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Audience Description

The intended audience for this descriptive report is a collection of computer

engineering, electrical engineering, and computer science students and professiona

an interest in signal processing and computer speech recognition. Each reader will h

strong background in digital signal processing (DSP). While not a requirement, som

knowledge of continuous speech recognition systems would be beneficial.
i
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Introduction

In order for a computer to recognize human speech with current technology, the

speech must first be processed into observation vectors representing events in the

probability space (Picone, 1993). This process, known as signal modeling, is the fun

of the front-end module. Using these acoustic observation vectors and some langua

constraints, a network search algorithm (performed by a decoder) finds the most pro

sequence of events to hypothesize the textual content of the audio signal (Picone, 1

Background

In order for the front-end to model useful observation vectors for speech recognitio

must extract important features from the speech waveform that are relatively insensiti

the talker and channel variability which is unrelated to the message content (Jankow

Hoang-Doan, Lippmann, 1995). The algorithms used by the front-end are composed

almost entirely of standard signal processing techniques, such as digital filter banks, l

predictive coding, and homomorphic analysis. These algorithms are successful bec

they model the speech signal consistently with the human auditory perceptual system

the frequency domain (Mermelstein, Davis, 1980). Specifically, the short time spectr

envelope is needed since speech is a time-variant signal (Rabiner, Juang, 1993).

Furthermore, the addition of physiological knowledge of the vocal articulatory system

be applied to the problem in order to increase recognition performance (Jankowski,

Hoang-Doan, Lippmann, 1995).

Purpose

The Institute for Signal and Information Processing (ISIP) has developed a stand

comprehensive front-end module for a speech recognition system (Duncan, Mantha

Zhao, 1998). Several standard front-ends have been implemented, including mel cep

perceptual linear prediction, filter bank amplitudes, and delta features. The framewor

this system was carefully designed to ensure simple integration with the speech

recognition system (Deshmukh, Ganapathiraju, Hamaker, Picone, 1998). The code it
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written in tutorial fashion, with a direct correlation between algorithmic lines of code a

equations in this technical paper. This report aims to describe the signal processing

algorithms used in the ISIP front-end.

There are advantages and disadvantages to each algorithm described in this pap

example, while linear prediction (LP) coefficients can generally be computed with fe

resources, the compressive nature of the transformation makes the model less robu

noise. Most current state of the art systems use one energy coefficient, twelve Four

transform-derived cepstral coefficients, and delta and delta-delta derivatives of the fi

thirteen coefficients. While the ISIP front-end is capable of producing output models

consistently with other state of the art systems, it can also be used to study the differe

between the different algorithms. A graphical user interface (GUI) is available to facili

such a study further.

Major Topics

This report is broken into two sections. First, an overview of the general system

structure is discussed. This section focuses mainly on the pre- and post-processing

only a cursory scan of the modeling algorithms. This section also describes how the f

end is interfaced to the full speech recognition system. The second part of the repor

provides an in depth look at the algorithms which form the heart of the system.

System Structure

The modular design of the front-end is shown in Figure 1. After pre-processing

(windowing and pre-emphasis are not shown on the diagram), three basic operation

be performed on the speech signal. These general algorithms are filter bank amplitu

(FBA), the Fourier transform (FFT), and linear prediction (LP) (Rabiner, Juang, 1993

From the digital filter bank a power estimation may be directly computed. Perceptua

linear prediction (PLP) is a post-processing step for LP coefficients, acting as a casc

filter. The FT, LP, and PLP algorithms compute the spectrum of the signal, which is 

processed into usable parameters in one of two ways. The first method is filter bank

amplitudes, similar to the general FBA algorithm which operated on the original signa

computes a reduced number of averaged sample values from the spectrum. Computi

cepstrum is an alternate method of processing this spectrum. The details of these

algorithms are further described in the next section.
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Speech
Windowing and I/O

In order to extract short-term frequency information from a time-varying speech

signal, a window function must be applied. The simplest window function is rectangu

in shape; however, oftentimes more complicated shapes produce a more desirable

windowed signal (Rabiner, Schafer, 1978). For speech processing, the Hamming wi

is used almost exclusively (Picone, 1993). The Hamming window is a special form o

general Hanning window, shown in equation (1), with .

