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ABSTRACT 

Context-free grammars (CFGs) are a class of formal 
grammars that have found numerous applications in 
modeling computer languages. A probabilistic form of CFG, 
the probabilistic CFG (PCFG), has also been successfully 
applied to model natural languages. In this paper, we 
discuss the use of PCFGs in natural language modeling. We 
develop PCFGs as a natural extension of the CFGs and 
explain one probabilistic parser for PCFGs in detail. We 
also outline two methods that are used for estimating the 
PCFG probabilities. Finally, we state the limitations of 
PCFGs and mention how it can be augmented for modeling 
natural languages better. 

1. INTRODUCTION 

The field of natural language processing (NLP) is primarily 
concerned with the understanding of the structure (syntax) 
and the meaning (semantics and pragmatics) of spoken and 
written natural languages [1]. To make a computer 
understand a natural language, it is first necessary to define 
a language formally, but natural languages are much too 
complex for representation by any formal language. By 
making simplifying assumptions, we can approximate 
natural languages by formal languages. Better the 
approximation we need, less relaxed the assumptions we 
can make and more complex the formal language model 
becomes. 

Of the different types of formal grammars, one that 
gives the best trade-off between complexity and degree of 
approximation is the context-free grammar (CFG). By itself, 
the power of CFGs is very limited due to the problem of 
ambiguity [1][4][5], i.e., sentences in a natural language are 
frequently ambiguous which CFGs cannot handle. To 
disambiguate such sentences, CFGs should be extended to 
work in a probabilistic setting, leading to probabilistic 
context-free grammars (PCFGs) [1][4][5]. There has been a 
plethora of research to extend parsing algorithms for CFGs, 
like Earley and Cocke-Younger-Kasami (CYK) algorithms 
[1, 3], to work with PCFGs. Several procedures to estimate 
PCFG probabilities like inside-outside algorithm have been 
proposed and successfully applied in practice. 

 
Unfortunately, PCFGs are much too simple to model 

the sentences from a natural language. To address this 
inadequacy, several extensions [1][4]] to PCFG model have 
been invented. While some languages including English can 
be modeled by some extended form of PCFGs, there are 
others for which PCFGs are totally incapable of modeling 
and for which we need to resort to models that are more 
stringent in their assumptions they make. 

The paper is organized as follows. In section 2, the 
concept of formal grammar and language is introduced in a 
general setting and the types of languages are listed with a 
brief description of each. Section 3 deals with CFGs in 
particular. An example CFG is used to demonstrate the 
problem of ambiguity. PCFGs are introduced in section 4 as 
an aid to disambiguate ambiguous sentences. One algorithm 
for parsing, called Cocke-Younger-Kasami algorithm is 
explained in detail, in a probabilistic setting. Methods to 
learn the production rule probabilities are also outlined. In 
section 5, a summary of the drawbacks of PCFGs is given 
along with a brief description of extensions to PCFGs to 
alleviate some of its problems.  

2. FORMAL LANGUAGES AND GRAMMARS 

A set of strings of symbols constitutes a language 
[1][2][3][4]. To define a language, we can enumerate all the 
valid strings in the set, but it is more useful to specify a 
language using a generative grammar or a set of production 
rules (P). There are two types of symbols that are used for 
writing production rules. Those symbols that appear directly 
in the language are called the terminal symbols while the 
non-terminal symbols appear only as intermediate 
constructs in the derivations of terminal symbols. For 
example, consider a “noun phrase” (NP) of an English 
sentence “that book”. The symbols “that” and “book” occur 
in the language and, hence, are terminal symbols. On the 
other hand, the symbol NP is a non-terminal symbol 
because it refers to a constituency of the two words and by 
itself it is not in the language. One special non-terminal 
symbol is the start symbol, S, which represents a sentence in 
a language. 
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A commonly used general form of a production rule is 
[3]: 

lBrlAr →  (1) 

In this scheme, only one non-terminal, A, on the left side of 
the rule, is allowed to be replaced by a string, B, of 
terminals and/or non-terminals. The non-terminals l and r 
on either side of A, form the left and right contexts 
respectively, and are left unmodified when moving from left 
to right in the rule. 
 
