

 1

PROBABILISTIC CONTEXT FREE GRAMMARS AND STATISTICAL PARSING

Saurabh Prasad

Center of Advanced Vehicular Systems
Mississippi State University
prasad @cavs.msstate.edu

ABSTRACT

Analyzing the structure of language is critical to many
applications, e.g., understanding the meaning of a sentence,
grammatical correction of written documents, large
vocabulary continuous speech recognition etc. Parsing
algorithms based on context free grammars provide speech
researchers and linguists with tools to explore the structure
of spoken and written language. Parsing paradigms based
on context free grammars fail to resolve problems like
inefficient reparsing of trees, left-recursive rules and
ambiguity in context. Probabilistic natural language
processing methods aim at resolving issues like ambiguity
by assigning probabilities to various parts of the
representation to determine the likelihood of a word
sequence, interpretation and sentence structure. This paper
reviews the current state of probabilistic context free
grammars and statistical parsing techniques and summarizes
various algorithms employed by a statistical parser.

1. INTRODUCTION

Grammar specifies the permissible structures of a language.
Formal language theory provides linguists and speech
researchers with useful tools to determine and exploit the
generality, selectivity, and understandability of the
grammar. Knowledge of this structure has many useful
applications. As an example, compare the search space of a
large vocabulary that has no defined grammar structure,
with that of a large vocabulary having a well-defined
grammar. This limited search space [1] provided by a well-
structured grammar to a speech decoder illustrates one
among the many practical uses of formal language theory.

Chomsky’s formal language theory [2,3] defines
grammar as a 4-tuple G = (V, T, P, S) where V and T are
(finite) sets of terminals and non-terminals respectively, P is
a set of production rules and S is a non-terminal, called the
start symbol. Context Free Grammars (CFGs) have been
described as being useful structures, powerful enough to
specify most of the structure in spoken language. CFGs
have been widely used in natural language processing due
to their efficient parsing ability and a powerful
representation of the structure of language.

In fact, CFGs serve as a bridge, connecting the class of
stochastic language modeling techniques (e.g., N-Grams)
with tools from formal grammar theory, provided it is
possible to find a probabilistic model in the production rules
of the grammar. Augmenting a regular CFG with these
probabilities allows for it being used to capture the actual
structure of spoken language, minimizing syntactic
ambiguity. These Probabilistic Context Free Grammars
(PCFGs) use this probabilistic model to more effectively
distinguish between ambiguous choices, especially when the
number of production rules is large. Further, in a speech
recognition setup, PCFGs play an important role [4] in
combining low level word models with higher level
language models. They also provide a sound basis for
ranking and pruning of parses.

Section 2 provides a background of parsing using
regular CFGs and motivates the need for statistical parsing.
Section 3 describes probabilistic context free grammars, and
explains the various algorithms employed in a statistical
parsing paradigm. Section 4 concludes the paper with
benefits and weaknesses of statistical parsing techniques,
and provides a parallel between statistical parsers and
Hidden Markov Models.

2. CONTEXT FREE GRAMMARS AND PARSING

The language generated by a grammar G is context free if
the production rule is of the general form
A α→ (1)

where the general form of a rewrite rule from a general
(even context sensitive) grammar is given by

Aφ ϕ φαϕ→ (2)
Here, A is a non-terminal,φ andϕ are left and right

contexts respectively and α is the replacement string. In
either case, a production rule replaces a single non-terminal
on the left side by a string of terminal/non-terminal symbols
on the right side. Equation (1) depicts the independence of
the production rule and the context, while equation (2)
depicts a context sensitive production rule, dependent on the
left and right contexts.

A typical parsing algorithm searches through various
combinations of the grammatical (production) rules to find a

 2

combination that generates a tree describing the structure of
the input sentence accurately. Figure 1 depicts a parse tree
generating the syntactic structure of the sentence ‘I prefer
coffee’. Given a lexicon, it is possible to construct input
strings (of terminals) that have a constituent syntax satisfied
by the grammar. Hence, in a typical application, a parser
would take an input string (with unknown semantic
structure) and search from among various possible trees to
find an optimal parse tree - one that defines the structure of
the input accurately.

