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SUMMARY

The Department of Electrical and Computer Engineering invites
you to attend a mini-conference on Digital Signal Processing,
being given by students in EE 6773 — Introduction to Digital
Signal Processing. Papers will be presented on:

• parallel implementations of fast Fourier transforms;

• real-time audible frequency detection and classification;

• analysis of forestry images for scenic content.

Students will present their semester-long projects at this
conference. Each group will give a 12 minute presentation,
followed by 18 minutes of discussion. After the talks, each group
will be available for a live-input real-time demonstration of their
project. These projects account for 50% of their course grade,
so critical evaluations of the projects are welcome.



Session Overview

1:00 PM — 1:10 PM: J. Picone, Introduction

1:15 PM — 1:45 PM: Michael Balducci, Ajitha Choudary, and
Jon Hamaker , “Comparative Analysis of FFT
Algorithms In Sequential and Parallel Form”

1:45 PM — 2:15 PM: David Gray , Craig McKnight, and Stephen Wood,
“Audible Frequency Detection and Classification”

2:15 PM — 2:45 PM: Yaquin Hong, Nirmala Kalidindi , and Liang Zheng,
“An Algorithm To Determine The Scenic Quality Of
Images“

3:00 PM — 4:00 PM: Demonstrations in 434 Simrall
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ABSTRACT

There have been a large number of Fast Fourier
Transform (FFT) algorithms which have been
developed over the years. Among these are the Radix-2
algorithm, Radix-4 algorithm, Split-Radix algorithm,
Decimation-in-Time-Frequency algorithm (DITF),
Quick Fourier Transform (QFT), and the Fast Hartley
Transform (FHT). However, there has not been much
prior work where the user is given a single interface to
poly-functional implementation that transparently
optimizes space and time complexity.

In this paper we present the implementation and
benchmarking of the sequential and parallel versions
of the above mentioned FFT algorithms. All
algorithms have been rigorously compared based on
computational time, object size, code size, data
dependence (real or complex) and the number of
mathematical operations involved in the computations.
The results of this endeavor will serve as a frame for
creating an object-oriented FFT environment which
will automatically choose the most efficient algorithm
for a given platform, data set, and order or other user-
specified criteria.

1.    INTRODUCTION

The development of Fast Fourier Transform (FFT) has
evolved over many years. The first major breakthrough
was the Cooley-Tukey algorithm developed in the mid-
sixties which resulted in a flurry of activity on FFT’s. [1]
[2] Further research led to the development of the Fast
Hartley Transform and Split-Radix algorithm. Recently
two new algorithms have also emerged: Quick Fourier
Transform and the Decimation-in-Time-Frequency
algorithm. Now research has to be geared towards
finding which of these algorithms is most efficient. The
problem that arises is the inherent trade-off between
computation speed, memory usage and the algorithm
complexity. Instead, we must attempt to find the most

efficient algorithm under the constraints of a particular
application. Our efforts will accomplish this task by
benchmarking each algorithm under a variety of
constraints. The benchmark statistics will be used to
create an automated environment capable of choosing
the most efficient algorithm for a given application.

The FFT is one of the important and most widely used
Digital Signal Processing (DSP) algorithms. FFT
algorithms are efficient methods of calculating the DFT.
The DFT converts the input signal from the discrete
time domain, x(n), to the discrete frequency domain,
X(w), and vice versa. This is very useful in eliminating
the unwanted noise signal from any communication
signal (information bearing signal) being analyzed.
Once the signal is converted into the frequency domain
the noise or unwanted signal frequencies can be
effectively filtered. Then, by using the inverse FFT, the
communication signal can be converted back to the time
domain. The FFT has many wide-ranging applications
in nearly every signal processing field including speech,
image processing, communications, cellular phones,
modems, and digital control systems. [3]

