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The 1996 Mississippi State University Conference on

Digital Signal Processing

What: EE 4773/6773 Project Presentations
Where: Simrall Auditorium, Mississippi State University
When: December 2, 1996 — 1:00 to 4:00 PM

SUMMARY

The Department of Electrical and Computer Engineering invites you to
attend a mini-conference on Digital Signal Processing, being given by
students in EE 6773 — Introduction to Digital Signal Processing.
Papers will be presented on:

• parallel implementations of fast Fourier transforms;

• real-time audible frequency detection and classification;

• analysis of forestry images for scenic content.

Students will present their semester-long projects at this conference.
Each group will give a 12 minute presentation, followed by 18 minutes
of discussion. After the talks, each group will be available for a
live-input real-time demonstration of their project. These projects
account for 50% of their course grade, so critical evaluations of the
projects are welcome.



Session Overview
1:00 PM — 1:10 PM: J. Picone, Introduction

1:15 PM — 1:45 PM: Michael Balducci, Ajitha Choudary, and
Jon Hamaker , “Comparative Analysis of FFT
Algorithms In Sequential and Parallel Form”

1:45 PM — 2:15 PM: David Gray , Craig McKnight, and Stephen Wood,
“Audible Frequency Detection and Classification”

2:15 PM — 2:45 PM: Yaquin Hong, Nirmala Kalidindi , and Liang Zheng,
“An Algorithm To Determine The Scenic Quality Of
Images“

3:00 PM — 4:00 PM: Demonstrations in 434 Simrall
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Comparative Analysis of FFT Algorithms in
Sequential and Parallel Form

by

Michael Balducci balducci@erc.msstate.edu
Ajitha Choudary ajitha@erc.msstate.edu
Jonathan Hamaker hamaker@isip.msstate.edu

ABSTRACT

☞ Motivation: Need for efficient FFT implementations which fit
the specific constraints of an application.

☞ We merge a large number of FFT algorithms into a
common, object-oriented framework.

☞ We have produced a public-domain collection of sequential
and parallel implementations of a variety of FFT algorithms

☞ Performed statistical analysis of each algorithm based on
speed, mathematical complexity,  and memory usage.

☞ Future Goals:  Develop routines which use our statistical
results to pick the FFT algorithm implementation which best
matches a user’s application and hardware constraints.
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Strategy

FFT Algorithms

Sequential
Implementation

Parallel
Implementation

using MPI

Testing:
Speed, Mathematical Complexity, Code
Size,  Memory Usage, Data Dependence

Statistical Analysis of Test Results

ΣApplication Constraints:
Memory, Speed, Hardware

Optimum Algorithm & Implementation for
Given Constraints

+
+
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Theory

Discrete Fourier Transform (DFT)

☞ Yields frequency spectrum, given N time samples of a signal

The Fast Fourier Transforms (FFTs)

☞ FFTs use symmetry and periodicity of WN to eliminate redundancy

X k( ) x n( ) WN
kn

n 0=

N 1–

∑=

WN e

j2π
N

---------–
=

k = 0, 1, ..., N-1

Q: We have the DFT...why do we need the FFT.
A: Complexity reduction...we reduce the number of operations from

O(N2) to O(N * log2 N).

For a 1024 point transform we reduce our operations from
~ 106  to  ~ 103 - a 98% reduction!!

N = 4
k = 0, 1, 2, 3
n = 0, 1, 2, 3

Only four unique values!

☞ Values of WN can be pre-calculated to attain higher speeds.

☞ What’s the catch?...We trade speed for memory (money)
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Radix Algorithms

☞ If we limit our data size to be of the form RV we can gain efficiency

☞ Most popular form of Radix algorithms are Radix-2 and Radix-4
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Encloses operations which can be performed
as a separate process.

Parallel Strategy for Radix Algorithms
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☞ We break the DFT into a sum of smaller DFTs to reduce complexity.
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Split-Radix Algorithm

☞ DFT can be broken into a single N/2-point and two N/4-point DFTs.