Standard goal-directed and data-directed parsers fail to

resolve problems like inefficient reparsing of trees, left-
recursive rules and ambiguity in context. The Earley
algorithm [5] exploits the advantage of dynamic
programming to solve these problems to some extent.
However, huge grammars are typically riddled with
ambiguity - e.g., hundreds of successful parse trees could be
generated for a sentence having 20 words [5]. To make
matters worse, making the grammar comprehensive would
amplify this problem. Regular CFGs are not predictive, and
hence fail to resolve ambiguity from a human perception
point of view. Probabilistic natural language processing
methods estimate grammar parameters by collecting counts
from texts or structured analysis of texts. They aim at
resolving issues like ambiguity by assigning probabilities to
various parts of the representation to determine the
likelihood of a word sequence, interpretation and sentence
structure.

3. PROBABILISTIC CONTEXT FREE

GRAMMARS AND STATISTICAL PARSING

Probabilistic Context Free Grammars are a natural extension
of CFGs. A PCFG augments each production rule in the
CFG with a probability. Hence, a PCFG is a 5-tuple G = (V,
T, P, S, D) where V. T, P and S are defined previously. D is
a mapping of each production rule in the grammar to a
probability. This can be described as

[]
or as,

(|)

A p

P A A

α

α

→

→

 (3)

This probability assignment of various syntactic
constructions is backed by psycholinguistic research that
correlates the likelihoods of various production rules to
comprehension and reading difficulty [7].

One of the advantages of this probability mapping is
the ability of a PCFG to assign a probability to every
possible parse tree T of a sentence S. This helps in effective
disambiguation. Figure 2 illustrates a sample ambiguity
faced by parsing algorithms. The probability of a possible
parse tree T is defined [5] to be the product of probabilities
of every rule r used to expand every node n in the tree:

(,) (())
n T

P T S P r n
∈

= ∏ (4)

Further, since P(S|T) is 1, the probability of a parse tree
is:

(,)()
(|)

(,)

P T SP T
P S T

P T S

=

=

 (5)

Hence, a typical disambiguation algorithm to select the
best tree for a sentence S uses the intuition of picking the
parse tree with the highest probability. To motivate on the
appropriateness of this choice, consider the following
analysis – we wish to find the most likely tree given S:

()

()

()

ˆ() arg max (/)

(,)arg max
()

arg max ()

T S

T S

T S

T S P T S

P T S
P S

P T

τ

τ

τ

∈

∈

∈

=

=

=

 (6)

where ()Sτ represents the possible parse trees given S.

Hence, a statistical parsing paradigm based on PCFGs

employs equation (6) to generate the most likely parse of S.
A statistical parser must address the following issues:

 S

A B

 w1 w2 w3

 C D

 S

A B

 w1 w2 w3

 F E

Figure 2: Illustrating two ambiguous parse trees for a string

‘’w1w2w3’

S

NP VP

Verb NP

 Noun Pro

I prefer coffee

Figure 1: Illustrating the parse tree of the sentence

‘I Prefer Coffee’

 3

• Alignment problem: Finding the optimal parse of the
input sequence based on available parameterized
PCFGs (Solution - CYK algorithm)

• Scoring problem: Finding the probability of a
sequence given a parameterized PCFG (Solution -
Inside algorithm)

• Training problem: Given a set of sequences,
parameterizing the PCFG to best represent the training
data (Solution - EM algorithm)

3.1 The Inside Algorithm

The inside algorithm computes probabilities),,(kAjiα of
a sub-tree rooted at a non-terminal Ak for a subset of the
input (observed) string sequence jwiw ,,L . Hence, this

algorithm provides the likelihood that the substring

jwiw ,,L of the complete string sequence w is generated

by the non-terminal Ak. Conceptually, this algorithm is
similar to the forward algorithm in HMMs, which in the
context of parse trees would generate the probability of
everything above a certain node. Assuming that we are
dealing with grammars in the Chomsky’s normal form (i.e.,
allowing production rules of the form α→A and BCA →

) the probability of Ak producing ji ww ,,L by the

production XYAk → is given by [6]

)(),,1(),,(

),,(

XYkAPYjkX Y p Xpi
kAji

→+∑ ∑ ∑= αα

α
 (7)

In the above equation, we can sum up the individual
probabilities of generating pwiw ,,L (by the Non-Terminal

X) and jwpw ,,L (by the Non-Terminal Y) because these

correspond to disjoint events. When Ak is a leaf, then i=j
and alpha corresponds to)(XYkAP → .

