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l. ABSTRACT

This project aims at the implementation of some of the available algorithms for the
reconstruction of irregularly sampled, band-limited signals. These algorithms include the
Adaptive Weights Method (ADPW), the Projection onto Convex Sets (POCS) based method,
and the Wiley/Marvasti (WILMAR) method. This work deals with one dimensional signals.
The algorithms will be tested on synthetic data generated by a Computer. The algorithms will
then be compared based on their speed of convergence and robustness. We also study the
influence of the auxiliary parameters specific to each method.

Il. INTRODUCTION

The sampling problem is one of the standard problems in signal analysis.
Since a signall(x) cannot be recorded in it's entirety, it is sampled at some regular or irregular
time intervals from the continuous signal. The reconstruction of regularly sampled signals
using sinc type interpolation is a well understood problem in Digital Signal Processing.
However, sometimes, there might be a good reason to sample a signal irregularly. In which
case, the reconstruction is a little different. The reconstruction of irregularly sampled data is
usually done by iterative methods. The few direct methods (the direct version of the POCS)
that exist are acceptably fast for small data sets but become computationally very expensive
for large data sets.

The problem of irregular sampling and the subsequent reconstruction of the signal is not a
contrived one. On the contrary, irregular sampling is a very common problem. For example,
when a signal is transmitted there will always be a loss of information when sampling it in the
receiver. This may lead to the loss of certain samples, leading essentially to irregular sampling
(due to data loss). Also, sampled signals stored on some magnetic media may deteriorate over
time and lose some samples. In all these cases, we have either irregularly sampled signals, or
regularly sampled signals that have missed some samples, rendering them essentially
irregularly sampled.

Another field where nonuniform sampling and reconstruction may be of use is in
(adaptive) data compression of signals, using adaptive non uniform resamplers. Consider a
Computer Tomography (CT) or Magnetic Resonance Imaging (MRI) where a significant
portion of the dataset has no information. It is of benefit if the CT or MRI image is resampled
irregularly with low frequency sampling in areas with no or minimal signal change and with
higher frequency sampling in regions of interest. This resampled image will use significantly
less storage space and can be reconstructed completely from the irregular samples.

Our main motivation, however, is to do with the idea of understanding reconstruction of
irregularly sampled signals in 1-Dimension, so that we can later extend it to reconstruction in
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2-Dimensions. This problem of 2-D reconstruction of irregularly sampled signals arises when
we think of signal processing on the solution of a flow field on an irregular grid, which is a
part of the master theses’ work of two of us.

ITERATIVE RECONSTRUCTION ALGORITHMS

Most of the Iterative algorithms can be considered as alternating mapping methods using the
given irregular spaced sampling information about the sifjaald the information about the

spectral support of. Given the samples (t) , each of these methods construct an auxiliary
signal which is then low-pass-filtered to obtain an approximatit) . The difference

between the sampling valugg(t)  and the approximasgft) then goes into the next step

of an iterative procedure, which allows the recovery of the band limited signal completely.
Actually the followingiterative two-step algorithm is typical for most of the methods.

As the first step an auxiliary signal is constructed from the given sampling valdds/ain
approximation operatdk. A is a linear operator, except in the case of Projection onto Convex
Sets POCS) method. The resulting functionf&an be either a step function or a piece-wise
linear interpolation or as well chosen discrete measure. It is important that only the sampling
values of f are required to construdt A

Here, the signalf is projected into the speB:2@ by an orthogonal projgegjon , in order
to kill the high frequencies of A Of course this projection can be described as a low pass fil-
ter, the transfer function being the indicator function of theset , i.e.

~ A O (%), if xO0Q
Fah)x)" = g™ |
U] 0, if xOQ

(1)
We can give alternative description BLf by interpreting the projection dfonto Bzg as con-

volution off with a sinc function
Pof =sing * f

Sinc is the inverse fourier transfor(k _1)(19) of the indicator functigpn , given by

M for sOQ

Ep for sOQ° @

1Q(s) =

After these two steps, the first cycle is finished and we obtain an approximation signal,
f, = Af *sincg

The next iteration starts again with constructing a new auxiliary sierﬁz(;l]l) by the operator
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A. Let us denote the difference— Af*sinc 4 b‘§1) .We have toadd™®  to filtered A
to obtainf® . Hence thén+ 1) thiteration can be described by
£ = £ 4 A - M) sineg 3)

