
Grammar Transformations
Madhulika Pannuri
Center for Advanced Vehicular Systems (CAVS)

Mississippi State University

pannuri@cavs.msstate.edu
Abstract‍‍‍
Supporting various language model grammar formats is very important for speech recognition. When we need to integrate human language technology with internet-based technologies, this becomes much more important. It is not easy to support various industry standard formats as they have many restrictions. In spite of the fact that the industry standards are much similar to context free grammars, the restrictions make it difficult to support finite state machines. These restrictions pose some serious problems and make it a big challenge to implement these grammars for speech recognition problem. So, the industry standards are first converted to ‘simple to implement grammars’ such as ABNF and then to BNF. At each stage of this conversion, we attempt to remove complexities. This paper compares various grammar specifications such as BNF, ABNF, XML and JSGF and then introduces the algorithms for grammar conversions. The JSGF to ABNF conversion is simple as ABNF is theoretically similar to JSGF. The real task is to transform the syntax. ABNF to BNF conversion is implemented by converting ABNF to RPN (Reverse Polish Notation). BNF is simple with out any meta symbols. So, from the BNF it is easy to get a digraph. Thus the speech recognition problem is solved by conversions between various grammars.
1. Introduction

Accurate speech recognition requires ‘model’ for the spoken language being recognized. The bulk of the language model is the grammar comprising of syntactic rules. There are many grammar specifications that are available. This paper describes the conversion between Augmented BNF (ABNF) to traditional BNF with brief introduction of JSGF to ABNF conversion. ABNF is very much similar to JSGF. The main differences between ABNF and standard BNF involve naming rules, repetition, alternatives and order independence [1]. The conversion between the two is not trivial as there are many minor details that are to be considered. The BNF productions are used to generate digraphs.
2. Grammar specifications
A brief over view of the Chomsky’s hierarchy, context free grammars, BNF, ABNF and IHD is provided in this section.
2.1. Chomsky’s Hierarchy
As not all languages are regular, there is need to categorize the grammars according to their properties. Noam Chomsky divided language into various categories as follows:

[image: image2.png]For the Production & > E1,E2

For Production &> E1 | E2
A->EL
A>E2

For Production &> (E1) *

For the Production &> (E1)?
A E

[image: image1]As this is hierarchy, every language of type 3 is also type

2, 1 and 0. Similarly, type 2 is also of the types 1 and 0.
2.2. Context Free Grammars
‘Context free grammar is a formal notation for expressing such recursive definitions of languages’ [2]. There are four important components in context free grammars. Thus a CFG, G = (V, T, P, S), where V is the set of variables or non terminals, T is the set of terminals, P is the set of productions and S is the start symbol [2, 3].
A CFG may have a production for non – terminal in which the right hand side is an empty string (epsilon transitions). The effect of this production is to remove the non terminal from the string being generated [4]. A context free grammar generates context free language. A context free grammar can be represented by a push down automaton. An automaton serves both as acceptor and generator for the language [3].
2.3. BNF

Backus–Naur notation (commonly known as Backus –Naur form or BNF) was developed by John Backus in 1959 to describe the syntax of the Algol 60 programming language and since became the standard text book grammar specification. It is a convenient notation used to represent context-free grammars.
[image: image3.jpg]Type
Value

Weight

TERMINAL

NONTERMINAL

KLEENE_STAR

[Tt

d

«g»

BNF is used to formally define the grammar of a language. There are no ambiguities in BNF [5]. The language defined by the BNF grammar is just the set of all strings you can produce by following the rules.

A production rule states that the symbol on the left hand side of :: = is replaced by the alternatives on the right hand side. The alternatives are separated by | s. Terminals are simply pieces of final string that are not variables (non – terminals). They are called terminals because there are no productions for them.
2.4. ABNF
Wide spread use in the academic world led to the expansion of simple BNF into many so called Extended BNF forms (EBNF).While many of these EBNF specifications are similar in syntax, we have chosen a particular EBNF for illustrative purposes: Augmented Backus-Naur Form (ABNF). ABNF is a combination of BNF and regular expressions, allowing recursive BNF productions to be expressed iteratively using meta symbols such as Kleene-closures. ABNF balances compactness and simplicity, with reasonable representational power. Rules resolve into a string of terminal values. In ABNF a character is a non negative integer [5].
2.5. JSGF and SRGS
[image: image4.png]Type 3 : Regular Languages

<s>
<B

empty>[a<§>[h
empty> [h

- Left hand side is a non terminal,

- Right hand side either empty, single
terminal or a single ferminal
Sollowed by non ferminal.

Type 2: Context - Free Languages

<s abla<s>h

- Left hand side is non terminal,
- Right hand side is arhitary string
of terminals and non terminals

Type 1: Context - Sensitive
Languages

- Left hand side is not longer than
right hand sde.