3.2 The Outside Algorithm

The outside algorithm [6] computes the probability
),,(kjiβ of a complete tree rooted at the start symbol S for

the complete string sequence w , excluding all valid parse
sub-trees for the sub-sequence jwiw ,,L rooted at a non-

terminal Ak.
)|,,(),,()1()1(1 GwAwPAji njkik +−=β (8)

This is similar conceptually to the backward probability
for HMMs, which in the context of parse trees would
represent the probability of everything below a certain node.
Figure 4 illustrates the outside algorithm. Using arguments
similar to those for deriving the inside probability, the
outside probability is expressed as

)(),,(),,1(

),,(

XYkAPYqiX Y Xqi
kAji

iq →∑ ∑ ∑ += > βα

β
 (9)

Note that since the production ji wwkA L
*⇒ can

result from two possible intermediate productions
XYkA → and YXkA → , the sum in equation (9) must be

computed over both possibilities. Another interesting point
worth a mention here is that inside probabilities involve
‘bottom-up’ computation, while outside probabilities use
‘top-down’ computation.

3.3 Estimating PCFG parameters from Inside-Outside
Probabilities

We can use the inside-outside probabilities to parameterize
PCFGs using the well known Expectation-Maximization
(EM) algorithm. Before heading towards using the EM
algorithm for learning PCFG parameters, let us consider an
easier approach – using a training corpus containing
previously parsed sentences (referred to as a Treebank [5,

 Ak

X Y

wi wq wq+1 wj wi-1 w1 wj+1 wn

 S
.
.

Figure 4 : Illustrating the use of the outside algorithm for
computing P(w1(i-1) Ak w(j+1)n)

 Ak

X Y

wi wp wp+1 wj

Figure 3: Illustrating the use of the inside algorithm for
computing P(Ak -->‘wi…wj’ | G)

 4

8]. An estimate of the probability of each production rule in
the grammar can be made by the ratio

)(
)(

)(
)(

)(
ACount

ACount
ACount

ACount
AP

α

γ γ
α

α
→

=
→

→
=→

∑
 (10)

When a Treebank is unavailable, we can estimate the
counts in equation (10) by using the inside and outside
probabilities. The EM estimation equations (11) and (12) for
the probabilities of the production rules of a PCFG (in the
Chomsky’s normal form) are used to recursively update
PCFG probabilities [6]. After appropriate initialization, a
recursion through equations (11) and (12) will produce
accurate production rule probabilities. The recursion can be
terminated when the change in estimated probabilities is
small.

∑ ∑
= =

→∑
−

=
∑

+=
∑
−

=
+

=

→
=→

n

i

n

j
AjiAji

XYAP
n

i

n

ij

j

k
zjkAji

ACount
XYACount

XYAnewP

1 1
),,(),,(

)(
1

1 1

1

1
),,1(),,(

)(
)(

)(

βα

αβ (11)

and

∑ ∑
= =

→∑
==

→
=→

n

i

n

j
AjiAji

APAii
n

i

ACount
ACount

AnewP

1 1
),,(),,(

)(),,(
1

)(
)(

)(

βα

αβ

α
α

 (12)

PCFG parameter estimation through the inside-outside

algorithm is a slow process, and like any other gradient-
descent or EM algorithm based learning technique, this
algorithm can produce unwanted results if the recursion hits
a local maxima [6]. Developing a PCFG in the absence of a
Treebank is still an active research area.

3.4 The CYK (alignment) Algorithm

The Cocke-Younger-Kasami (CYK) algorithm finds the
optimal parse given a parameterized PCFG, a set of possible
(ambiguous) parses and the input string. The CYK
algorithm is essentially a bottom-up parser using a dynamic
programming structure similar to the one used in the Earley
algorithm [5].