☞ Using the Radix-4 for the N/4 portions reduces the number of
calculations - increasing efficiency.

☞ Split-Radix uses both Radix-2 and Radix-4

Hartley Transform (FHT)

Parallel Strategy for Split-Radix Algorithm and Split-Radix FHT

☞ Similar to Radix...use separate processor for independent butterflies

X k( ) x n( ) 2π
N
------nkcos

2π
N
------knsin+ 

 

n 0=

N 1–

∑=

☞ No complex arithmetic!

☞ Can still use Radix-2, Radix-4, Split-Radix, etc.

☞ Conversion factors necessary to produce Fourier coefficients.

N-Point DFT

N/2-Point
Radix-2

N/4-Point
Radix-4

N/4-Point
Radix-4

CPU

CPU

CPU

Spectrum
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Quick Fourier Transform (QFT)

Decimation-in-Time-Frequency Algorithm (DITF)

Parallel Strategy for Recursive QFT and DITF Algorithms

x(n) X(k)

Conversion

DIF Radix-2

DIT Radix-2

DITF

Indicates calculations which can be
performed by one processor.

Indicates direction of communication
between processors

DIF DIT

N-point DFT

(N/2 + 1) - point DCT

(N/2 - 1) - point DST

Sum of Two
Recursive
DCTs

Sum of Two
Recursive
DSTs
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Parallel Communications

Q: How do we communicate between processors?
A: Message Passing Interface (MPI)

What is MPI?

☞ Portable set of Library functions

☞ Largely hardware independent

☞ Provides distributed computing

☞ Local memory and a shared communication network

Why use MPI?
☞ Portability

☞ Allows collective communications

☞ Ease of use - do not need special knowledge of hardware

NETWORK

Process

Local Memory

Communication
Path
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Evaluation Methodology

Evaluation Criteria

☞ Computation speed

☞ Memory usage

☞ Mathematical operations

☞ Code size

A typical application will need the algorithm with the
fastest possible speed , but which has the lowest
hardware requirements .

We desire to determine the trade-off between speed
and hardware for each algorithm.

Iterative Approach

Statistics are taken as averages over a large number of iterations.

Why use an iterative method?

Eliminate transients caused by processor loading

Convergence of time statistics

Value

Cost
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Results -> Sequential

Order

Computation Time

DFT
DITF

QFT
RADIX-2
FHT

Split-Radix

Radix-4

DFT

DITF
QFT

FHT RADIX-2

Radix-4

Split-Radix

Order

Memory(Bytes)

Mathematical Complexity (1024-points)

Rank Algorithm Total Operations
1 srfft 30764
2 fht 31176
3 qft 53628
4 rad4 56494
5 rad2 67581
6 ditf 112985
7 dft 5243904
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Results -> Parallel
Best Case Results - Data Splitting

Typical Results

Speedup
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The Bottom Line

☞ Increasing the number of processors did not always increase
the speed of the algorithms.

☞ Sequential code usually gave the best case results.

☞ WHY?

● Not enough overlap in communication and computation

● Processors were idle while waiting for communication.

● Formed parallel code from tight sequential code.

☞ How do we overcome these problems?

● Redistribute the loading

● Rewrite routines to take better advantage of the symmetric
algorithms

Idle Time Receive

Send

Compute

Process

0

1
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Future Implications...

☞ What have we accomplished?

● First unified collection of parallel FFTs in the public domain.

● Compiled complexity figures which include the overhead
involved in coding.  (loop counters, intermediate operation,
temporary variables, etc.)

● Have framework for application and constraint driven software.

☞ The Next Steps...

● Rewrite code with a parallel structure as opposed to converting
sequential code

● Explore other parallel processing techniques (shared memory,
threads, etc.)