For most applications computation time plays a
significant role in the use of FFT’s. The more time
spent computing means more efficient utilization of
resources; hence, more data can be processed in the
same time. The computation time can be reduced using
the symmetry, periodicity, etc. of the DFT. The
computation time can also be reduced using parallelism
in FFT’s. By using the FFT algorithms in parallel, the
data set can be separated into smaller blocks. The
different blocks of data can then be processed at the
same time across multiple processors. There is, of
course, a trade-off with this method: overhead of
communication between processes. To make efficient
use of the parallel method the communication time must
be minimized.
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1.  Theory of FFTs

The Fourier transform,H(w), of a signal,h(t), is given
by the equation of Figure (1a), whereh(t) is the time-
domain signal,t is the time andw is the angular
frequency. The assertion of this equation is that any
time-domain signal can be “transformed” into a function
of frequency. A plot of this frequency-dependent
function gives the frequency content of a particular
signal over the entire frequency spectrum. The resulting
function contains the magnitude and phase information
for each frequency point in the spectrum. This process
of conversion from the time to frequency-domain is
invertible using the Inverse Fourier Transform of Figure
1b. By the inverse transform, a frequency-domain
signal is transformed back to the time domain. [1] [3]

The Discrete Fourier transform (DFT) is the digital
equivalent of the Fourier Transform. It is a bounded
length sequence which is more practical than the infinite
summation of the Fourier Transform. The DFT assumes
that the input signal is periodic with a period equal to
the length of the input sequence. The Discrete Fourier
transform is defined as shown in Figure (2a) and its
inverse is shown in Figure (2b) [7].

The DFT is one of the most important concepts in
digital signal processing but it is not useful for practical
applications. In computing the DFT directly, there are

4N2 multiplications and N(4N-1) additions, therefore

the computation time is of the order N2. This type of
complexity is not satisfactory for large N. We desire

complexities which are linear with data size. At thi
time, no algorithm is available with such performanc
but we can derive a class of algorithms which give a
efficient alternative to the DFT. These algorithms a
collectively known as Fast Fourier Transforms (FFTs)

2.  Algorithms

The Fast Fourier Transforms included here use seve
different approaches in reducing the computation cost
calculating the fourier coefficients. One metho
employed by several of the algorithms is the divide-an
conquer approach. These algorithms use the fact tha
input sequence of length N can generally be broken in
a number of smaller sequences. Since the DFT has

order of complexity N2, breaking the summation intoβ
sections of length-N/β results in a reduction of
complexity as shown in Figure 3. [4]

Another approach is to utilize the periodicity of the
DFT. From Figure 4, it can be seen that the multiplyin
factors of the DFT exhibit both horizontal and vertica
symmetry about the unit circle when N is a power o
two. Thus, by realizing that the coefficients repea
redundant calculations can be eliminated. [3]
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Figure 1. Forward and Inverse Fourier Transform
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Figure 2 Forward and Inverse Discrete Fourier
Transform
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Figure 3 Complexity of Divide-and-Conquer
approach.  Note the reduction in

complexity from the O(N2) of the DFT.

Figure 4 Plot of WN on the unit circle.  This
complex function exhibits both
horizontal and vertical symmetry when
N is a power of two.
Mississippi State University Fall ’96



Parallel DSP Group Page  7 of 16

ex
d

g
he
er
e

ct
nd

s.
e
nt
In
ix
he

is
ts.
nd,
es.
e
be
b).
f

2.1. Radix-2 and 4 Algorithms

2.1.a. Sequential Form

By limiting our data-length to the form N = RV we can
define a class of FFTs known as radix algorithms.
These algorithms successively decompose a single N-
point DFT into R segments of N/R-point DFTs. The
most widely used of these radix algorithms is the Radix-
2 and the Radix-4. Each uses the periodic properties of
the DFT to attain higher efficiency levels. Radix
algorithms can be implemented by either using
Decimation-In-Time (Cooley and Tukey) or by
Decimation-In-Frequency (Sande and Tukey). Each of
these algorithms reduces the number of operations from

O(N2) to O(N log2 N). The drawback is that the data
must be of a specified length. This problem can be
avoided by zero-padding with no loss of information.
[1] [5]

2.1.b. Parallel Form

The parallel structure of the radix algorithms is
understood by considering the fact that the DFT can be
decomposed into smaller independent DFTs. By
performing each of these smaller DFTs concurrently, we
can take advantage of this parallelism. Figure 5 shows
two stages of a Decimation-In-Time FFT. In this figure,
one can see that the 8-point DFT is decomposed into
two 4-point DFTs. These, in turn, are each decomposed
into two 2-point DFTs.[6]

.

