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ABSTRACT 1. INTRODUCTION

The sampling problem is one of the standard
This paper aims to describe the implementation oproblems in signal analysis. Since a sigri@)
some of the available iterative algorithms for the cannot be stored in its entirety, it is sampled in
reconstruction of irregularly sampled, band limited some fashion, giving rise to a sample sequence.
signals. These algorithms include the AdaptiveThe important question now is how bdstan be
Weights Method (ADPW), the Projection ontoreconstructed or at least approximated from its

Convex Sets (POCS) method, and th&ampling valuesf(x,) . Now, if the samples are

Wiley/Marvasti (WILMAR) method. This work equally spaced, the well known sampling theorem

deals with one dimensional signals. The algorithmsoy Shannon provides an explicit reconstruction.
were tested on synthetic data with sizes up to 102I4|owever the problem of reconstruction is more

samples. Then, they were tested on real Slgnalaifﬁcult when the original signaf is irregularly

(audio signals were considered) with sample Size%ampled. Such a scenario arises whenever a signal

up to 131072 samples which corresponds to nearl){s transmitted across a physical medium and there

3 seconds of audio data (upsampled to 48kHz). Th?s a loss of information at the receiving end. Also,
algorithms were compared based on their speed OFnoise in the channel might contribute to the loss of

convergence and accuracy of reconstruction. Thesamples in the signal introducing gaps in the

influence of the auxiliary parameters specific to theSignaL all of which contribute to making this

WILMAR method was also examined. problem of reconstructing signals from its

irregularly sampled values an important one.
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Another field where non-uniform sampling and some cases, outright impossible to implement for
reconstruction is of use is in (adaptive) real life problems, more so when large data sets are
compression of signals, as in the field of Computeinvolved as in audio and video applications.
Tomography where, given the sheer size of theTherefore, in the scope of the present work, we
(3-D) data sets involved, considerable savings irsought to compare and contrast three different
storage space can be obtained by sampling witllgorithms that fall under the former category,
large gaps in regions where the signal changes bgamely, that of iterative methods. These methods,
small amounts and vice versa. namely, the adaptive weights method (ADPW), the
Wiley/Marvasti method (WILMAR) [4] and the
The primary motivation for this work, however, is projection onto convex sets method (POCS) [5],
the problem of feature detection in Computational[6], [7] can be considered as alternating mapping
Fluid Dynamics (CFD) solutions. Due to the methods, using the given information about the
complexity of the flow domain, CFD problems are unknown signal (its spectral support and the
usually solved on unstructured grids. The solutionsampling values) in a repetitive way.
is a pressure function evaluated at the vertices of
the elements of the grid. Feature detection on aR. ITERATIVE ALGORITHMS FOR SIGNAL
irregular collection of points would be simplified RECONSTRUCTION
greatly if the solution could be described by aThe three algorithms considered here share the
collection of uniform grid points amenable to 2-D same basic approach in reconstructing a signal
wavelet transforms [1], [2]. This transformation of from its irregularly sampled values. The following
the solution from an irregular collection of points iterative two-step-algorithm is typical of most of
to a regular collection of points is a problem in these iterative methods.
signal reconstruction from irregular samples. The (@) As a first step, an auxilary signal is

implementation of reconstruction algorithms for constructed from the given sampling valuedof by

irregularly sampled one dimensional signals is an . . , )
9 y P 9 an approximation operatoA A is a linear

effort at analyzing this larger problem.
yzing gerp operator, except in the POCS method). The

_ resulting functionAf can be either a step function,
Many algorithms have been proposed [3], most of

. . . . . a piece-wise linear interpolation or a well chosen
which can be classified as either iterative methods P P

. . . . discrete measure depending on the particular
or as direct methods (in which the problem is P g P

formulated as a linear problem and then describeéllgorlthm being made use of. It s of significance

in terms of a matrix). However, it has been foundthat only the sampling values 6f  are required to

that direct methods are either impractical or, inconstructAf .
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(b) Now, the in general not band-limited f(n+1) _ Tf(n)+ b,

signal Af is projected onto the space of all squarg, o have

integrable  functions  f O L*(IR) by an ™D _¢O = |1+ p_T "D _y|
orthogonal projectiorP, in order to kill the high :||T( £ _ f(n—l))”

frequencies of Af . This projection can also be <y||f(n) f(n_l)”

described as a low-pass filtering phenomenon ,
Then, convergence of the  expression

using the indicator function of the se® as
f"*Y_ £ gepends on the choice of the
transfer function. Alternately, this projection 6f
_ _approximation operato , (as detailed in [6], [7],
onto the space of all square integrable functions

can be described as a convolution bf  with a[8]) and also on the choice of , since as can be

. . seen, smaller its value, faster the convergence,
sinc-type function.