2.1 Types of Grammars 
 
Based on the forms of the production rules, grammars are 
classified into four types [3], forming a hierarchy called 
Chomsky hierarchy: 
a) Type 0 grammars have rules that are unrestricted forms of 
Eq. 1. Hence they are also called as unrestricted grammars. 
Languages based on type 0 grammars are called recursive 
languages. These grammars are equivalent to a class of 
machines called Turing machines. 
b) Type 1 grammars are similar to type 0 ones except that 
the deletion of a non-terminal is not allowed. Such 
grammars are also called context-sensitive grammars. The 
equivalent machine structures that can recognize all the 
strings and only the strings produced from this grammar are 
the linear bounded automata. 
c) Type 2 grammars have rules that do not have any context. 
This can be expressed in the Chomsky normal form (CNF) 
as: 

aBCA |→  (2) 

Here A, B and C are non-terminals while a is a terminal 
symbol. Due to the absence of context, these grammars are 
called context-free grammars (CFGs). Strings from a 
language generated from any CFG can be recognized by a 
machine called push-down automaton. 
d) Type 3 grammars have type 2 rules, with the additional 
restriction that replacement strings be either a single 
terminal symbol or a single terminal symbol followed by a 
non-terminal symbol. 

xBA →  (3) 

Here x is a terminal symbol while B is a non-terminal 
symbol, which may be an empty string. Regular languages 
are equivalent to finite-state machines (FSMs). 

3. CONTEXT-FREE GRAMMARS 

It is well known that most natural languages including 
English may not be context-free [1]. Yet, CFGs are very 
commonly applied in natural language modeling because 
context-sensitive grammars are very complex to deal with. 
Moreover, CFGs can be extended to augment some of the 

dependency issues. When applied to linguistics, CFGs are 
also called phrase-structure grammars. The reason for this 
terminology stems from the fact that the non-terminals of 
the CFG capture the grammatical structure in the language 
by dividing the sentences into phrases. For example, CFG 
applied to sentences in the English language would typically 
include non-terminals like noun-phrase (NP) and verb 
phrase (VP). The intuition behind this is the idea of 
constituency – a group of words (a phrase) behaving as a 
single unit (like noun, verb, etc.). 
 
A CFG can be defined formally as: 

symbolstart 
CNFin  rules production ofset  a

symols  terminalofset  a
terminals-non ofset  a

),,,(

→
→
→Σ
→
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A CFG, like any other grammar, can be used in two 
ways – as a generator for sentences in the language or as a 
parser for assigning structure to a given sentence. Our 
concern in this paper is to use CFG as a parser. 

CFGs are conventionally written in Chomsky normal 
form (as in Eq. 2) or some variant of Backus-Naur form 
(BNF). Any CFG can be converted to CNF form and any 
grammar in CNF form is a CFG. When the CFG is specified 
in CNF, the derivation of a string of length n is always 2n-1 
steps long, every parse tree is a binary tree and the height of 
the tree is at most the length of the string [2, 3]. These 
properties make CNF the most commonly used form for 
CFG representation. 

There are several well-known dynamic programming-
based parsers for CFG: the Cocke-Younger-Kasami (CYK) 
algorithm, the Earley algorithm and the Graham-Harrison-
Ruzzo algorithm [1][2]. CYK algorithm is presented in 
detail in a probabilistic framework in the next section. 

An example grammar, CFG1 that would be used for 
illustrating some of the ideas behind CFGs and parse trees is 
shown in Figure1. This example grammar can easily be 
made to represent a grammar from a natural language by 
modifying the rules, non-terminals and terminals 
appropriately. 

Now consider a string xxz. One possible parse tree for 
this string is shown in Figure2. A little examination reveals 
that there is only one tree that parses that string. Thus the 
string xxz is unambiguous as for as this grammar is 
concerned. This is not true always. If for instance, we 
consider another string xyz, we find that there are two 
possible parse trees as shown in Figure 3. The ambiguity of 
which tree represents the correct parse cannot be resolved 
unless we extend the concept of CFGs in a probabilistic 
framework. 
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 S  A B | CA 
A  E | F 
B  E F 
C  D E 
D  x 
E  x | y 
F  z 

 
Figure 1: An example CFG grammar, CFG1
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Figure 2: Parse tree for string xxz with CFG1 
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Figure 3: Parse trees for string xyz with CFG1

 

The reason behind the success of CFG and its variants 
in competing with other models like hidden Markov models 
(HMMs) and N-grams, in natural language modeling, is due 
to the occurrence of non-local dependencies [5]. While 
HMMs and N-grams can do a good job of modeling local 
dependencies, they cannot model the dependencies between 
parts of a sentence that are separated far apart. CFGs can 
complement the other models in this aspect. 

4. PROBABILISTIC CONTEXT-FREE 
GRAMMARS 

The most commonly used type of grammar in natural 
language modeling is a probabilistic version of the CFG, 
called probabilistic (or stochastic) context-free grammar 
(PCFG). A PCFG is a 5-tuple [1][5]: 
 

Pin  ruleeach   toiesprobabilit assigningfunction 
symbolstart 

CNFin  rules production ofset  a
symols  terminalofset  a

terminals-non ofset  a
),,,,(

→
→
→
→Σ
→

Σ=

D
S
P

N
DSPNPCFG

  
The function D expresses the probability P that a given non-
terminal A derives the sequence β . 

