicalized CFGs. This is based on the concept of head-
driven grammars. Every phrase is associated with a “head”
word, which constrains the overall structure of the sentence.
Instead of computing the probability of the parse just by
multiplying each of the PCFG rule probabilities, each rule
probability is now conditioned on its head [1][4].

There are also some grammars, like dependency
grammars [1][4], that make lexical dependency as the major
constraining information, attaching no importance at all to
constituents and phrase-structure rules. Such grammars are
especially useful in modeling relatively free word order
languages, i.e., languages in which words from the same
sentence may be jumbled and still be semantically same.
There is no way by which we can extend PCFGs to model
these languages.

6. SUMMARY

This paper introduced first, the concept of formal languages
and grammars. Some aspects of context-free grammars were
discussed in detail. The problem of ambiguity that arises
when parsing CFGs was explained with an example.
Probabilistic context–free grammars were introduced as a
means to achieve disambiguation. One probabilistic parser,
the probabilistic CYK algorithm, was described in detail
and two methods to learn PCFG probabilities were outlined.
Finally the limitations of PCFGs in natural language
processing were mentioned and some ways to extend
PCFGs to address some of these limitations were presented.

7. REFERENCES

[1] Daniel Jurafsky and James H. Martin, Speech and Language
Processing, Prentice Hall, NJ, 2000.

[2] A. V. Aho and J. D. Ullman, The Theory of Parsing,
Translation, and Compiling, Volume I: Parsing, Prentice Hall, NJ,
1972.

[3] Richard Y. Kain, Automata Theory: Machines and
Languages, McGraw-Hill, USA, 1972.

[4] Chris Manning and Hinrich Schutze, Foundations of
Statistical Natural Language Processing, MIT Press, Cambridge,
1999.

 6

[5] Detlef Prescher, “A tutorial on Expectation-Maximization
algorithm including Maximum-Likelihood Estimation and EM
training of Probabilistic Context-Free Grammars”, 15th European
Summer School in Logic, Language and Information, University of
Amsterdam, Amsterdam, 2003.