(1)

The user can vary the window duration, window type, and frame duration. A

physiological investigation into the human auditory system reveals the quickest

movements of the vocal articulators are on the order of 10 ms. This means if the spe

signal is averaged and evaluated (framed) every 10 ms, almost no information will be

Since the window duration is longer than the frame duration, efficient buffering

algorithms reduce the I/O complexity of the task by only reading in a single frame of d

αw 0.54=

w n( )
αw 1 αw–( ) 2πn Ns 1–( )⁄( )cos–

βw
----------------------------------------------------------------------------------=
Figure1. System block diagram.



4

nd’s

t any

tion

tially

FFT-

fifth

ng

 only

.

erate

,

g. A

he

s a
at each time step. Compared to the decoding phase of speech recognition, a front-e

computational cost is negligible (Picone, 1993). Nevertheless, poorly written code a

stage in the process can bog down a production system run in real-time.

Coefficient Concatenation

All coefficients from the various algorithms are concatenated into a single observa

vector for each frame. To interpret the meaning of a number from its position, sequen

add up the number of each specified coefficient. For example, if energy and twelve 

derived cepstral coefficients are specified, the first number output is the energy, the 

number is the fourth cepstral coefficient, etc. This is an efficient method for passing

parameters to the network search algorithm because it decouples the signal modeli

information into a vector of pure numbers for pattern recognition. The decoder need

be trained on the same coefficients as the test data.

Vector Post-Processing

Higher order time derivatives of the signal measurements can be added to better

characterize temporal variations in the signal. Since the measurements previously

described operate on a single window of data, they are considered zeroth order derivatives.

First and second derivatives are now commonly used in speech recognition systems

Signal Modeling Algorithms

The algorithms described in this section (with the exception of delta features) op

on a single window of speech data. The code itself is written in clear and simple form

referencing blocks of code directly to the equations described in this section where

applicable. New signal modeling algorithms are added at this point in the structure.

Filter Bank Amplitudes

The digital filter bank is one of the most fundamental concepts in speech processin

filter bank can be regarded as a crude model of the initial stages of transduction in t

human auditory system. Each filter in the digital filter bank is usually implemented a

linear phase filter. The filter equations for a linear phase filter implementation can be

summarized as follows:

, (2)si n( ) aFBi
j( )s n j+( )

j NFBi
1– 

 – 
  2⁄=

NFBi
1– 

  2⁄

∑=
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where  denotes the  coefficient for the  critical band filter. The number of fi

banks normally is odd when implementing linear phase filters. The basic merit of the

algorithm is that certain filter outputs can be correlated with certain classes of speec

sounds.

The output of filter bank analysis is a vector of power values for each frame of spe

data. Usually these values are combined with other parameters, such as mean ener

form the final signal measurement vector. Since the analysis is based entirely on lin

processing, the technique is generally robust to ambient noise.

Fourier transform-derived coefficients. Simple Fourier transform-based filter banks

designed for front-ends obtain the desired frequency resolution on a mel-scale (the 

scale is described on page 6). To implement this filter bank, the window of speech d

transformed into the frequency domain by the Fourier transform. The magnitude of t

spectral coefficients are then binned through correlation with triangular filters equall

spaced on the mel-scale (Young, 1995). As defined here, binning means that each sp

coefficient is multiplied by the corresponding filter gain; the bin value is the accumula

of every such product. Thus, each filter bank coefficient represents the average spe

magnitude in the filter channel,

, (3)

where  represents the number of samples used to obtain the averaged value,

represents a weighting function (filter gain), and  is the magnitude of the freque

response computed by the FFT.

Linearprediction-derivedcoefficients. Linear predictive (LP) analysis is an estimate

the autoregressive all-pole model  of the short-term power spectrum of speech

. Alternately, LP analysis is a means for obtaining the smoothed spectral envelo

. The major disadvantage of the LP model in speech analysis is that

approximates  equally well at all frequencies of the analysis band. This proper

in consistent with human hearing, which tends to be nonlinear above 800 Hz.