The main reason for augmenting a CFG with 
probabilities for production rules is that PCFGs can be very 
useful in disambiguation [1][5]. Ambiguity arises when 
more than one parse-tree spans the input string and this 
phenomenon occurs commonly in natural language parsing. 
With our example CFG grammar, we found that two trees 
can parse the string xyz. In such cases, knowledge of 
probabilities concerning a sentence and its parse-trees can 
help choose the correct tree that is most probable, i.e., we 
choose: 

)|(
)(

)( argmax
^

STP
ST

ST
τ∈

=  (4) 

where )(Sτ  is the set of all parse trees for S. Another 
advantage of PCFGs is that it can assign a probability to the 
string of words in a sentence, which can be very useful in 
language modeling. 

Let us now try to disambiguate the string xyz with our 
example grammar. But to do this, we need to first augment 
CFG1 by assigning probabilities for each production rule 
and form PCFG1, defined as in Figure 4. 

Given the two possible trees for the string xyz, the 
probability for each of them can be computed by 
multiplying together each of the rules used in the derivation. 
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 L : length of input string 
M : number of non-terminals in grammar G 
 

• Create and clear p(L,L,M) and back_ptr(L,L,M). 
• Base case 

for i=1:L 
for A=1:M 

if iwA → is in G 

p(i, i, A) = )( iwAP → ; 
• Recursive case 

for span = 2:L 
  for start=1:L-span+1 

end=start+end-1; 
for k=start:end-1 

for A=1:M 
for B=1:M 
for C=1:M 

prob=p(start,k,B)*p(k+1,end,C)* )( CBAP →  
if (prob > p(start, end, A)) 

p(start,end,A)=prob; 
back_ptr(start,end,A)={k, B, C}; 

Figure 5: Probabilistic CYK algorithm (adapted from [1][2]) 

 S  A B 0.7 
S  C A 0.3 
A  E  0.6 
A  F  0.4 
B  E F 1.0 
C  D E 1.0 
D  x  1.0 
E  x  0.3 
E  y  0.7 
F  z  1.0 

 
Figure 4: An example PCFG grammar, PCFG1 

0882.00.1*7.0*3.0*0.1*6.0*7.0)(
09.00.1*3.0*0.1*0.1*0.1*3.0)(
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As 1T  has higher probability of occurrence than 2T , a 
disambiguation algorithm that selects the parse with the 
highest PCFG probability would choose 1T . 

4.1.  Probabilistic CYK parsing of PCFGs 

CYK algorithm [1][2] is a bottom-up dynamic programming 
approach. It assumes that the input, output and data 
structures are in the following form: 
 
Input: 

- PCFG in the Chomsky Normal form, with m non-
terminals having indices 1, 2, …, M. Start symbol S has 
index 1. It is assumed that the probabilities for all the 
rules, )( CBAP → is known. 

- L words 1w … Lw . 
 

Data Structure: An array p(i, j, A) that holds the probability 
of the most probable tree that has non-terminal A as the root 
node and spans the input words from i to j. An array, 
back_ptr, is used for storing the back-pointers to links 
between the non-terminals in the parse tree. 
 
Output: The maximum probability of the parse will be in 
p(1, L, 1), as this is the maximum probability among all 
trees starting at non-terminal with index 1, i.e. S, and 
spanning all the words in the sentence. The set of back-
pointers will be in the matrix back_ptr from which the 
maximum likelihood tree can be constructed. 

The algorithm as shown in Figure 5, proceeds in two 
stages. Here, ijw  is used to represent the sequence of words 

from iw  to jw . 

 
• Base case: In this all the rules of the form 

iwA → are considered for each word in the 
input sentence and for each non-terminal A. The 
corresponding probability is stored in p(i, i, A). 

• Recursive case: For every subsequence of the input 
string, ijw  and for every non-terminal, A, A 

derives ijw  if and only if there is a rule 

CBA →  and a k, jk <≤1 , such that B 

derives ikw  and C derives kjw . k acts as the 

splitting point that splits the word sequence ijw  

into ikw  and kjw . For every non-terminal A, the 

inner loops consider all possible splitting points 
and all possible non-terminals for B and C. When 

there is more than one such rule that can parse ijw , 

the maximum probability of all such parses is 
stored in p(i, j, A), while back_ptr(i, j, A) stores the 
corresponding k, B and C. Once all the loops are 
executed, the most probable parse tree can be built 
by going through the set of back-pointers starting 
from the S node and going down the tree. 

 
Informally stated, what this algorithm does can be 

summarized as follows:  
Every substring of the input sequence is considered starting 
from substring length 1, then going on to substring length 2 
and so on. For every substring of length l and for every non-
terminal symbol, it finds all rules that span the substring for 
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each possible split point in the substring. It remembers only 
the rule with the maximum probability among all the rules 
and among all the split points. Once the whole length of the 
string is processed, all the remembered best paths 
(maximum probability) can be traversed through, to 
reconstruct the parse tree. 
 