ΣApplication Constraints:
Memory, Speed, Hardware

Optimum Algorithm & Implementation for
Given Constraints

+
+

FFT Statistics
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Audible Frequency Detection and
Classification

by

David E. Gray gray@ece.msstate.edu
W. Craig McKnight wcm1@ece.msstate.edu
Stehpen R. Wood srw1@ece.msstate.edu

Audible Frequency Detection and Classification Group
Department of Electrical and Computer Engineering

Mississippi State University
216 Simrall, Hardy Rd.

Mississippi State, Mississippi 39762

ABSTRACT

Current music software relies on external input from MIDI
capable devices.  Because traditional musical instruments are
inherently analog, the interaction of musicians and computers is
rare.  The purpose of this project is to develop a software
package for music education utilizing an acoustical instrument
interface so that players of all instruments can begin to utilize
the computing power of today’s world.  Musicians who play
tones into a microphone will see those tones analyzed in the
areas of relative and absolute pitch.
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A Computer’s Musical Experience: MIDI

A Human’s Musical Experience: Analog
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Characteristics of a Musical Signal

Frequency Frequency

Not Music Music

• Signal Energy Is
Concentrated in Regular
Discreet Portions of the
Frequency  Spectrum.

• Pattern of Frequency
Spectrum Varies Among
Different Instruments, But
Signal Energy Is Always
Concentrated at Integer
Multiples of the Lowest (or
Fundamental) Frequency,
f0, of a Note.

• Signal Energy is Evenly
Distributed Across All
Ranges of the Frequency
Spectrum.

Frequency

• Signal Energy Is
Concentrated at Random
Frequencies of the
Spectrum.
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Digital Analysis of Musical Sounds

Fast Fourier Transform

Analog to Digital Conversion

Lagrange Frequency Interpolation

Classify and Sift Frequency Data

Update User Interface
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The Even-Tempered Scale and Its Derivation

The frequency, foctave, of a note, Noctave, played one octave
above a note, Nfundamental, is twice as high as the frequency of
the fundamental, ffundamental.  That is,

(1)

Overtones occur at frequencies that are integer multiples of a
note’s fundamental frequency.  Because of this, the same note
name does not represent a unique frequency for all keys.

Even-Tempered Tuning is a  system where each half-step can
be approximated equally well in any scale without retuning the
instrument.  It is the standard system for tuning musical
instruments in the Western world.

The Even-Tempered Scale is designed so that the frequency of
each semitone is a factor K larger than the previous semitone.
That is,

(2)

There are 12 semi-tones in one octave.  According to equation
(1), the thirteenth note, the octave, must be twice the frequency
of the first note. Dividing the octave into equal semi-tones, it can
be shown that

(3)

f octave 2 f fundamental•=

f 1 K f 0•=

K 212 1.05946≈=
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Restrictions of FFT:  Frequency Resolution

The frequency resolution, ∆f, of an N point FFT with sample
frequency, fs, is defined as

(1)

Recalling the distribution of notes using Even-Tempered Tuning,
we realize that for low scale tones, several semi-tones can occur
in a 10 Hz window.  This is an unacceptable resolution for low
frequency pitches. We can improve the resolution of the FFT by
interpolating between points.

Given m data points, the LaGrange Interpolation Technique
calculates a unique polynomial of order (m-1) that passes
through all m points.

Using a 5-point LaGrange Interpolation, the resolution of the
data in the frequency domain can be roughly doubled.

∆f
f s

N
----- 10000

1024
--------------- 9.765625Hz= = =

LaGrange
Interpolation

Fast Fourier Transform Fast Fourier Transform
+ LaGrange
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Tuning a Note’s Overtones to Increase
Accuracy

Notes in Even-Tempered Tuning are not evenly spaced
throughout the frequency domain.  Each semitone is K times
larger than the previous one.  Therefore the number of Hertz
between semitones increases as the pitch of the note increases.

So the discrepancy between the actual frequency of a peak and
the interpolated frequency of that peak becomes less significant
as the note’s frequency increases.

