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ABSTRACT 

Analyzing the structure of language is critical to many 
applications, e.g., understanding the meaning of a sentence, 
grammatical correction of written documents, large 
vocabulary continuous speech recognition etc. Parsing 
algorithms based on context free grammars provide speech 
researchers and linguists with tools to explore the structure 
of spoken and written language. Parsing paradigms based 
on context free grammars fail to resolve problems like 
inefficient reparsing of trees, left-recursive rules and 
ambiguity in context. Probabilistic natural language 
processing methods aim at resolving issues like ambiguity 
by assigning probabilities to various parts of the 
representation to determine the likelihood of a word 
sequence, interpretation and sentence structure. This paper 
reviews the current state of probabilistic context free 
grammars and statistical parsing techniques and summarizes 
various algorithms employed by a statistical parser. 

1. INTRODUCTION 

Grammar specifies the permissible structures of a language. 
Formal language theory provides linguists and speech 
researchers with useful tools to determine and exploit the 
generality, selectivity, and understandability of the 
grammar. Knowledge of this structure has many useful 
applications. As an example, compare the search space of a 
large vocabulary that has no defined grammar structure, 
with that of a large vocabulary having a well-defined 
grammar. This limited search space [1] provided by a well-
structured grammar to a speech decoder illustrates one 
among the many practical uses of formal language theory.  

Chomsky’s formal language theory [2,3] defines 
grammar as a 4-tuple G = (V, T, P, S) where V and T are 
(finite) sets of terminals and non-terminals respectively, P is 
a set of production rules and S is a non-terminal, called the 
start symbol. Context Free Grammars (CFGs) have been 
described as being useful structures, powerful enough to 
specify most of the structure in spoken language.  CFGs 
have been widely used in natural language processing due 
to their efficient parsing ability and a powerful 
representation of the structure of language. 

In fact, CFGs serve as a bridge, connecting the class of 
stochastic language modeling techniques (e.g., N-Grams) 
with tools from formal grammar theory, provided it is 
possible to find a probabilistic model in the production rules 
of the grammar. Augmenting a regular CFG with these 
probabilities allows for it being used to capture the actual 
structure of spoken language, minimizing syntactic 
ambiguity. These Probabilistic Context Free Grammars 
(PCFGs) use this probabilistic model to more effectively 
distinguish between ambiguous choices, especially when the 
number of production rules is large. Further, in a speech 
recognition setup, PCFGs play an important role [4] in 
combining low level word models with higher level 
language models. They also provide a sound basis for 
ranking and pruning of parses.  

Section 2 provides a background of parsing using 
regular CFGs and motivates the need for statistical parsing. 
Section 3 describes probabilistic context free grammars, and 
explains the various algorithms employed in a statistical 
parsing paradigm. Section 4 concludes the paper with 
benefits and weaknesses of statistical parsing techniques, 
and provides a parallel between statistical parsers and 
Hidden Markov Models. 
 

2. CONTEXT FREE GRAMMARS AND PARSING  

The language generated by a grammar G is context free if 
the production rule is of the general form 
A α→              (1) 

where the general form of a rewrite rule from a general 
(even context sensitive) grammar is given by 

Aφ ϕ φαϕ→           (2) 
Here, A is a non-terminal,φ andϕ are left and right 

contexts respectively and α is the replacement string. In 
either case, a production rule replaces a single non-terminal 
on the left side by a string of terminal/non-terminal symbols 
on the right side. Equation (1) depicts the independence of 
the production rule and the context, while equation (2) 
depicts a context sensitive production rule, dependent on the 
left and right contexts.  

A typical parsing algorithm searches through various 
combinations of the grammatical (production) rules to find a 
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combination that generates a tree describing the structure of 
the input sentence accurately. Figure 1 depicts a parse tree 
generating the syntactic structure of the sentence ‘I prefer 
coffee’.  Given a lexicon, it is possible to construct input 
strings (of terminals) that have a constituent syntax satisfied 
by the grammar. Hence, in a typical application, a parser 
would take an input string (with unknown semantic 
structure) and search from among various possible trees to 
find an optimal parse tree - one that defines the structure of 
the input accurately.  

 
Standard goal-directed and data-directed parsers fail to 

resolve problems like inefficient reparsing of trees, left-
recursive rules and ambiguity in context. The Earley 
algorithm [5] exploits the advantage of dynamic 
programming to solve these problems to some extent. 
However, huge grammars are typically riddled with 
ambiguity - e.g., hundreds of successful parse trees could be 
generated for a sentence having 20 words [5]. To make 
matters worse, making the grammar comprehensive would 
amplify this problem. Regular CFGs are not predictive, and 
hence fail to resolve ambiguity from a human perception 
point of view. Probabilistic natural language processing 
methods estimate grammar parameters by collecting counts 
from texts or structured analysis of texts. They aim at 
resolving issues like ambiguity by assigning probabilities to 
various parts of the representation to determine the 
likelihood of a word sequence, interpretation and sentence 
structure.  