 
4.2 Learning PCFG probabilities 
 
When laying out the structure of the input for CYK 
algorithm, it was assumed that the production rule 
probabilities, )( βα →P are known. Now two methods 
to learn these probabilities are outlined [1][5]. 

There is a simple way to find the rule probabilities if we 
have a corpus called a treebank. This is a database of parse 
trees of sentences from a language. Given a treebank, 
estimating the rule probabilities becomes just counting and 
normalization. 

)Count(/)Count()( αβαβα →=→P  (5) 

When a treebank is not available, the counts for rule 
probabilities can be found by first parsing the corpus. This 
is simple for unambiguous sentences. In effect, we create a 
treebank by parsing each sentence in a database and storing 
the parse trees. Once we have this treebank, we can proceed 
in a similar fashion as that of the previous method. If the 
sentences are ambiguous and we need to find the PCFG 
probabilities, then we get into a deadlock: to find the 
probabilities we need to be able to parse ambiguous 
sentences but to parse ambiguous sentences we need to 
know the probabilities first. We can think of this as similar 
to missing data (PCFG probabilities) problem, and use the 
expectation-maximization (EM) algorithm to find the parse 
trees (E-step) and the PCFG probabilities (M-step) 
iteratively. In practice, a dynamic programming instance of 
the EM algorithm, called the Inside-Outside algorithm, is 
used for learning the probabilities. 
 

5. LIMITATIONS AND EXTENSIONS OF PCFGS 

PCFGs were introduced as an extension to CFGs to aid in 
sentence disambiguation, but they have a number of 
problems. Due to this, in practice, most current probabilistic 
parsers use some augmented form of PCFGs. The main 
drawback of PCFGs is that they do not model dependencies 
[1].  

Although it was not stated explicitly, it is clear that the 
formulation of PCFGs assumes that the derivation from 
each non-terminal node to a set of input words, is not only 
independent of the nodes outside the sub-tree but also 
independent of the words on both sides of the subsequence 
of input string that the sub-tree considers. The first one 

refers to structural independence while the other implies 
lexical independence. Natural languages are not that simple 
and have both kinds of dependencies [1][4]. 

All extensions of PCFG try to include the dependencies 
between words and parse trees some way or the other. One 
drawback of extended PCFGs is that they need an extremely 
large corpus for estimating that probabilities. To avoid this, 
the various extensions consider some simplifying 
assumptions of independence. A commonly used solution to 
incorporate dependencies into PCFGs is the probabilistic 
lexicalized CFGs. This is based on the concept of head-
driven grammars. Every phrase is associated with a “head” 
word, which constrains the overall structure of the sentence. 
Instead of computing the probability of the parse just by 
multiplying each of the PCFG rule probabilities, each rule 
probability is now conditioned on its head [1][4]. 

There are also some grammars, like dependency 
grammars [1][4], that make lexical dependency as the major 
constraining information, attaching no importance at all to 
constituents and phrase-structure rules. Such grammars are 
especially useful in modeling relatively free word order 
languages, i.e., languages in which words from the same 
sentence may be jumbled and still be semantically same. 
There is no way by which we can extend PCFGs to model 
these languages. 

6. SUMMARY 

This paper introduced first, the concept of formal languages 
and grammars. Some aspects of context-free grammars were 
discussed in detail.  The problem of ambiguity that arises 
when parsing CFGs was explained with an example.  
Probabilistic context–free grammars were introduced as a 
means to achieve disambiguation. One probabilistic parser, 
the probabilistic CYK algorithm, was described in detail 
and two methods to learn PCFG probabilities were outlined. 
Finally the limitations of PCFGs in natural language 
processing were mentioned and some ways to extend 
PCFGs to address some of these limitations were presented. 

7. REFERENCES 

[1] Daniel Jurafsky and James H. Martin, Speech and Language 
Processing, Prentice Hall, NJ, 2000. 
 
[2] A. V. Aho and J. D. Ullman, The Theory of Parsing, 
Translation, and Compiling, Volume I: Parsing, Prentice Hall, NJ, 
1972. 

 
[3] Richard Y. Kain, Automata Theory: Machines and 
Languages, McGraw-Hill, USA, 1972. 

 
[4] Chris Manning and Hinrich Schutze, Foundations of 
Statistical Natural Language Processing, MIT Press, Cambridge, 
1999. 
 



                                                                                                                                                                       

                                                                                        6                                                                                                

[5]  Detlef Prescher, “A tutorial on Expectation-Maximization 
algorithm including Maximum-Likelihood Estimation and EM 
training of Probabilistic Context-Free Grammars”, 15th European 
Summer School in Logic, Language and Information, University of 
Amsterdam, Amsterdam, 2003. 
 