Because a note produces overtones at integer multiples of the
fundamental frequency, a direct relationship exists between the
frequency of the overtone and the frequency of the fundamental.

Interpolating a note’s overtones using LaGrange, we can be
within a constant error that becomes less significant for a higher
overtone.  We can also correct for the  intrinsic error introduced
by Even-Tempered Tuning.

Exaggerated Distribution of Semitones f
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Project Database

Frequency

Frequency

Frequency

Frequency

• Phase II:   Two notes
played together.  Each
interval within an octave
recorded.  Used for
Interval Detection.

• Phase I:   Single note
Played for entire file.
Each note played for three
cases:  flat, sharp, and in
tune.  Built for Tuning.

• Phase III:   Three notes
played sequentially in
time. Used for Tuning and
detecting note changes.

• Phase IV:   Three notes
played at once in a triad.
Three different qualities of
triads for each instrument.
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Results

• Running our software, musicians can play tones into a
microphone and see those tones analyzed in the areas of
relative and absolute pitch.

• Using our software to evaluate the Project Database:

• The software correctly identifies the fundamental
in all files of Phase I.

• The software tunes the Phase I Database to a
great deal of accuracy compared to a commercial
tuner.

• The interaction of multiple notes makes
classification of fundamentals more difficult than
in Phase I.  However, the software classifies the
fundamentals properly in most cases.

• The fundamental was correctly identified in most
of Phase III.

• Using our software to evaluate real-time data:

• The software performs in real time using Network
Audio as an Analog to Digital Converter.

• The software performs in real time as well as it
does on the Project Database except for data that
is very loud or that contains many notes.
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Summary and Areas For Future Research

• We successfully built a tone analyzer that works in real
time with Network Audio as an Analog to Digital Converter.

• This research could be used as a basis for music notation
or music education software designed to be used with
instruments that are not MIDI capable.

• The software analyzes the musical data in the areas of
relative and absolute pitch.

• Adjustment of the noise floor filter could improve the
performance of the software.

• Adjustment of the “tolerance” for classifying overtones
could improve the performance of the software. This could
eliminate some unwanted high-frequency spikes by
classifying them as overtones instead of as notes.
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960.0 970.0 980.0 990.0
Frequency (Hz)

981 Hz Peak
Increased Accuracy Using LaGrange Interpolation

FFT peak: 976.56 Hz
LaGrange peak: 979.66 Hz
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205.0 210.0 215.0 220.0 225.0 230.0 235.0 240.0
Frequency (Hz)

A3 Played on Bass Guitar
Increased Accuracy Using LaGrange Interpolation

FFT peak: 224.61 Hz
LaGrange peak: 220.65 Hz
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An Algorithm to Determine the Scenic Quality of
Images

by

Nirmala Kalidindi kaldindi@isip.msstate.edu
Yaqin Hong yh4@ra.msstate.edu

     Zheng Liang                                           zl3@ra.msstate.edu

Image Processing Group
Mississippi State University

ABSTRACT

The United States Forest Service wishes to determine the scenic
quality of images to maintain the beauty of the forest inspite of cutting
and also for recreation purpose. This project determines the scenic
quality of image on a scale from “0” to “1”. We have the database
consisting of 680 unique images given by the forestry department. The
database has four pictures of the same image taken during all the
seasons of the year. This will also help to study the effect of seasons
on the scenic quality of the image.

There are subjective scenic beauty ratings available for each of the
images in the database. Some of the parameters which effect the
scenic quality of the image are the color, number of vertical lines,
texture of the image and entropy. For this project we are dealing with
only color and number of vertical lines. Histogram is developed to
compute the mean of each of the color in the image and edge
detection is done to calculate the number of vertical lines.
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Overview

❐ Scenic Beauty Estimation

❐ Decision making in forest planning

☞ To preserve recreation

☞ To preserve aesthetic resources
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What to implement

❐ Parameters to be determined in scenic
beauty determination

☞ Color: Histogram

☞ Vertical Lines:Edge Detection

☞ To compare the derived scenic rating

with the actual value
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Block Diagram of the System