2.2. Split-Radix Algorithm

2.2.a. Sequential Form

By observing Figure 5, it can be seen that even ind
points can be calculated independently of the od
indexed points. This leads to the possibility of makin
use of more than one algorithm for the data set. T
increase in computational efficiency of the higher ord
Radix-4 is attractive, but the limitation in data sequenc
lengths is a hindrance. The Split-Radix utilizes the fa
that the data points can be decomposed into even a
odd indices to employ both Radix-2 and 4 algorithm
A Radix-2 is performed on the even index points. Th
odd points are then decomposed into two N/4 poi
sequences where a Radix-4 approach is taken.
making use of these two techniques, the Split-Rad
acquires an increase in computational efficiency over t
Radix-2 while retaining the its ability to perform on any
power of two. [7]

2.2.b. Parallel Form

As discussed above, the Split-Radix algorithm
composed of a Radix-2 and two Radix-4 componen
These components are independent of each other a
thus, can be performed in parallel separate process
Figure 6 shows the flow of this process. Also, notic
that the Radix-2 and Radix-4 components can each
performed as parallel computations (see section 2.1.
In this manner, we can achieve maximum utilization o
parallel hardware.
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Figure 5 Flowgraph of an 8-point Decimation-in-
Frequency FFT.  The independence of
the odd and even sample calculations
allows for evaluation on separate
processors
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Figure 6 Parallel composition of the Split-Radix
FFT and FHT.
Mississippi State University Fall ’96



Parallel DSP Group Page  8 of 16

y
s.
an

he

s
x
e

ms
th-
be
)
l)
in
ce

ll
he
a.
eal
e

d
0.
es
s’
a

ent.
to
2.3. Fast Hartley Transform

2.3.a. Sequential Form

The Discrete Hartley Transform (DHT), shown in
Figure 7, takes the approach that fewer is better. Since
complex arithmetic requires four real multiplications for
every complex multiplication and two real additions for
every complex addition, it is computationally very
expensive. In addition to requiring more operations,
complex numbers also require more memory since a
complex number consists of two real coefficients. The
DHT reduces the number of computations and memory
used by simplifying the kernel of the DFT to real valued
variables. [8]

This new transform shares many of the properties of the
DFT. Due to the similarity between the DFT and the
DHT, the techniques employed by FFT to calculate the
DFT can be applied to the DHT. This allows for an even
greater reduction in the number of computations.
Although the DHT requires fewer computations that the
DFT, there is a drawback in calculating the fourier
coefficients using the DHT. Additional computations
are required to convert from the DHT to the DFT.
However, since the relationship is linear, the
computation cost is minimal. The relationship between
the DHT and DFT is shown in Figure 8. [8]

2.3.b. Parallel Form

In our efforts, we chose the Split-Radix form of the
FHT. The parallel form of this algorithm follows the
form of the Split-Radix DFT shown in Figure 6. The

difference occurs in the end when the Hartle
coefficients must be converted to Fourier coefficient
This step introduces additional computations which c
be performed in parallel. [9]

2.4. Quick Fourier Transform

2.4.a. Sequential Form

Whereas most FFTs use the periodic properties of t
DFT to reduce complexity, the Quick Fourier Transform
(QFT) uses the symmetry of the cosine and sine term
in the DFT to decrease the number of comple
calculations. The QFT is constructed by breaking th
data set into real cosine terms and imaginary sine ter
and those into their even and odd parts. The leng
(N+1) cosine terms and length-(N-1) sine terms can
recursively decomposed into two length-(N/2 +1
Discrete Cosine Transforms and two length-(N/2-
Discrete Sine Transforms respectively as shown
Figure 9. Using this decomposition process we redu
the complexity of the DFT to a complexity of O(N
log2N). Another important aspect of the QFT is that a
complex operations occur at the last stage of t
decomposition. This makes it well suited for real dat
However, complex data can be processed by taking r
transforms of the real and imaginary portions of th
input separately and combining the results. [10]