Consequently, LP analysis does not preserve or discard the spectral details of

according to auditory prominence. The algorithms in this section improve the basic L

model.

aFBi
j( ) j th i th

Savg f( )
1

Ns
------- wFB n( ) S f( )

n 0=

Ns

∑=

Ns wFB n( )

S f( )

A w( )

P w( )

P w( ) A w( )

P w( )

P w( )
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The spectrum is computed through application of the Fourier transform to the lin

prediction coefficients. Since there are fewer points in the LP model, this approach is

efficient. From this LP-derived spectrum, filter banks are applied in exactly the same

as for the FT-derived spectrum. These coefficients are known as LP-derived filter ba

amplitudes.

Mel Frequency Cepstral Coefficients

A mel is a psychoacoustic unit of measure for the perceived pitch of a tone, rather

the physical frequency. The correlation of the mel to the physical frequency is not lin

as the human auditory system is a nonlinear system. A mapping between the mel sca

real frequencies was empirically determined by Stevens and Volkman in 1940 (Pico

1993). The scale is roughly linear below 1000 Hz, then decays logarithmically. It is

described mathematically as:

. (4)

This nonlinear scale is invaluable to speech coding in that it reduces the sample spac

minimal perceptual loss. In practice, filters banks are evenly spaced along the mel s

A homomorphic system is useful for speech processing because it offers a

methodology for separating the excitation signal from the vocal tract shape (Picone,

1993). One space which offers this property is the cepstrum, computed as the inver

discrete Fourier transform (IDFT) of the log energy (Deller, Proakis, Hansen, 1993). T

signal is by definition minimum phase, another useful property. Cepstral coefficients

computed by the following equation:

, (5)

where is the average signal value in the filter channel. In practice, the disc

cosine transform may be used in lieu of the IDFT for computational efficiency.

Perceptual Linear Prediction

Perceptual linear predictive (PLP) analysis is a relatively new method for the ana

of speech signals. It is an improvement over the widely used LP (Linear Predictive)

analysis. In PLP analysis, the all-pole modeling is applied to an auditory spectrum de

by (a) convolving with a critical band masking pattern, followed by (b) resampli

the critical band spectrum at approximately  Bark intervals, (c) pre-emphasis by a

Mel f( ) 2595 1( f 700⁄ )+10log=

c n( ) 1
Ns
------ Savg k( ) e

j
2π

Ns
------kn

log
k 0=

Ns

∑ 0 n Ns 1–≤ ≤,=

Savg k( ) k
th

P w( )

l
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simulated fixed equal loudness curve, and finally (d) compression of the resampled 

pre-emphasized spectrum through the cubic root non-linearity, simulating the intens

loudness power law. The low order all-pole model of such an auditory spectrum has

found to be consistent with several phenomena observed in speech perception

(Hermansky, 1990). The block diagram of PLP Analysis is shown in Figure 2.
then

,

)

Intensity-
Loudness

Conversion

Speech

Solution for
Autoregressive

Coefficients

Critical
Band

Analysis

Equal
Loudness

Pre-Emphasis

Inverse Discrete
Fourier

Transform

All-Pole
Model
After windowing, the real and imaginary components of the short-term speech

spectrum are squared and added to get the power spectrum,

. (6)

The spectrum  is warped along its frequency axis into the Bark frequency  by

(7)

where  is the angular frequency in rad/s. The resulting warped power spectrum is 

convolved with the power spectrum of the simulated critical band masking curve

. (8)

The discrete convolution of  with (the even symmetric and periodic function

 yields samples of the critical band power spectrum,

. (9)

P w( ) Re S w( )[ ]2
Im S w( )[ ]+

2
=

P w( ) Ω

Ω w( ) 6 w 1200π( )⁄( ) w 1200π( )⁄ 2
1+[ ]

0.5
+

 
 
 

ln=

w

ψ Ω( )

ψ Ω( )