 PCD to
    PPM
Conversion

   Image
Interpreted
-

Histogram
Analysis

Decision
   Box

    PPM
   Image

 PCD Image
as Input

    Scenic
    Rating

     Edge
Detection



DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

DECEMBER 2, 1996 DSP’96 Page 35 of 43

Explanation of the Algorithm

❐ Calculating the mean of each of the
color

❐ Converting the color image to gray-
scale image

❐ Performing the edge detection

❐ Calculating the number of vertical lines

❐ Evaluating the scenic beauty
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Mathematical Equations

☞ Color to Gray Conversion

 Y = 0.299 R + 0.587 G + 0.114 B

☞ Mask used in Edge Detection

Gx I 7 2I 8 I 9+ + )( I 1 2I 2 I 3+ + )(–=

Gy I 3 2I 6 I 9+ + )( I 1 2I 4 I 7+ + )(–=

    -1    -2    -1

    0     0    0

    1     2    1

   -1     0     1

 -2     0      2

 -1     0      1



DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

DECEMBER 2, 1996 DSP’96 Page 37 of 43

❐ Evaluation

☞ Computing the scenic beauty based on
mean and vertical lines

☞ Evaluating the program on the existing
database

☞ Comparing the derived scenic beauty
and the actual beauty

❐ Database

☞679 Unique Images with subjective
ratings

☞ Standardized ratings available for each
image



DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

DECEMBER 2, 1996 DSP’96 Page 38 of 43

Edge detection Algorithm

Gradient form

    d/dx     d/dy

Gaussian
smoothing

d
dx
------ 

  2 d
dy
------ 

  2
+

Input gray
scale image

 Non Maximal
  Supprression

Output image
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Results

Original Image

Gray Image
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Results

❐ SBE depends on the mean of each of

the color, number of vertical lines

❐ The length of the lines is a direct

indication of the long trees and bushes

Table 1: table showing the derived means and the SBE rating

Redmean Greenmean Bluemean %longlin %shortli der_sbe act_sbe

   66      72      36  1.97    78.00    0.40    4.37

   46      62      36  2.10    76.10    0.52    4.80

   64      78      45  2.20    73.60    0.50    5.16

   55      62      30  2.02    77.10    0.42    4.68

   46      62      36  2.27    75.60    0.47    4.80
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Graph showing the number and size of the vertical lines

Graph showing the number and value of each of the colors
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Summary

❐ Dependency of color on the scenic
beauty

❐ Dependency of vertical lines on the

scenic beauty

❐   Well organized database

Future Research

❐ Using neural network to evaluate the
scenic beauty rating

❐ Develop algorithm to check the effect of
texture, landform position on the scenic
beauty

❐ To study the future growth of the trees
with the present data
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	Comparative Analysis of FFT Algorithms in Sequential and Parallel Form
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	Michael Balducci balducci@erc.msstate.edu
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	ABSTRACT
	+ Motivation: Need for efficient FFT implementations which fit the specific constraints of an app...
	+ We merge a large number of FFT algorithms into a common, object-oriented framework.
	+ We have produced a public-domain collection of sequential and parallel implementations of a var...
	+ Performed statistical analysis of each algorithm based on speed, mathematical complexity, and m...
	+ Future Goals: Develop routines which use our statistical results to pick the FFT algorithm impl...
	The 1996 Mississippi State University Conference on
	Digital Signal Processing
	What: EE 4773/6773 Project Presentations
	Where: Simrall Auditorium, Mississippi State University
	When: December�2, 1996�— 1:00 to 4:00 PM
	SUMMARY
	The Department of Electrical and Computer Engineering invites you to attend a mini�conference on ...
	•�parallel implementations of fast Fourier transforms;
	•�real-time audible frequency detection and classification;
	• analysis of forestry images for scenic content.
	Students will present their semester-long projects at this conference. Each group will give a 12�...