2.4.b. Parallel Form

The QFT is recursively decomposed into DCTs an
DSTs according to the tree structure shown in Figure 1
We see from this figure that the operations at the leav
of the tree are independent of the other leave
operations. Thus each leaf can be evaluated by
separate process and the results returned to the par
We take the approach of allowing all processors

XH k( ) 1

N
-------- xn

2πkn
N

------------- 
 cos

2πkn
N

------------- 
 sin+

n 0=

N 1–

∑=

Figure 7 The Discrete Hartley Transform

Re X k( )( )
XH k( ) XH N k–( )+( )

2
-----------------------------------------------------=

Im X k( )( )
XH k( ) XH N k–( )–( )

2
-----------------------------------------------------=

Figure 8 Relations for conversion between
Hartley coefficients and Fourier
coefficients

N-point DFT

(N/2 + 1) - point DCT

(N/2 - 1) - point DST

Sum of Two
Recursive
DCTs

Sum of Two
Recursive
DSTs

Figure 9. Flow Diagram of the Quick Fourier
Transform
Mississippi State University Fall ’96
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traverse the QFT’s tree until a point is reached where all
processors can be utilized by a separate leaf. This
approach does limit the number of processors to be a
power of two but this is a reasonable limitation for
today’s hardware. Figure 10 shows how each processor
is allocated to a branch of each subtree and the
communication paths between each processor.

2.5. Decimation-in-Time-Frequency Algorithm

2.5.a. Sequential Form

The Decimation-In-Time-Frequency (DITF) algorithm
uses both the Radix-2 Decimation-in-Time (DIT) and
Decimation-in-Frequency (DIF) algorithms to form a
new recursive algorithm. The DITF is based on the
observation that the DIT algorithm has a majority of its
complex operations towards the end of the computation
cycle and the DIF algorithm has a majority towards the
beginning. The DITF makes use of this fact by
performing the DIT at the outset and then switching to a
DIF to complete the transform as shown by the block
diagram of Figure 11. Combining these algorithms
comes at the cost of computing complex conversion
factors at the point of  switching. [11]

2.5.b.  Parallel Form

Similar to the QFT, the DITF uses a recursive approa
to the decomposition of the DFT by using both
recursive DIT and a recursive DIF. As with the QFT, th
parallel structure of the DITF is described by Figure 1
Unlike the QFT, the DITF is highly communication
dependent. Each leaf process must communicate
least once for each frequency point calculated. Thu
the cost of the tree structured approach for the DITF
too high. Instead the approach we take for the DITF
one of data splitting. Each processor is allocated N
frequency data points to calculate, where p is th
number of processors and assuming (N mod p) = 0.

3.  Implementation

Implementation of the FFT algorithms consisted of tw
phases: sequential coding and parallel coding. T
sequential FFT routines have been freely available in t
public-domain for years. These FFT routines have be
refined over a matter of months and years and each
been tweaked to the point of maximal efficiency.

The parallel implementations were developed direct
from the sequential code. To do this, we first careful
analyzed each FFT routine for structural parallelism
Secondly, we analyzed the required communicatio
costs of the parallel structure. Taking both of these in
account, we designed the parallel routines to best ta
advantage of the algorithm’s parallelism while
minimizing communication costs.

DCT DST

DCT DCT DST DST

0,1,2,3

0,1 2,3

0 1 2 3

0,1,... Indicates calculations which can be
processed separately.  0,1,... indicate
processors at that stage of the recursion

Indicates direction of communication
between processes.