 
3. PROBABILISTIC CONTEXT FREE 

GRAMMARS AND STATISTICAL PARSING  
 

Probabilistic Context Free Grammars are a natural extension 
of CFGs. A PCFG augments each production rule in the 
CFG with a probability. Hence, a PCFG is a 5-tuple G = (V, 
T, P, S, D) where V. T, P and S are defined previously. D is 
a mapping of each production rule in the grammar to a 
probability. This can be described as 

[ ]
or as,

( | )

A p

P A A

α

α

→

→

          (3) 

This probability assignment of various syntactic 
constructions is backed by psycholinguistic research that 
correlates the likelihoods of various production rules to 
comprehension and reading difficulty [7].  

One of the advantages of this probability mapping is 
the ability of a PCFG to assign a probability to every 
possible parse tree T of a sentence S. This helps in effective 
disambiguation. Figure 2 illustrates a sample ambiguity 
faced by parsing algorithms. The probability of a possible 
parse tree T is defined [5] to be the product of probabilities 
of every rule r used to expand every node n in the tree: 

( , ) ( ( ))
n T

P T S P r n
∈

= ∏           (4) 

Further, since P(S|T) is 1, the probability of a parse tree 
is: 

( , )( )
( | )
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P T SP T
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P T S

=

=

          (5) 

Hence, a typical disambiguation algorithm to select the 
best tree for a sentence S uses the intuition of picking the 
parse tree with the highest probability. To motivate on the 
appropriateness of this choice, consider the following 
analysis – we wish to find the most likely tree given S: 
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         (6) 

where ( )Sτ represents the possible parse trees given S. 
 
 
 
 

  
Hence, a statistical parsing paradigm based on PCFGs 

employs equation (6) to generate the most likely parse of S. 
A statistical parser must address the following issues: 

  S 

A   B 

  w1  w2   w3 

  C   D 

  S 

A   B 

  w1  w2   w3 

  F    E 

 
Figure 2: Illustrating two ambiguous parse trees for a string 

‘’w1w2w3’ 

S 

NP VP 

Verb  NP 

 Noun Pro 

I prefer coffee 

 
Figure 1: Illustrating the parse tree of the sentence 

‘I Prefer Coffee’ 
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• Alignment problem: Finding the optimal parse of the 
input sequence based on available parameterized 
PCFGs (Solution - CYK algorithm) 

• Scoring problem: Finding the probability of a 
sequence given a parameterized PCFG (Solution - 
Inside algorithm) 

• Training problem: Given a set of sequences, 
parameterizing the PCFG to best represent the training 
data (Solution - EM algorithm) 
 

3.1 The Inside Algorithm 

The inside algorithm computes probabilities ),,( kAjiα of 
a sub-tree rooted at a non-terminal Ak for a subset of the 
input (observed) string sequence jwiw ,,L . Hence, this 

algorithm provides the likelihood that the substring 

jwiw ,,L  of the complete string sequence w is generated 

by the non-terminal Ak. Conceptually, this algorithm is 
similar to the forward algorithm in HMMs, which in the 
context of parse trees would generate the probability of 
everything above a certain node. Assuming that we are 
dealing with grammars in the Chomsky’s normal form (i.e., 
allowing production rules of the form α→A and BCA →  

) the probability of Ak producing ji ww ,,L  by the 

production XYAk →  is given by [6] 

)(),,1(),,(

),,(

XYkAPYjkX Y p Xpi
kAji

→+∑ ∑ ∑= αα

α
            (7) 

In the above equation, we can sum up the individual 
probabilities of generating pwiw ,,L (by the Non-Terminal 

X) and jwpw ,,L (by the Non-Terminal Y) because these 

correspond to disjoint events. When Ak is a leaf, then i=j 
and alpha corresponds to )( XYkAP → . 

 

3.2 The Outside Algorithm  

The outside algorithm [6] computes the probability 
),,( kjiβ of a complete tree rooted at the start symbol S for 

the complete string sequence w , excluding all valid parse 
sub-trees for the sub-sequence jwiw ,,L  rooted at a non-

terminal Ak. 
 )|,,(),,( )1()1(1 GwAwPAji njkik +−=β        (8) 

This is similar conceptually to the backward probability 
for HMMs, which in the context of parse trees would 
represent the probability of everything below a certain node. 
Figure 4 illustrates the outside algorithm. Using arguments 
similar to those for deriving the inside probability, the 
outside probability is expressed as 

)(),,(),,1(

),,(

XYkAPYqiX Y Xqi
kAji

iq →∑ ∑ ∑ += > βα

β
          (9) 

 

Note that since the production ji wwkA L
*⇒  can 

result from two possible intermediate productions 
XYkA → and YXkA → , the sum in equation (9) must be 

computed over both possibilities.  Another interesting point 
worth a mention here is that inside probabilities involve 
‘bottom-up’ computation, while outside probabilities use 
‘top-down’ computation.  