. e though its value increases with increasin
After these two steps, the first iteration is finished g 9

. o . irregularity in the sample sets [6].
and we have obtained an approximation signal, g y P (6]

f, = Af e sincy. The next iteration starts with
3. DETAILS OF ALGORITHMS

the construction of a new auxilary signé)lf(l) CONSIDERED

using the operator A | where The details of the three methods considered in this

rk are n resented.
£ = f —Afe sinc,. So, the values off ) workcare now presented

are known at every point and equal exactly the3_1 The adaptive weights method (ADPW)

difference between the given irregularly sampledIn the ADPW method, the approximation operator,

values and the values of the previous,K . . .
A, is given by the discrete measure,
approximation signal. The low-pass filtered
p

difference signal is then added to the approximated Af = z wif (%) E5xi
signal to obtainf® and so on. Hence, the (n+1)th 1=1
iteration can be described as The weightsw; are established in an adaptive way,
TGRS VIO A(f— f(n)) . sinc or depending on the sampling geometry. A good way
= o :

to determine thew; ‘s is given by the “nearest

neighborhood method” as:

FOFD = M _ A sinc, + Af e sinc, o = X(i+1)7Xi-1)

i
Rewriting it in the form 2
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The essential effect of the adaptive weight§he central idea of the POCS methods is as
algorithm is to attach lower importance to thosdollows. Nearly most data related to an unknown

sampling points which are in the regions of highegignaﬂ f OL2(0) can be viewed as a constraint

sampling density, and vice versa. We get the best _ o ,
Ping y J that restrictsf to lie in a closed convex $8f  in
results by using voronoi weights because they

directly reflect the sampling geometry. The theor;Lz(D) (in our case such a property is given by the

says that convergence for Adaptive weightgample values). Thusf@ known properties there
algorithm is guaranteed, if the sampling sequenc%sre

p closed convex sets
satisfy the Nyquist criterion, i.e. maximal gaps
. C,i=12..,p andf mustlie in the
between the samples are smaller than the Nyquist
gap. intersection
p
. Cot = NG
3.2 The projection onto convex sets method iz1
(POCS) The problem is then to find a point i@,  given the
This is a recursive method for finding a point in the
sets C; and projection operatof3; projecting
intersection of p given closed convex sets. (aGet
is said to be convex if for any two pointsOnto Ci fori=1...,p. The convergence

X, X, U C, the whole line betweenx; and, properties of the sequen(ﬁé(k)) generated by the

belongs toC ). recursion relation

(k+1) _ (k) —
Consider the Hilbert spacbz(D) with norfn]  f = PpPp_g- - - P k=01..
of all square integrable functions, and a convex seve based on fundamental proofs in functional

C 0 L%(0). For any f O L4(00) |, the projection 2SS

) o An important example fo€ s the set of all square
Pf of f onto C is by definition the closest

. . 2

neighbor tof inC . IfC is closed and convefef Integrable functions denoted b, , where the
exists and is uniquely determined by a@d  fronfourier transform off vanishes outsid®  which is
the minimality criterion.

f —Pf|| = min| f—
I [ gDéi d

a closed linear subspace GflJ LZ(D)

This rule defines the (in general) non-IinearFOr a gwven sequence of  samples

9 f(x), i = 1,2 .., p of an unknown function
operatorP|(L"(O0) - C) .
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p
A=A f0x) 0B,

C,={g]| g0B3 and ¢ %) = f(x)} £,

f O BQ2 we form thep sets.

In words, C; is the set of band limited functions )
The speed of convergence depends on the choice of

whose values at the sampling points  coincidey ¢ he relaxation parameter is too large, the

with the values of the sampled functioB;  can beiterations will diverge. On the other hand, a small

described asf(x,)+C, . The projection of an value of A brings slow convergence but ensures

stability. A good choice o\ is
arbitrary functionh ontcC; is given by hy- A9 ' :

o __n_._

_ y Op
Pih = h=(h(%) = 1(x))Ty(sinG). where n is the length of the signal f and p is the
This clearly satisfie®;h(x) = f(x) . number of sampling pointsy is a safety factor,

which helps to prevent divergence. For highly

3.3 The Wiley/Marvasti method (WILMAR) irregular  sampled signals one can enforce
The Marvasti approach has its origin in Wiley’s convergence by choosing a larger value yor . But

Natural sampling method and makes use of thehat would have a detrimental effect on the rate of

formula (f = f * sinc) and the interpretation of the convergence.

shift operator T,; as convolution with Dirac

measures. Thus the Marvasti approximationThe Marvasti method is a special case of the

operatorAf is nothing but a discrete measure of theadaptlve weights method, if one determines all the

form weightsw;j to be equal (b ).

p
Af = % f(x) BBy 4. Implementation
1=1

and the first approximation signal can be obtained _ .
The algorithms were tested on synthetic signals
by convolvingAf with the Sinc function. Hence _
generated on the computer as well as real signals

p

f,= z f(x) T, sincq
i'=1 ' (at 8 kHz) with 16-bit precision from CD using the

Often, the speed of the convergence of theProgram soundeditoron an SGI machine. The

a|gorithm increases rap|d|y if one mu|t|p||es (6) by audio files thus recorded in the AIFF format were