Figure 10 Parallel structure of the QFT and DITF
algorithms

x(n) X(k)

Conversion

DIF Radix-2

DIT Radix-2

DITF

DIF DIT

Figure 11 Block Diagram of DITF algorithm.
Notice that the portions of the DIT and
DIF with fewer computations are used
by the DITF.
Mississippi State University Fall ’96
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3.1. Parallel Communication Tool

In order to use multiple processors, the data must first be
distributed. Thus, there is a need for a method by which
to transfer data between processes. The Message
Passing Interface (MPI) provides a means by which to
transfer data between processes conveniently. Since
MPI is a communication library, it allows for inner-
workings of the communication protocol to occur
transparent to the calling code. MPI processes are "self-
aware" in the sense that each is assigned a numeric rank
at start-up that uniquely identifies it. The transfer of
data using MPI is accomplished by making a call to one
of the library's function. The calling code specifies the
transfer by passing sending process's rank, the receiving
process's rank, the data type, and the number of data
elements to be passed. In addition to point-to-point
communication, MPI supports collective and group
communication. This allows for a reduction in the
overhead in sending to a group (broadcast) and receive
from a group (gather) of process. [12] [13]

Since the MPI libraries have been ported to many
operating systems (OS)/achetectures, porting a parallel
program to another does not require any change in the
communication calls. MPI takes care of the hardware
details, allowing the programmer to worry only about
the software implementation. This allows for MPI code
to transcend platforms.

4.  Testing Procedures

Giving an objective evaluation of the algorithms
requires an extensive knowledge of how each compares
over a wide range of circumstances. In particular we
want to collect statistics which relate directly to
application constraints including factors such as
memory, speed, data length, and hardware capabilities.
We also desired test methods which give consistent and
repeatable results.

4.1. Criteria

In choosing criteria by which to evaluate the various
algorithms, consideration was given to the different
constraints that would be imposed by a particular
application. The criteria for benchmarking were
computations speed, memory usage, number of
processors available, input data size, code size, object
size, and number of mathematical operations (adds,
multiplications, and binary shifts). Computation speed
was selected as the core criteria for comparison since
the most efficient method is generally the most desirable

one. However, since the amount of memory available
not static from machine to machine, memory was al
included as a measure of efficiency. For many paral
applications, an increase in the number of process
available directly correlates to the speed-up. This is d
to the fact that the number of processors limits th
degree to which the data sequence can be decompo
As was illustrated in theory section, decreasing th

length of the data sequence for an O(N2) operation
reduces the net number of operations which must
performed. The number of mathematical operatio
was included since it is directly related to th
computation time and the hardware requirements. T
additions and multiplications were broken in to floatin
point and integer operations due to the fact that floati
point operations are much more costly in computatio
time than are integer operations. Input sequences
differing lengths were included to examine increas
decrease in the overall cost of the communication.

4.2. Testing Methods

Evaluation of the above criteria involves many issue
which are not readily apparent. Key amongst these
processor loading. One of our most important criteria
speed. Unfortunately this measurement cannot
completely decoupled from the loading of the hardwar
To obtain consistent measurements of speed, we m
eliminate the effects of fluctuations in processo
loading. We accomplish this in two ways: test o
unloaded processors and use an iterative testing meth

We ran our timing tests on relatively unloade
processors. These processors were loaded only by
programs and system operations. This eliminated t
latency introduced when another user’s program
executing on our test machines.

An iterative approach to testing was also used to redu
the transients of processor loading. This metho
involved running each test for each algorithm for a larg
number of iterations. For instance, a compute intensi
system operation may have been started in the middle
one test. This test taken alone would produce inva
and inconsistent results. On the other hand, performi
this same test over a large number of iterations wou
average out that invalid result and produce repeata
results.

We also used a variety of methods for calculation of th
other statistics. Computation speed is measured us
the standard unix system utility ‘clock()’. For
evaluation of memory usage, we developed a floati
point class which has the feature of accumulating
count for each byte of memory allocated. This gives
Mississippi State University Fall ’96
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very efficient method of viewing the dynamic memory
management. Counting of mathematical operations was
accomplished in a manner similar to the memory counts.