Where A" is the unfiltered auxiliary signal constructed from the “sampling error”

f(x) - f(n)(xi) with £ = 0. A reformulation of (3) provides

(n) () :
f*’—Af *sinc Af*sinc
f(“+1)= DDDDDDDD%J,DDDD% (4)

Then the error estimate is given by

[e = = T+ p—T "~

I

N

vlin= "y <, if Ty <

IV. The Adaptive Weights Method

In this case the approximation operator is of the form
p

Af = Z wif (xi) DBy . (5)
1=1
The weightsw; are established in an adaptive way, depending on the sampling geometry. A
good way to determine the; ‘s is given by the “nearest neighborhood method “:
Xi+1)7%i-1)
W = >

(6)

Here, thew; ‘s are related to th\lel ‘s of the Voronoi method, stoge= ||yl 4 . The essential

effect of the adaptive weights algorithm is, to attach lower importance to those sampling
points which are in the regions of higher sampling density, and vice versa to lend higher
weight to those sampling points, which are more isolated. We get the best results by using
voronoi weights because they directly reflect the sampling geometry. The theory says that
convergence for Adaptive weights algorithm is guaranteed, is the sampling sequences satisfies
the Nyquist criterion, i.e. maximal gaps between the samples are smaller than the Nyquist
rate.
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V.

VI.

The Wiley/Marvasti Method

The Marvasti approach has its origin in Wiley’s Natural sampling method and makes use of
the formula (f = f * sinc) and the interpretation of the shift operafqy as convolution with

Dirac measures. Thus the Marvasti approximation operatas nothing but a discrete mea-
sure of the form

p
Af = 3 f(x) B, (7
1=1
and the first approximation signal can be obtained by convoldihgith the Sinc function.
Hence
P
fy= Z f(x;) T sincg (8)
i=1
Often, the speed of the convergence of the algorithm increases rapidly, if one multiplies (6) by
aglobal relaxation parameter A and we obtain
p
Af=A z f(x;) EBXX (9)
i=1

The speed of convergence depends on the choide of . If the relaxation parameter is too large,
the iteration will diverge, on the other hand a small value\of  brings slow convergence but
stable. A good choice of is
n
A = —_ 10
v b (10

where n is the length of the signal f and p is the number of sampling points. Theywalue is a
safety factor, which helps to prevent divergence. For highly irregular sampled signals one can
enforce convergence by choosing a larger valug/for . But that would have a detrimental effect
on the rate of convergence.

The Marvasti method is a special case of the adaptive weights method, if one determines all
the weightsw; to be equal (fo ).
PROJECTION ONTO CONVEX SETS (POCS) METHOD

This is a recursive method for finding a point in the intersection of p given closed convex sets.
(asetC is said to be convex if for any two pointg x, 1 C , the whole line betwgen  and
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X, belongs taC ).

Consider the Hilbert spadez(D) with noid  of all square integrable functions, and a con-

vex setC [J LZ(D) . For anyf 0 LZ(D) , the projectidaf  6f on@ is by definition the
closest neighbortdé i€ .IC is closed and convéX, exists and is uniquely determined
by f andC from the minimality criterion.
f —Pf| = min| f-— 11
I [ o 4 d (11)

This rule defines the (in general) non-linear operBﬂQLZ(D) - C)

The central idea of the POCS methods is as follows. Nearly most data related to an unknown
signal f O L2(0) can be viewed as a constraint that restficts to lie in a closed conv@x set

in LZ(D) (in our case such a property is given by the sample values). Thys for  known prop-
erties there ar@ closed convex setC;,i = 1,2, ..., p &nd must lie in the intersec-
tion

C,: = NG (12)

The problem is then to find a point i@, giventhe s€ts  and projection operfators  pro-

jecting ontoC; fori = 1, ..., p . The convergence properties of the sequéh%%) gener-
ated by the recursion relation
k+1 k
tD=pp Pt k=01 (13)

are based on fundamental proofs in functional analysis.
An important example foIC is the set of all square integrable functions denoteBiQ%y ,

where the fourier transform of vanishes outs@e  which is a closed linear subspace of

coLAD).