0 Ω, 1.3–<

10
2.5 Ω 0.5+( )

1.3– Ω 0.5–≤ ≤,

1 0.5–, Ω 0.5≤ ≤

10
1.0 Ω 0.5–( )–

0.5, Ω 2.5≤ ≤
0 2.5, Ω<










=

ψ Ω( )
P w( )

θ Ωi( ) P
i 1.3–=

2.5

∑ Ω Ωi–( ) ψ Ω( )⋅=
Figure2. Block Diagram for PLP Analysis
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This convolution significantly reduces the spectral resolution of in comparison w

the original . This also allows for down sampling.

The sampled  is pre-emphasized by a simulated equal loudness curve

which is an approximation of the variable sensitivity of human hearing at different

frequencies. This pre-emphasized function is then amplitude compressed using cubi

amplitude compression.

The final operation of PLP analysis is the approximation of  by the spectrum

an all-pole model using the autocorrelation method of all-pole spectral modeling. Th

principle is to apply the inverse DFT to  and find the dual of its autocorrelation

function. These PLP coefficients can be processed through the same methods as s

LP coefficients to extract observation vectors.

Delta Features

The performance of a speech recognition system is enhanced greatly by adding

derivatives to the basic static parameters. The first-order derivatives are referred to as

features; the second-order derivatives are referred to as delta-delta features.

In digital signal processing, there are several ways to approximate the first order

derivative of signal.

(10)

(11)

(12)

Equations (10) and (11) are known as backward and forward differences, respective

Equation (12) is often referred to as regression analysis. Similarly, the second-order

derivatives are approximated by reapplying these equations to the output of the first-

differentiator (Young, 1995).

Since differentiation is inherently a noisy process, computing derivatives of smoot

parameters is desirable. The regression analysis as shown in equation (12) is a pop

way to achieve this result. Since this equation computes differences symmetrically pl

θ Ω( )

P w( )

θ Ω w( )( )

θ Ω( )

θ Ω( )

s∗ n( )
t∂

∂
s n( ) s n( ) s n 1–( )–= =

s∗ n( )
t∂

∂
n( ) s n 1+( ) s n( )–= =

s∗ n( )
t∂

∂
s n( ) ws n w+( )

w N–=

N

∑= =
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around the sample at time , it uses a combination of  previous samples in each

direction to compute the current value. Hence some measure of smoothing is inhere

Regression analysis is used in this front-end to compute delta features. The first

formulation is simply a weighted version of equation (12):

, (13)

where is a delta coefficient at frame , and are static parameters be

and next to the current frame coefficient , and is the delta window size. Since 

regression formula depends on past and future speech parameter values, some

modifications are required for the beginning and end of the speech data. The formu

shown in (14) account for these conditions.

, (14)

Summary

The processing of speech data into observation vectors which represent events 

probability space is performed by the front-end module. Frequency domain signal ana

techniques tend to be more insensitive to talker and channel variability than time do

approaches, thus extracting more useful information for speech-to-text systems. Th

standard algorithms employed are mean energy, digital filter banks, the Fourier trans

linear prediction, the cepstrum, and difference equations. Physiological knowledge o

human auditory and vocal articulatory systems is applied (the mel and Bark scales,

perceptual linear prediction, frame duration, etc.) to the standard signal processing

techniques to better model speech and increase recognition performance.

The front-end module described in this paper interfaces directly with the ISIP spe

recognition system. A public domain implementation of all algorithms examined is

available on the ISIP website (Duncan, Mantha, Wu, Zhao, 1998).

n N

dn

w c
n w+ c

n w––( )
w 1=

dw

∑

2 w
2

w 1=

dw

∑
-----------------------------------------------------------=

dn n c
n w–

c
n w+

cn dw

dn

w c
n w+ c0– 

 

w 1=

dw

∑

2 w
2

w 1=

dw

∑
------------------------------------------------= n dw<, dn

w cdw c
n w–– 

 

w 1=

dw

∑

2 w
2

w 1=

dw

∑
---------------------------------------------------= n dw>,
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