5.  Results

The observed computation time, shown in Figure 12 and
Table 1, illustrates that execution time was of order
Nlog(N) for all algorithms with respect to the data size
The Radix-4 had the least computation time of all
algorithms evaluated, but is limited to data sizes which
are a power of four. The Radix-2 was somewhat slower
than the more computationally efficient Radix-4. For
the odd powers of two, the Split- Radix had the lowest
computation time. Overall, the Split-Radix ranked
between the Radix-2 and Radix-4. This was expected
since the Split-Radix makes uses of both the Radix-2
and Radix-4. Therefore, the computation time for the
Split-Radix is a weighted average of the computation
time of its two sub-components. The FHT, which
utilizes a Split-Radix topology, is somewhat slower than
the Split-Radix FFT. This is due to additional
computation time necessary to transform the Hartley
coefficients to Fourier coefficients.

The ranking of the algorithms based on lowest memory
usage, shown in Figure 13 and Table 2, follows the
Ranking for least computation time with one exception.
The DFT was the slowest, but uses the least amount of
memory.
Mississippi State University Fall ’96

Algorithm
Speed
N = 64

Speed
N = 128

Speed
N = 256

Speed
N = 512

Speed
N = 1024

Speed
N = 2048

Speed
N = 4096

DFT 61900 248600 996400 3994300 16009500 21280728 30576662

RADIX-2 1000 2100 4400 9400 19900 42100 90900

RADIX-4 700 --- 3500 --- 16000 --- 72200

SRFFT 900 1800 3800 7900 16800 35400 76400

FHT 1000 2100 4600 9500 20500 43600 97800

QFT 1100 2500 5600 12300 26900 60700 129300

DITF 49400 165700 596900 2214000 6889400 7735873 11668681

Table 1:  Computation Time for Each Algorithm (See Figure 12)



Parallel DSP Group Page  12 of 16
Algorithm
Data
Type

Float
Mults

Float
Adds

Int
Mults

Int Adds
Bin

Shifts
Memory
(bytes)

DFT Real 2097152 2097152 0 1049600 0 8

Complex 4194304 4194304 0 1049600 0 8

RADIX-2 Real 20480 30720 0 15357 1024 12308

Complex 20480 30720 0 15357 1024 12308

RADIX-4 Real 15701 28842 336 8877 2738 4172

Complex 15701 28842 336 8877 2738 4172

SRFFT Real 4668 11722 494 11545 2335 12332

Complex 10016 25488 502 12448 2937 12332

FHT Real 9352 15006 0 4695 2123 4328

Complex 18704 32056 0 8367 4246 16416

QFT Real 4224 14722 8 34517 157 12288

Complex 8448 31492 16 70058 316 24576

DITF Real 48894 47163 0 16927 1 446464

Complex 52996 51796 0 34878 2 462848

Table 2:  Table of mathematical operations for each algorithm
Mississippi State University Fall ’96
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Figure 12 Log-Log Plot of Computation Time vs Order.  Notice the N log(N) shape of the curves.
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Figure 15 Typical results for the parallel algorithms.  No speedup was achieved for the majority of
the parallel algorithms
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6.  Conclusions

Overall, the sequential algorithms proved to faster than
their parallel counterparts. This can be accounted for by
the additional time required to communicate between
nodes. With the parallel algorithms, one node acts as a
master distributing the data to other nodes. The master
then becomes a slave which processes an equal portion
of the data. The communication latency was such that
the master node would complete its data processing
cycle long before any of the other nodes since a send
requires much less time than a receive. After
completing its data processing cycle, the master node
goes into a receive mode waiting to recollect the data
processed by other nodes. This causes yet another delay
due the imbalance of the send and receive times
mentioned. The net result was sequential execution
with waits inserted due to the communications latency.

In order for any parallel algorithm to be beneficial, there
must be sufficient overlap between execution and
communication. An even distribution of data provides
for virtually no overlap. Given these results, an

alternative approach would be to distribute the da
unevenly to allow more communication / executio
overlap. That is, the master node would keep a larg
portion of the data for itself. This would allow the
master node to continually process data while the oth
nodes receive, process, and send back their portio
Thus, the master node is completing its computations
about the same time the processed data from other no
is arriving. Using an uneven data distribution approac
should allow for more overlap, but still suffers from the
communication burden.