	Theory
	Strategy
	+ Yields frequency spectrum, given N time samples of a signal
	+ FFTs use symmetry and periodicity of WN to eliminate redundancy
	Q: We have the DFT...why do we need the FFT.
	A: Complexity reduction...we reduce the number of operations from O(N2) to O(N * log2 N).
	For a 1024 point transform we reduce our operations from
	~ 106 to ~ 103 - a 98% reduction!!
	+ Values of WN can be pre-calculated to attain higher speeds.
	+ What’s the catch?...We trade speed for memory (money)
	+ If we limit our data size to be of the form RV we can gain efficiency
	+ Most popular form of Radix algorithms are Radix-2 and Radix-4
	Session Overview
	1:00 PM�—�1:10 PM: J. Picone, Introduction
	1:15 PM�—�1:45 PM: Michael�Balducci, Ajitha�Choudary, and Jon�Hamaker, “Comparative Analysis of F...
	1:45 PM�—�2:15 PM: David�Gray, Craig�McKnight, and Stephen�Wood, “Audible Frequency Detection and...
	2:15 PM�—�2:45 PM: Yaquin�Hong, Nirmala�Kalidindi, and Liang�Zheng, “An Algorithm To Determine Th...
	3:00 PM�—�4:00 PM: Demonstrations in 434 Simrall
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	Digital Signal Processing
	Table of Contents
	Comparative Analysis of FFT Algorithms In Sequential and Parallel Form
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	Audible Frequency Detection and Classification
	David�Gray, Craig�McKnight, and Stephen�Wood
	An Algorithm To Determine The Scenic Quality Of Images
	Yaquin�Hong, Nirmala�Kalidindi, and Liang�Zheng
	+ We break the DFT into a sum of smaller DFTs to reduce complexity.
	+ DFT can be broken into a single N/2-point and two N/4-point DFTs.
	+ Using the Radix-4 for the N/4 portions reduces the number of calculations - increasing efficiency.
	+ Split-Radix uses both Radix-2 and Radix-4
	+ Similar to Radix...use separate processor for independent butterflies
	+ No complex arithmetic!
	+ Can still use Radix-2, Radix-4, Split-Radix, etc.
	+ Conversion factors necessary to produce Fourier coefficients.
	Decimation-in-Time-Frequency Algorithm (DITF)

	Parallel Communications
	Q: How do we communicate between processors?
	A: Message Passing Interface (MPI)
	What is MPI?
	+ Portable set of Library functions
	+ Largely hardware independent
	+ Provides distributed computing
	+ Local memory and a shared communication network
	Why use MPI?
	+ Portability
	+ Allows collective communications
	+ Ease of use - do not need special knowledge of hardware

	Evaluation Methodology
	+ Computation speed
	+ Memory usage
	+ Mathematical operations
	+ Code size
	A typical application will need the algorithm with the
	fastest possible speed, but which has the lowest
	hardware requirements.
	We desire to determine the trade-off between speed
	and hardware for each algorithm.
	Statistics are taken as averages over a large number of iterations.
	Why use an iterative method?
	Eliminate transients caused by processor loading
	Convergence of time statistics

	Results -> Sequential
	Mathematical Complexity (1024-points)
	Rank Algorithm Total Operations
	1 srfft 30764
	2 fht 31176
	3 qft 53628
	4 rad4 56494
	5 rad2 67581
	6 ditf 112985
	7 dft 5243904

	Results -> Parallel
	The Bottom Line
	+ Increasing the number of processors did not always increase the speed of the algorithms.
	+ Sequential code usually gave the best case results.
	+ WHY?
	l Not enough overlap in communication and computation
	l Processors were idle while waiting for communication.
	l Formed parallel code from tight sequential code.
	+ How do we overcome these problems?
	l Redistribute the loading
	l Rewrite routines to take better advantage of the symmetric algorithms

