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RACT

aper aims to describe the implementation of

of the available iterative algorithms for the

struction of irregularly sampled, band limited

s. These algorithms include the Adaptive

ts Method (ADPW), the Projection onto

x Sets (POCS) method, and the

Marvasti (WILMAR) method. This work

with one dimensional signals. The algorithms

ested on synthetic data with sizes up to 1024

es. Then, they were tested on real signals

signals were considered) with sample sizes

131072 samples which corresponds to nearly

nds of audio data (upsampled to 48kHz). The

hms were compared based on their speed of

rgence and accuracy of reconstruction. The

ce of the auxiliary parameters specific to the

AR method was also examined.

1. INTRODUCTION

The sampling problem is one of the standa

problems in signal analysis. Since a signalf(x)

cannot be stored in its entirety, it is sampled i

some fashion, giving rise to a sample sequenc

The important question now is how bestf can be

reconstructed or at least approximated from i

sampling values . Now, if the samples ar

equally spaced, the well known sampling theore

by Shannon provides an explicit reconstructio

However, the problem of reconstruction is mor

difficult when the original signalf is irregularly

sampled. Such a scenario arises whenever a sig

is transmitted across a physical medium and the

is a loss of information at the receiving end. Also

noise in the channel might contribute to the loss

samples in the signal introducing gaps in th

signal, all of which contribute to making this

problem of reconstructing signals from its

irregularly sampled values an important on
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er field where non-uniform sampling and

struction is of use is in (adaptive)

ession of signals, as in the field of Computer

graphy where, given the sheer size of the

data sets involved, considerable savings in

e space can be obtained by sampling with

gaps in regions where the signal changes by

amounts and vice versa.

rimary motivation for this work, however, is

oblem of feature detection in Computational

Dynamics (CFD) solutions. Due to the

exity of the flow domain, CFD problems are

y solved on unstructured grids. The solution

ressure function evaluated at the vertices of

ements of the grid. Feature detection on an

lar collection of points would be simplified

y if the solution could be described by a

tion of uniform grid points amenable to 2-D

et transforms [1], [2]. This transformation of

lution from an irregular collection of points

egular collection of points is a problem in

reconstruction from irregular samples. The

entation of reconstruction algorithms for

larly sampled one dimensional signals is an

at analyzing this larger problem.

algorithms have been proposed [3], most of

can be classified as either iterative methods

direct methods (in which the problem is

lated as a linear problem and then described

s of a matrix). However, it has been found

irect methods are either impractical or, in

some cases, outright impossible to implement f

real life problems, more so when large data sets a

involved as in audio and video applications

Therefore, in the scope of the present work, w

sought to compare and contrast three differe

algorithms that fall under the former category

namely, that of iterative methods. These method

namely, the adaptive weights method (ADPW), th

Wiley/Marvasti method (WILMAR) [4] and the

projection onto convex sets method (POCS) [5

[6], [7] can be considered as alternating mappin

methods, using the given information about th

unknown signal (its spectral support and th

sampling values) in a repetitive way.

2. ITERATIVE ALGORITHMS FOR SIGNAL

RECONSTRUCTION

The three algorithms considered here share t

same basic approach in reconstructing a sign

from its irregularly sampled values. The following

iterative two-step-algorithm is typical of most o

these iterative methods.

(a) As a first step, an auxilary signal is

constructed from the given sampling values of b

an approximation operator ( is a linea

operator, except in the POCS method). Th

resulting function can be either a step functio

a piece-wise linear interpolation or a well chose

discrete measure depending on the particu

algorithm being made use of. It is of significanc

that only the sampling values of are required

construct .
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(b) Now, the in general not band-limited

is projected onto the space of all square

able functions by an

onal projection in order to kill the high

ncies of . This projection can also be

bed as a low-pass filtering phenomenon,

the indicator function of the set as

er function. Alternately, this projection of

he space of all square integrable functions

e described as a convolution of with a

pe function.

hese two steps, the first iteration is finished

e have obtained an approximation signal,

. The next iteration starts with

nstruction of a new auxilary signal

the operator , where

. So, the values of

own at every point and equal exactly the

nce between the given irregularly sampled

and the values of the previous

ximation signal. The low-pass filtered

nce signal is then added to the approximated

to obtain and so on. Hence, the (n+1)th

n can be described as

or,

iting it in the form

,

we have,

                         =

                         <

Then, convergence of the expressio

depends on the choice of the

approximation operator, , (as detailed in [6], [7

[8]) and also on the choice of , since as can b

seen, smaller its value, faster the convergen

though its value increases with increasin

irregularity in the sample sets [6].