(audio signals). The audio signals were recorded

aglobal relaxation parameter A and we obtain then converted to a raw data stream (upsampled to
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48 kHz) using the programsox on a Sun Sparc worked successfully on the synthetic and real
machine. This data was then given as input to ousignals considered.

program (henceforth referred to as ‘BMV’). To

start with, BMV uses a random number generatoiThe  synthetic  signals considered  were

function to randomly remove samples from thesuperpositions of sine waves of different

regularly sampled signal. BMV gives the user thefrequencies in the range 400 Hz to 1000Hz and
option of having the maximal gap in the irregularly were of lengths 512 and 1024 samples. The real

sampled signal to be either more or less than th%ignals were of Iengthﬁ” argl® samples. The

Nyquist gap, the specification of which hasperformance of each of the three algorithms on the

important ramifications on the reconstruction of .
'mp eat uct two synthetic data sets (of lengths 512 and 1024

the signal [8]. The essential input to the Iorograrnsamples respectively) is shown in Fig. 1 and Fig. 2

(made use of, by all three algorithms) is therespectively. The performance graphs for the

irregularly sampled data and the spectral support OLDPW and the WILMAR methods on the audio

the signal that we wish to reconstruct. The various . -
g signal are shown in Fig 3. The POCS method was

operating parameters like the sampling frequenc¥ound to be impractical vis a vis the time consumed

used to discretize the signal, the error threshold angjOr large data sets like the audio signal considered

the maximum number of iterations allowed are also . L
Hence, it was not evaluated for the audio signal.
required as input. BMV also provides the user the
option of selecting one or more of the three -
P g The results cannot be used to decisively conclude
methods at a time. . .
about the effectiveness of the algorithms for an
arbitrary irregular data set. The POCS method

ADPW and WILMAR ran successfully on both
converged to a lower error as compared to the other

large and small data sets within reasonable tim?wo methods for the smaller synthetic data set

and exhibitedO(N) ~ behavior. However POCS, asqynsjdered, but, exhibited a higher error when the

implemented, exhibited a( NZ) behavior andlarger synthetic data set was used. The reason for

hence, could not successfully operate on the largH"iS: we believe, is the strong local influence of
audio data sets examined. samples with large amplitudes when high

frequency signals are considered. Finally, because
5. CONCLUSIONS of the high computational cost involved in using
Accurate reconstruction of signals is a key issudn® POCS method for reconstructing of large
when transmitting data over noisy channels as welfignais, the ADPW and the WILMAR methods are
as in (adaptive) data compression in fields such agoncluded to be the methods of choice, with the

Computer Tomography. All three algorithms ADPW method performing better than the
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WILMAR method. However, for reconstructing
small signals (with signal lengths of the order of a )
the POCS method

sometimes outperforms the ADPW method in

few thousand samples),

terms of accuracy.

A graphical user interface has been developed that
displays the results of each of the algorithms at
different iterations on the chosen data set. The usd#]
can also, at any point of time, compare the results
of each algorithm with the original signal, in
addition to being able to view the error at each
iteration. We expect this to be a valuable tool for
academic applications as well as a simple tool for[4]
the reconstruction of audio data when parts of the
data is lost due to wear and tear of the media used
for storing the file(s), as might happen in the case
of magnetic media.
[5]
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Figure 1. Performance on a synthetic data set with 512 samples

The number of samples in the figures refer to the number of samples in the reconstructed grid.
The size of the irregular sampling set taken is aratihd % of the grid size.
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Figure 2. Performance on a synthetic signal with 1024 samples
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Figure 3. Performance for an 8KHz audio signal with 131072 samples.
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Figure 4. Performance variation of the WILMAR method with changes in the relaxation parameter
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Figure 5. A typical re-sampled set
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The datasets referred to are as follows.
1. Signal 1: the audio signal with 131072 samples

2. Signal 2: The synthetic signal with 512 samples

3. Signal 3: The synthetic signal with 1024 samples

POCS METHOD
RMS
Number of Time Taken Error
DATA Iterations (in seconds) (as%)
Signall | - | e e
Signal 2 61 1.91 10.5902
Signal 3 200 9.72 2.8416
TABLE 1.
WILMAR METHOD
RMS
Number of Time Taken Error
DATA Iterations (in seconds) (as%)
Signal 1 61 87.18 0.2842
Signal 2 22 0.24 6.9973
Signal 3 11 0.06 9.9482
TABLE 2.
ADPW METHOD
RMS
Number of Time Taken Error
DATA Iterations (in seconds) (as%)
Signal 1 14 20.61 0.2859
Signal 2 5 0.06 7.0728
Signal 3 5 0.05 9.7346

TABLE 3.
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