	Future Implications...
	+ What have we accomplished?
	l First unified collection of parallel FFTs in the public domain.
	l Compiled complexity figures which include the overhead involved in coding. (loop counters, inte...
	l Have framework for application and constraint driven software.
	+ The Next Steps...
	l Rewrite code with a parallel structure as opposed to converting sequential code
	l Explore other parallel processing techniques (shared memory, threads, etc.)
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	ABSTRACT
	Current music software relies on external input from MIDI capable devices. Because traditional mu...
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	The Even-Tempered Scale and Its Derivation
	The frequency, foctave, of a note, Noctave, played one octave above a note, Nfundamental, is twic...
	Overtones occur at frequencies that are integer multiples of a note’s fundamental frequency. Beca...
	Even-Tempered Tuning is a system where each half-step can be approximated equally well in any sca...
	The Even-Tempered Scale is designed so that the frequency of each semitone is a factor K larger t...
	There are 12 semi-tones in one octave. According to equation (1), the thirteenth note, the octave...

	Restrictions of FFT: Frequency Resolution
	The frequency resolution, Df, of an N point FFT with sample frequency, fs, is defined as
	Recalling the distribution of notes using Even-Tempered Tuning, we realize that for low scale ton...
	Given m data points, the LaGrange Interpolation Technique calculates a unique polynomial of order...
	Using a 5-point LaGrange Interpolation, the resolution of the data in the frequency domain can be...
	LaGrange Interpolation
	Fast Fourier Transform
	Fast Fourier Transform + LaGrange

	Tuning a Note’s Overtones to Increase Accuracy
	Notes in Even-Tempered Tuning are not evenly spaced throughout the frequency domain. Each semiton...
	Exaggerated Distribution of Semitones
	So the discrepancy between the actual frequency of a peak and the interpolated frequency of that ...
	Because a note produces overtones at integer multiples of the fundamental frequency, a direct rel...
	Interpolating a note’s overtones using LaGrange, we can be within a constant error that becomes l...
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	ABSTRACT
	The United States Forest Service wishes to determine the scenic quality of images to maintain the...
	There are subjective scenic beauty ratings available for each of the images in the database. Some...
	Overview
	p Scenic Beauty Estimation
	p Decision making in forest planning
	+ To preserve recreation
	+ To preserve aesthetic resources
	What to implement
	p Parameters to be determined in scenic beauty determination
	+ Color: Histogram
	+ Vertical Lines: Edge Detection
	+ To compare the derived scenic rating with the actual value
	Block Diagram of the System
	PCD to
	PPM
	Conversion
	Explanation of the Algorithm
	p Calculating the mean of each of the color
	p Converting the color image to gray- scale image
	p Performing the edge detection
	p Calculating the number of vertical lines
	p Evaluating the scenic beauty
	Mathematical Equations
	+ Color to Gray Conversion
	Y = 0.299 R + 0.587 G + 0.114 B
	+ Mask used in Edge Detection
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	p Evaluation
	+ Computing the scenic beauty based on mean and vertical lines
	+ Evaluating the program on the existing database
	+ Comparing the derived scenic beauty and the actual beauty
	p Database
	+679 Unique Images with subjective ratings
	+ Standardized ratings available for each
	image
	Edge detection Algorithm
	Gradient form
	d/dx
	d/dy
	Gaussian
	smoothing
	Input gray scale image
	Non Maximal
	Supprression
	Output image
	Results
	Original Image
	Gray Image
	Results
	p SBE depends on the mean of each of the color, number of vertical lines
	p The length of the lines is a direct indication of the long trees and bushes
	Table 1: table showing the derived means and the SBE rating

	Graph showing the number and size of the vertical lines
	Graph showing the number and value of each of the colors
	Summary
	p Dependency of color on the scenic beauty
	p Dependency of vertical lines on the scenic beauty
	p Well organized database
	Future Research
	p Using neural network to evaluate the scenic beauty rating
	p Develop algorithm to check the effect of texture, landform position on the scenic beauty
	p To study the future growth of the trees with the present data
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