A dynamic programming variable, γ(i,j,Ak), is defined
as the likelihood of the most likely parse of

jwiw ,,L rooted at the non-terminal Ak. This is computed

using the most likely transition out of Ak. Upon termination,
γ(1,n,S) will provide the most likely parse of w satisfying
the grammar G. When dealing with log-likelihoods, the
algorithm is as follows [6]:
• Initialization:

For i = 1 : Num_terminals
For A = 1 : Num_Non_terminals
 γ(i, i, A) = log{P(iwA →)}

 Γ(i, i, A) = (0, 0, 0)
• Recursion:

For i = 1 : n-1
 For j = 1 : i+1

For A = 1 : num_non_terminals

)]}(log[,,1

{maxmax
1...,

YZAPzjkyki

ji
jikzy

→+) +(+) , ,(

 =)Α , ,(
−=

γγ

γ

)]}(log[,,1

{maxmax
1...,

YZAPzjkyki

ji
jikzy

→+) +(Γ+) , ,(Γ

 =)Α , ,(Γ
−=

• Termination:

log P[w | π̂ , G] = γ(1, n, 1)

After passing the entire word sequence through the
CYK parser, γ will hold the log-likelihoods of all
productions in the ‘most-likely’ parseπ̂ , and Γ will hold the
necessary information required to trace-back and
reconstruct the most probable parse in a bottom-up fashion.

4. CONCLUSION

Section 3 summarizes a statistical parsing paradigm based
on probabilistic context free grammars. As was indicated
before, probability assignments of production rules allow
for choosing the most probable parse among ambiguous
parse trees for a given input string. The CYK algorithm
provides for a convenient bottom-up decoding (alignment)
of the input string sequence to the appropriate parse. This is
equivalent to the use of the Viterbi algorithm in HMMs for
finding the optimal alignment between the input stream and
the possible HMMs.

The probabilities of a PCFG can be learned from either
an annotated corpus (Treebank) or by using the inside-
outside algorithm. The inside-outside algorithm described in
section 3.3 uses the EM algorithm to compute the
probabilities that result in the best parse. This is equivalent
to the forward-backward algorithm used for learning the
parameters {A,B,π} of an HMM [9].

Though PCFGs provide a natural framework for
modeling probabilistic dependencies in a parsing operation,
they do have a few drawbacks. PCFGs assume invariance of

 5

the production rule probabilities with respect to the position
in the tree (HMMs similarly assume time-invariance of the
emission probabilities of symbols from each state). Further,
as indicated by equation (4), PCFGs assume that the
probabilities of production rules are independent of the
context. This problem is resolved by lexicalized PCFGs [7],
which use head driven grammars to condition production
rule probabilities on the corresponding lexical head. As
pointed out previously, computing the PCFG probabilities
efficiently and accurately from an un-annotated corpus is
still an active research problem.

5. REFERENCES

[1] Neeraj Deshmukh, Aravind Ganapathiraju, Joseph Picone,
“Hierarchical Search for Large Vocabulary Conversational Speech
Recognition,” IEEE Signal Processing Magazine, September 1999.

[2] Xuedong Huang, Alex Acero, Hsiao-Wuen Hon, Spoken
Language Processing, Prentice Hall, 2001.

[3] J. Picone, “Fundamentals Of Speech Recognition,”
http://www.cavs.msstate.edu/hse/ies/publications/courses/
ece_8463/
Institute for Signal and Information Processing, Mississippi State
University, Mississippi State, Mississippi, USA.

[4] Andreas Stolcke, “An Efficient Probabilistic Context Free
Parsing Algorithm that Computes Prefix Probabilities,”
International Computer Science Institute, November 1993.

[5] Daniel Jurasfky, James H. Martin, Speech and Language
Processing, Prentice Hall, 2000.

[6] Terry Speed, "From hidden Markov models to stochastic
CFGs",
http://www.stat.berkeley.edu/users/terry//Classes/s246.2002/
Week9/week9b.pdf, Department of Statistics, University of
California, Berkley, California, USA, 2002.

[7] Jeremy Gillmor Kahn, “Moving Beyond the Lexical Layer in
Parsing Conversational Speech,” MA Thesis, Department of
Linguistics, University of Washington, Washington, USA, 2005.

[8] The Penn Treebank Project, "Descriptions and samples of
annotated corpora,”
http://www.cis.upenn.edu/~treebank/
Linguistic Data Consortium, University of Pennsylvania,
Pennsylvania, USA, 1999.

[9] LR Rabiner, "A tutorial on HMM and selected applications in
speech recognition," Proceedings of the IEEE, Vol. 77, No. 2, pp.
257-286, Feb. 1989