 

3.3 Estimating PCFG parameters from Inside-Outside 
Probabilities 

We can use the inside-outside probabilities to parameterize 
PCFGs using the well known Expectation-Maximization 
(EM) algorithm. Before heading towards using the EM 
algorithm for learning PCFG parameters, let us consider an 
easier approach – using a training corpus containing 
previously parsed sentences (referred to as a Treebank [5, 

 

  Ak 

X   Y 

wi wq wq+1 wj wi-1 w1 wj+1 wn 

  S 
. 
. 

Figure 4 : Illustrating the use of the outside algorithm for 
computing P(w1(i-1) Ak w(j+1)n) 

 

  Ak 

X Y 

wi wp wp+1   wj 
 

Figure 3: Illustrating the use of the inside algorithm for 
computing P( Ak -->‘wi…wj’ | G ) 
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8]. An estimate of the probability of each production rule in 
the grammar can be made by the ratio 

)(
)(

)(
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α

γ γ
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→

=
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→
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∑
    (10) 

When a Treebank is unavailable, we can estimate the 
counts in equation (10) by using the inside and outside 
probabilities. The EM estimation equations (11) and (12) for 
the probabilities of the production rules of a PCFG (in the 
Chomsky’s normal form) are used to recursively update 
PCFG probabilities [6]. After appropriate initialization, a 
recursion through equations (11) and (12) will produce 
accurate production rule probabilities. The recursion can be 
terminated when the change in estimated probabilities is 
small. 
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PCFG parameter estimation through the inside-outside 

algorithm is a slow process, and like any other gradient-
descent or EM algorithm based learning technique, this 
algorithm can produce unwanted results if the recursion hits 
a local maxima [6]. Developing a PCFG in the absence of a 
Treebank is still an active research area.  
 

3.4 The CYK (alignment) Algorithm  

The Cocke-Younger-Kasami (CYK) algorithm finds the 
optimal parse given a parameterized PCFG, a set of possible 
(ambiguous) parses and the input string. The CYK 
algorithm is essentially a bottom-up parser using a dynamic 
programming structure similar to the one used in the Earley 
algorithm [5]. 

A dynamic programming variable, γ(i,j,Ak), is defined 
as the likelihood of the most likely parse of 

jwiw ,,L rooted at the non-terminal Ak. This is computed 

using the most likely transition out of Ak. Upon termination, 
γ(1,n,S) will provide the most likely parse of w satisfying 
the grammar G. When dealing with log-likelihoods, the 
algorithm is as follows [6]: 
• Initialization:  

For i = 1 : Num_terminals 
For A = 1 : Num_Non_terminals 
       γ(i, i, A) = log{P( iwA → )} 

         Γ(i, i, A) = (0, 0, 0) 
• Recursion: 

For i = 1 : n-1 
  For j = 1 : i+1 

For A = 1 : num_non_terminals             

             
)]}(log[,,1
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• Termination:  

log P[ w | π̂ , G] = γ(1, n, 1) 
 

After passing the entire word sequence through the 
CYK parser, γ will hold the log-likelihoods of all 
productions in the ‘most-likely’ parseπ̂ , and Γ will hold the 
necessary information required to trace-back and 
reconstruct the most probable parse in a bottom-up fashion.  

 

4. CONCLUSION  

Section 3 summarizes a statistical parsing paradigm based 
on probabilistic context free grammars. As was indicated 
before, probability assignments of production rules allow 
for choosing the most probable parse among ambiguous 
parse trees for a given input string. The CYK algorithm 
provides for a convenient bottom-up decoding (alignment) 
of the input string sequence to the appropriate parse. This is 
equivalent to the use of the Viterbi algorithm in HMMs for 
finding the optimal alignment between the input stream and 
the possible HMMs.  

The probabilities of a PCFG can be learned from either 
an annotated corpus (Treebank) or by using the inside-
outside algorithm. The inside-outside algorithm described in 
section 3.3 uses the EM algorithm to compute the 
probabilities that result in the best parse. This is equivalent 
to the forward-backward algorithm used for learning the 
parameters {A,B,π} of an HMM [9].  

Though PCFGs provide a natural framework for 
modeling probabilistic dependencies in a parsing operation, 
they do have a few drawbacks. PCFGs assume invariance of 
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the production rule probabilities with respect to the position 
in the tree (HMMs similarly assume time-invariance of the 
emission probabilities of symbols from each state). Further, 
as indicated by equation (4), PCFGs assume that the 
probabilities of production rules are independent of the 
context. This problem is resolved by lexicalized PCFGs [7], 
which use head driven grammars to condition production 
rule probabilities on the corresponding lexical head. As 
pointed out previously, computing the PCFG probabilities 
efficiently and accurately from an un-annotated corpus is 
still an active research problem. 
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