For a given sequence of samplex),i = 1,2, ..., p of an unknown funcﬁtrBQ2 we

form thep sets.
v ={gl g0Bj andg(x)=f(x)}, i=12..p (14)

In words,C, is the set of band limited functions whose values at the sampling points  coin-
cide with the values of the sampled functi@n. can be describétkgst C, . The projec-

tion of an arbitrary functiom ontQ@; is given by

Pih = h—(h(%) = (%)) T, (sing,) . (15)
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This clearly satisfie®,h(x) = f(x;)

1. ITERATIVE METHOD

In the iterative description the information of the sampling values is used step by step as a cor-
rection term, and at each step a certain multiple of the shifted filfesinc, is added to the

approximation.
With P; defined explicitly as above, the iterative reconstruction algorithm becomes

(6D = pp P with 1) = h(x) (16)

f(k)(x) represents th& -th estimate of a band limited function consistent to all sampling val-

ues, f®*1 s the one cycle improvement o , dn() is the initial estimate, which

represents a first approximation of the unknown function . The algorithm converges to a
point in the set

Co: = NG (17)

which is in general the original signial

Vil.  IMPLEMENTAION

The program will be written in C/C++. It will essentially implement the three above-
mentioned algorithms. The following is a list of the input and output parameters for the
methods.

Input Parameters

* Number of sampling points

* Length of the signal

* Maximum number of iterations

* Filter

* Threshold for precision of reconstruction

» Algorithm specific parameters like the Relaxation parameter, Weights, etc.

Output Parameters

* Reconstructed signal
 Error at each level of iteration
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* Total time taken
* Number of iterations for convergence

VIll. PROJECT DEMONSTRATION

The demonstration of the project will involve the reconstruction of some irregularly sampled
data sets. Some of the data sets considered will be regularly sampled data sets from which
some samples have been removed.

As of now the GUI is planned to be written in Tcl/Tk, which will be portable across any X
windows based operating system. However, if the need should arise, the GUI may be rewritten
using other software tools or languages. A preliminary view of the GUI is shown below. The
final GUI may differ considerably from what is shown here but will retain and possibly add to
the functionality of the GUI shown.

= Newowaimatian ou brppuierky Sampledd Sigrai G St &[]

Flles | Dptione | Help | Suit |

The P.O.C.5. Method

Shezw

# Eror-sig
# Ful-sig

Thes 'Wikey Marast Maifiod

Shorw

# Emor=sig
& Ful-sig

The Acapitvs Weighls Method

Messages

The GUI will allow the user to choose from one of the three methods for reconstruction of a
given discrete time signal. It will also be a graphing tool to visualize the signal at any stage of
reconstruction. If the sampled discrete time signal is synthetic, and the actual signal is
available, the GUI can show the error signal, as the difference signal between the output signal
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and the actual signal.

The menu items will allow the selection of input files for the processing. The options menu
item will be used to set the relaxation parameters for the algorithms which will be needing
them. The help menu will most probably will used only to explain the theory and the meaning
of the variables in the options menu.

IX.  EVALUATION

The evaluation of this project will involve comparing the reconstructed signal with the actual
signal. For this, we will first reconstruct a regularly sampled signal. Then, it is compared with
the reconstructed signal from irregularly resampling the original regularly sampled signal.

Since each method employs different types of auxiliary parameters, they cannot be uniformly
compared based upon the effect of these parameters.However, the influence of these parame-
ters will form a part of the overall evaluation.

The algorithms will also be compared with respect to the following criteria when used on the
same data set.

Speed of convergence
1. In terms of iteration
2. In terms of speed:

a. Time to reach a given precision
b. Precision obtained with a given time
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IX. SCHEDULE

A schedule for the major tasks in this project are shown in Figure 1.

1997
Tasks Sept. | Oct. | Nov.

07 14 21 28 05 1219 26/ 02 09 16 23 30
| | | | | | | | | | | | |
Proposal | T T (O EO B B
I I I I I I I I I I I I I
Research i e
. I I I I I I I I I I I I I
Implementation of Algo- g
rithms O T T e
. ) I I I I I I I I I I I I I
Testing and debugging of | | | | T | | | |
algorithms N T O A (R A N IR B
I I I I I I I I I I I I I
GUI development | | | [ T e [
) I I I I I I I I I I I I I
Presentation and Demo Lol T e—t—t
) I I I I I I I I I I I I I
Final Paper T T O i A ms s s S
I I I I I I I I I I I
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