One possible solution that eliminates the need f
transferring of data between processes is mul
threading. Multi-threading uses several processes, al
which have access to the same memory. Therefo
there is no need of one process transmitting its results
another since the result will be written to a memor
space that the other processes can access. The proce
do, however, need to communicate with one another
allow synchronization between stages. That is, o
process may have to wait for another to complete t
results it needs to proceed. The limitation to th
approach would be that the number of processes wo
be limited by the number of processors on any on
machine. [14]

7.  Future Considerations

In our efforts thus far we have assembled the fir
unified collection of publicly available parallel FFT
algorithms. The sequential code provides publi
domain FFT code for a variety of algorithms under
single framework. The parallel code will give insigh
into the parallel coding of the various FFT algorithms.

Secondly, we have developed hard statistics for t
complexity of the FFT algorithms. These statistics giv
the developer a clear picture of what will be required if
particular algorithm is used. Having these statistic
takes the guess work out of development which w
necessary to overcome the ambiguity of the big-
notation.

Perhaps, most importantly our work has laid th
foundation for a class of “intelligent” programs which
will automatically choose the best algorithm an
execute it for a given set of user constraints. As th
hardware available becomes more diverse, this type
software is becoming a necessity. This constraint driv
program will also be a beneficial tool to the develope
because it will give a quick way to test performanc
under changing design constraints.

There are various possibilities that must be explor

of Processors
FFT Order

16
64

256
1024

2048
4096

8192

4
8

16

 results for parallel algorithms (DFT).  These results occur because data splitting
ble for the DFT.
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before the constraint driven software will become a
reality. Foremost among these is to re-evaluate the
parallel structure of the FFT code. Trying to cast the
“tight” sequential code into a parallel form is not likely
to be the best option. We should redevelop the
implementation to use the parallel structure of the
algorithm more efficiently.

Also, we must explore other parallel processing
techniques. We have seen that the major impedance to
parallel processing of FFTs is communication costs. We
will explore other techniques (such as shared memory)
which allow us to perform the FFTs with a reduced
number of communication calls.

8.  Acknowledgments

We would like to thank the following persons for their
support: Dr. Joseph Picone, Dr. Tony Skjellum, and the
members of each of their groups. Most importantly we
thank Aravind Ganapathiraju for his leadership and
interest in our efforts.

9.  References

1. Oppenheim, Alan V., Ronald W. Shafer.Discrete-
Time Signal Processing.Prentice Hall. Englewood
Cliffs, New Jersey 1989. pp 587-610.

2. Bracewell, Ronald N.The Fourier Transform and
Its Applications, Second Edition.McGraw-Hill
Book Company. New York,  1978.  pp356-381.

3. Proakis, John G. and Dimitris G. Manolakis.
Digital Signal Processing: Principles, Algorithms,
and Applications, Third Edition.Prentice Hall,
Upper Saddle River, New Jersey, 1996. pp230-256,
394-494.

4. Roberts, Richard A., Clifford T. Mullis. Digital
Signal Processing. Addison Wesley, Reading,
Massachusetts, 1987.  pp 148-162.

5. Blahut, Richard E. Fast Algorithms for Digital
Signal Processing. Addison Wesley, Reading,
Massachusetts, 1985.  pp 114-152, 240-280.

6. Tatyana D. Roziner, et. al., “Fast Fourier
Transforms Over Finite Groups by Multiprocessor
Systems,” IEEE Trans. on ASSP, vol. 38, no. 2,
February 1990.  pp 226-239.

7. P. Duhamel and H.Hollomann, “Split radix FFT
algorithm,” Electron. Lett., vol. 20, pp. 14-16, Jan.
1984.

8. R. Bracewell. The Hartley TransformOxford,
England: Oxford Press, 1985, chapter 4.

9. “ Implementing 2-D and 3-D Discrete Hartley
Transforms on a Massively Parallel SIMD Mesh
Computer.” Technical Report CS-TR-95-01,
University of Central Florida, Orlando, FL.