Type 0 : Unrestricted

<H><§>|<K><M>
>[<C>

While BNF and ABNF proved to be rigorous theoretical specifications, implementation was difficult due to lack of standard specifications for many concepts essential for speech recognition. Thus JSGF, an industrial specification was created. While JSGF is similar in form and expressive power to ABNF, it is designed for the ease of implementation for the speech recognition. JSGF includes a method for specifying weights in addition to the various programming constructs. Further the structure of JSGF production rules allows for easy mapping to and from finite state machine. The W3C SRGS has two forms: an ABNF form (ABNF-SRGS) and an XML form (XML-SRGS).Although the ABNF-SRGS form is similar in syntax to JSGF and BNAF, the XML-SRGS form is dramatically different. Though human readable, it is difficult to map XML-SRGS into a finite state machine. So, XML-SRGS is converted into ABNF-SRGS which can then be mapped into finite state machine.
2.6. Equivalence

While the in depth examination of the syntaxes of these various grammars is beyond the scope of this paper, I present the equivalent grammars for the regular expression (ab) + c in figure 1 for the purpose of illustration.

2.7. IHD (ISIP Hierarchical Digraph)

The Institute for Signal and Information Processing (ISIP) public domain speech recognition tool kit [6] processes a language model consisting of layered or nested finite state machines, as shown in the figure 2. A structure of this type is called ‘recursive transition network ‘. This native format is called IHD. Our internal language format is defined by finite state machines that accept languages. Thus the goal was to define an efficient method for compiling all the preceding grammar specifications into finite state machines [image: image5.png]Type 3 : Regular Languages

<s>
<B

empty>[a<§>[h
empty> [h

- Left hand side is a non terminal,

- Right hand side either empty, single
terminal or a single ferminal
Sollowed by non ferminal.

Type 2: Context - Free Languages

<s abla<s>h

- Left hand side is non terminal,
- Right hand side is arhitary string
of terminals and non terminals

Type 1: Context - Sensitive
Languages

- Left hand side is not longer than
right hand sde.

Type 0 : Unrestricted

<H><§>|<K><M>
>[<C>

that accept them [7].
3. Software tools and Implementation

3.1. Software tools

The goal of our language model conversion software is to provide transparent conversion from JSGF and XML-SRGS to our internal IHD and vice versa. We break down the conversion process into three main steps. First, the JSGF or XML-SRGS language model is converted to common ABNF format. As ABNF is similar to JSGF [4], this mapping is simple. Next, the ABNF is converted into BNF using formal language techniques. Finally, the finite state machines of the end IHD are produced from BNF productions.

The data structures that allow efficient storage and manipulation of the various grammar specifications are an
integral part of our conversion tool. JSGF and XML-SRGS are stored as arrays of either JSGFToken or XMLToken objects. Both token types have token type and token value. ABNF and BNF production rules are stored in a structure called: ProductionRule. The ProductionRule class is stored as a double linked list of production rule operator and symbol tokens. Each token has a type value, an optional string value and an optional floating point value. The string value is for the specification of names of terminal and non terminal symbol names. The floating point value is for the specification of weights, a feature not inherent in BNF or ABNF syntax. This structure is illustrated in figure 4.
The production rules representing an entire grammar are stored in an array of ProductionRule objects. Further for dealing with the conversions there are many data structures like the stack, linked list etc., are used. This structure is illustrated in figure 3 for the regular expression aB* with a weight of .73 on the Kleene star. It is important to observe that our method for the specification of weights in the ProductionRule class associates weights with transitions, rather than symbols. The production rules representing an entire grammar are stored as an array of ProductionRule objects.
3.2. JSGF/XML-SRGS to ABNF conversion
The JSGF and XML-SRGS are similar to ABNF. So conversion between the two is theoretically simple. The most obvious difficulty is the transformation of syntax. We chose to implement the Moore machine to mealy machine transformation during the conversion to ABNF due to differences in weight specification techniques. While JSGF is an exclusively Moore specification, XML-SRGS additionally allows for the attachment of probabilities to the conceptual equivalent of Kleene closures, repeat attributes added complexity requires that the JSGF and XML-SRGS Mealy to Moore conversions be executed separately.