3. DETAILS OF ALGORITHMS

CONSIDERED

The details of the three methods considered in th

work are now presented.

3.1 The adaptive weights method (ADPW)

In the ADPW method, the approximation operato

, is given by the discrete measure,

.

The weights are established in an adaptive wa

depending on the sampling geometry. A good wa

to determine the ‘s is given by the “neares

neighborhood method” as:
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essential effect of the adaptive weights

hm is to attach lower importance to those

ing points which are in the regions of higher

ing density, and vice versa. We get the best

by using voronoi weights because they

y reflect the sampling geometry. The theory

that convergence for Adaptive weights

hm is guaranteed, if the sampling sequences

the Nyquist criterion, i.e. maximal gaps

en the samples are smaller than the Nyquist

he projection onto convex sets method

S)

a recursive method for finding a point in the

ction of p given closed convex sets. (a set

id to be convex if for any two points

, the whole line between and

s to ).

der the Hilbert space with norm

quare integrable functions, and a convex set

. For any , the projection

f onto is by definition the closest

or to in . If is closed and convex,

and is uniquely determined by and from

inimality criterion.

rule defines the (in general) non-linear

tor .

The central idea of the POCS methods is

follows. Nearly most data related to an unknow

signal can be viewed as a constrain

that restricts to lie in a closed convex set i

(in our case such a property is given by th

sample values). Thus for known properties the

are closed convex sets

and must lie in the

intersection

The problem is then to find a point in given th

sets and projection operators projectin

onto for . The convergence

properties of the sequence generated by t

recursion relation

are based on fundamental proofs in function

analysis.

An important example for is the set of all squar

integrable functions denoted by , where th

fourier transform of vanishes outside which i

a closed linear subspace of .

For a given sequence of sample

of an unknown function

C
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rds, is the set of band limited functions

values at the sampling points coincide

e values of the sampled function. can be

bed as . The projection of an

ry function  onto  is given by

.

learly satisfies .

e Wiley/Marvasti method (WILMAR)

arvasti approach has its origin in Wiley’s

l sampling method and makes use of the

la (f = f * sinc) and the interpretation of the

operator as convolution with Dirac

res. Thus the Marvasti approximation

torAf is nothing but a discrete measure of the

e first approximation signal can be obtained

volvingAf with the Sinc function. Hence

the speed of the convergence of the

hm increases rapidly if one multiplies (6) by

al relaxation parameter  and we obtain

The speed of convergence depends on the choice

. If the relaxation parameter is too large, th

iterations will diverge. On the other hand, a sma

value of brings slow convergence but ensur

stability. A good choice of  is

 =

where n is the length of the signal f and p is th

number of sampling points. is a safety facto

which helps to prevent divergence. For highl

irregular sampled signals one can enforc

convergence by choosing a larger value for . B

that would have a detrimental effect on the rate

convergence.

The Marvasti method is a special case of th

adaptive weights method, if one determines all th

weights  to be equal (to ).

4. Implementation

The algorithms were tested on synthetic signa

generated on the computer as well as real sign

(audio signals). The audio signals were record

(at 8 kHz) with 16-bit precision from CD using the

program soundeditor on an SGI machine. The

audio files thus recorded in the AIFF format wer

then converted to a raw data stream (upsampled
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z) using the programsox on a Sun Sparc

ne. This data was then given as input to our

m (henceforth referred to as ‘BMV’). To

ith, BMV uses a random number generator

n to randomly remove samples from the

rly sampled signal. BMV gives the user the

of having the maximal gap in the irregularly

ed signal to be either more or less than the

st gap, the specification of which has

tant ramifications on the reconstruction of

gnal [8]. The essential input to the program

use of, by all three algorithms) is the

larly sampled data and the spectral support of

nal that we wish to reconstruct. The various

ting parameters like the sampling frequency

o discretize the signal, the error threshold and

ximum number of iterations allowed are also

ed as input. BMV also provides the user the

of selecting one or more of the three

ds at a time.

and WILMAR ran successfully on both

and small data sets within reasonable time

xhibited behavior. However POCS, as

ented, exhibited an behavior and

, could not successfully operate on the large

data sets examined.