3.3. ABNF to BNF conversion

ABNF is an extension of the general BNF. As stated previously, ABNF (EBNF) is a combination of BNF and regular expressions. To do so, extended Backus Naur form adds meta symbols to Backus Naur form (BNF).
[image: image6.jpg]O Sentence

IHD OOO Word
00000 State

The meta symbols are { } which means 0 or more times, [] which means an optional structure (0 or 1 time). * for 0 or more times, + for one or more times, | is OR and () is for grouping. Terminals are put in quotes or double quotes. The major difference is that BNF uses recursion to express the relationships, where as ABNF uses iteration [8]. The algorithm for ABNF to BNF conversion uses three main steps. In ABNF unlike the regular grammar expressions the meta symbols for repetition like the * and + precede the expression. So, the first step for the conversion will be to convert the pre fix operators to post fix. The second step will be to convert the modified ABNF expression (with pre fixed meta symbols) to post fix expression and then to break a large expression with many OR’s into smaller manageable expressions. This is done using a stack. While popping from the stack the nesting depth is kept track of and thus any expression after the OR operator, when nest_depth = 0 is taken as another expression. The third step is the major step where we convert the ABNF expression into BNF. The weights that are passed from step above are preserved.
The algorithm reads in one ProductionRule at a time from the set of productions and using stack manipulates the expression so that the output is an expression with post fixed operators. Then each expression with post fixed operators is taken and converted to BNF. There is a general technique for converting a CFG with regular expressions as production bodies to an ordinary CFG. If the body is the concatenation of terminals, the equation is already in legal form, so we do nothing [2]. The figure 4 shows the set of productions that would get rid of the meta symbols in an ABNF expression. Thus, when ever an operand with the meta symbol is encountered, the algorithm converts that into a set of productions. This may appear simple but when the operands are all nested with many meta symbols, the situation gets complex. Though dealing with all the possible cases is not possible, we tried our best to incorporate all the possible variations.
[image: image7.jpg]BNF ABNF
=S <S>::=(ab)+c
<A>:=aB
::=bA
::=bc

JSGF XML-SRGS
<S>=(ab)+c; <item repeat="1-">

a
b

</item>
c

4. Summary and Conclusions
The major priority of our research is to support CFG based language model formats. There are many minor details in the conversion process that make this task challenging. For example for converting the ABNF to BNF, we convert the whole expression into post fix and then use stack to evaluate. This is a problem as some operators are infixed and some are pre fixed in ABNF. Further, the weights should be preserved at all the levels during the conversion process. Thus the choice of data structure plays an important role. These issues are addressed by incorporating additional stages. Adding all these stages in the conversion process ensures that unnecessary information is removed at every stage. Thus much cleaner data in a different grammar format is passed from one stage to another ensuring that the digraph at the last level is correct.
5. References
[1] Hunt A. and McGlashan. S., Eds., W3C Speech Recognition Grammar Specification Version 1.0, March 16, 2004 (see http://www.w3.org/TR/speech-grammar/).
[2] John E. Hopcoft, Rajeev Motwani, Jeffrey D. Ullman “Introduction to automata theory, Languages, and Computation’ version 2.0, 2001.
[3] Daniel Jurafsky, James H. Martin “Speech and Language Processing,” An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, vol. 2.0, 2001.

[4] Tom Lee Blanc, “Generating and recognizing recursive descriptions of patterns with Context- free grammars,” (see http:/www.cs.rocheter.edu/users/faculty/nelson/courses/csc_173/grammars).
[5] M. Pannuri, W.Holland “Grammar Transformations in Speech Recognition,” ISIP, Mississippi State University, Mississippi.
[6] Picone, J., et al., “A Public Domain C++ Speech Recognition Toolkit,” ISIP, Mississippi State University, Mississippi State, MS, USA, March 2003.
[7] “IHD: Our Internal Language format”.(see http://www.cavs.msstate.edu/hse/ies/projects/speech/software/tutorials/monthly/2004/2004_08/index.html)

[8] Knud Van Eeden, Sammy Mitchell, “Extended Backus-Naur form: EBNF: What is EBNF,” October 22, 2003 (see http://www.faqts.com/knowledge_base/view.phtml/aid/2570/fid/1263).
[9] Larry, Nyhoff,”C++ an Introduction to data structures,” vol. 1.0, 1998.

[10] Julie Baca, Wesley Holland, Dhruva Duncan, Joseph Picone, “Language model grammar conversion,” for IEEE ICASSP proceedings 2006.

Table 1: Chomsky Hierarchy

�

Figure 4: The set of Productions for a

removing particular meta symbol

�

Figure � SEQ Figure * ARABIC �3�: ProductionRule for regular expression aB*

�

�

�

Figure � SEQ Figure * ARABIC �2�: IHD structure

�

Figure � SEQ Figure * ARABIC �1�: Equivalent grammars

Language Type�
Grammar�
Automaton�
�
 3�
Regular�
NFSA or DFA�
�
 2�
Context - Free�
Pushdown Automata�
�
 1�
Context Sensitive�
Linear bounded automata�
�
 0�
Un restricted�
Turing Machine�
�

�

Figure 3: FSM for a (b c) +

PAGE
 4

[image: image8.jpg]GarD —») —») —» C)—»Gror)