NCLUSIONS

ate reconstruction of signals is a key issue

transmitting data over noisy channels as well

(adaptive) data compression in fields such as

uter Tomography. All three algorithms

worked successfully on the synthetic and re

signals considered.

The synthetic signals considered wer

superpositions of sine waves of differen

frequencies in the range 400 Hz to 1000Hz an

were of lengths 512 and 1024 samples. The re

signals were of lengths and samples. Th

performance of each of the three algorithms on t

two synthetic data sets (of lengths 512 and 10

samples respectively) is shown in Fig. 1 and Fig.

respectively. The performance graphs for th

ADPW and the WILMAR methods on the audio

signal are shown in Fig 3. The POCS method w

found to be impractical vis a vis the time consume

for large data sets like the audio signal considere

Hence, it was not evaluated for the audio signal.

The results cannot be used to decisively conclu

about the effectiveness of the algorithms for a

arbitrary irregular data set. The POCS metho

converged to a lower error as compared to the oth

two methods for the smaller synthetic data s

considered, but, exhibited a higher error when th

larger synthetic data set was used. The reason

this, we believe, is the strong local influence o

samples with large amplitudes when hig

frequency signals are considered. Finally, becau

of the high computational cost involved in usin

the POCS method for reconstructing of larg

signals, the ADPW and the WILMAR methods ar

concluded to be the methods of choice, with th

ADPW method performing better than the
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AR method. However, for reconstructing

signals (with signal lengths of the order of a

thousand samples), the POCS method

imes outperforms the ADPW method in

 of accuracy.

hical user interface has been developed that

ys the results of each of the algorithms at

nt iterations on the chosen data set. The user

lso, at any point of time, compare the results

ch algorithm with the original signal, in

n to being able to view the error at each

n. We expect this to be a valuable tool for

mic applications as well as a simple tool for

construction of audio data when parts of the

s lost due to wear and tear of the media used

ring the file(s), as might happen in the case

gnetic media.
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grid.
Figure 1. Performance on a synthetic data set with 512 samples

number of samples in the figures refer to the number of samples in the reconstructed 
ize of the irregular sampling set taken is around % of the grid size.
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Figure 2. Performance on a synthetic signal with 1024 samples
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Figure 3. Performance for an 8KHz audio signal with 131072 samples.

0.0 20.0 40.0 60.0 80.0 100.0
Time Taken in seconds

0.0

20.0

40.0

60.0

80.0

R
M

S
 E

rr
or

%

ADPW
WILMAR

0.0 20.0 40.0 60.0
Number of Iterations

0.0

20.0

40.0

60.0

80.0

R
M

S
 E

rr
or

 %

ADPW
WILMAR

Number of Samples: 131072



RECONSTRUCTION OF SIGNALS FROM IRREGULARLY SAMPLED DATA PAGE 12 OF 13
Figure 4. Performance variation of the WILMAR method with changes in the relaxation parameter

Figure 5. A typical re-sampled set
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 The datasets referred to are as follows.

1. Signal 1: the audio signal with 131072 samples

2. Signal 2: The synthetic signal with 512 samples

3. Signal 3: The synthetic signal with 1024 samples

DATA

POCS METHOD

Number of
Iterations

Time Taken
(in seconds)

RMS
Error
(as%)

Signal 1 -------- -------- --------

Signal 2 61 1.91 10.5902

Signal 3 200 9.72 2.8416

TABLE 1.

DATA

WILMAR METHOD

Number of
Iterations

Time Taken
(in seconds)

RMS
Error
(as%)

Signal 1 61 87.18 0.2842

Signal 2 22 0.24 6.9973

Signal 3 11 0.06 9.9482

TABLE 2.

DATA

ADPW METHOD

Number of
Iterations

Time Taken
(in seconds)

RMS
Error
(as%)

Signal 1 14 20.61 0.2859

Signal 2 5 0.06 7.0728

Signal 3 5 0.05 9.7346

TABLE 3.
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