10. H. Guo, G.A. Sitton, C.S. Burrus. “The Quick
Discrete Fourier Transform.” ICASSP94 Digital
Signal Processing.vol III. Institute for Electrical
and Electronics Engineers.  pp. 445-447, 1994.

11. Saidi, Ali. “Decimation-In-Time-Frequency FFT
Algorithm.” ICASSP94
Digital Signal Processing. vol III. Institute for
Electrical and Electronics Engineers.
pp. 453-456, 1994.

12. “ Message Passing Interface Forum. MPI:
Message-Passing Interface Standard. Techni
Report Computer Science Department”Technical
Report CS-94-230, University of Tennessee,
Knoxville, TN, May 5 1994.

13. Snir, Marc. et. al.MPI: The Complete Reference
The MIT Press, Cambridge,Massachusetts, 1996

14. Fox, Geoffrey C. et. al.Solving Problems On
Concurrent Processors.Prentice Hall, Englewood
Cliffs, New Jersey, 1988.
Mississippi State University Fall ’96



Audible Frequency Detection and Classification Group Page 1

a
ay
t

al
or
nt

l
e
ta
s
ed,
ed

to

,
e
r,

or
tly
e
tire
the
ll
e

s a
m
lay
en
s

to
he
or

he
on

Audible Frequency Detection and Classification

David E. Gray, W. Craig McKnight, Stephen R. Wood

Audible Frequency Detection and Classification Group
Department of Electrical and Computer Engineering

Mississippi State University
216 Simrall, Hardy Rd.

Mississippi State, Mississippi 39762
{gray, wcm1, srw1}@ece.msstate.edu
1.  Abstract

Current music software relies on external input from
MIDI capable devices. Because traditional musical
instruments are inherently analog, the interaction of
musicians and computers is rare.

The purpose of this project is to develop a software
package for music education utilizing an acoustical
instrument interface so that players of all instruments
can begin to utilize the computing power of today’s
world. Musicians who play tones into a microphone
will see those tones analyzed in the areas of relative and
absolute pitch.

2.  Overview

2.1 A Brief History of Computers in Music

There has been an interest in using computers to aid in
the creation of music for more than thirty years. Bell
Telephone Laboratories developed a program called
Music 4as early as the 1960’s. Through various updates
and revisions, this program eventually developed into
what is nowCSound. CSoundallows the user to write
programs that represent arrangements of music for
different instruments that will be simulated by the
computer. One of the new features of the program
allows the user to input information into the computer
via a MIDI (Musical Instrument Digital Interface)
equipped instrument [1].

One area where the use of computers in music holds
great promise is in education.Listen,by Imaja, is an
educational software package that teaches students
relative pitch, harmony, intervals between notes, and
chord structure in an interactive environment. For

example, the computer would give an interval to
student studying intervals. The student would then pl
the interval on the keyboard or other MIDI instrumen
and the computer would tell the student if the interv
played was correct or if one of the notes was too high
too low. This package relies on MIDI codes being se
to the computer from  a MIDI capable device [2].

MIDI codes are a form of communication protoco
decided upon by the music manufacturing industry. Th
codes are transmitted serially at a 31.25 K bits/s da
rate and contain information about which key wa
played, when the event started, when the event stopp
what voice patch to use, and other aesthetics involv
with playing a note [3] [4].

In the case of a piano style keyboard being connected
a computer using MIDI, the information traveling to the
computer is generated digitally, transmitted digitally
and manipulated on a digital computer. Throughout th
entire signal chain from the instrument to the compute
the signal is never analog. This is an obstacle f
musical instruments in general since most are inheren
analog. MIDI controllers for instruments such as th
guitar have been developed and in some cases the en
instruments themselves have been designed as
controllers, but an interface to accommodate a
instruments without changing hardware is not in wid
use.

The goal of this project is to create a program that use
computer to recognize musical notes originating fro
an analog source. Users of the program are able to p
notes on an instrument into a microphone. They are th
informed of what note was played and if the note wa
flat, sharp, or in tune. Another option allows the user
learn about the intervals between a group of notes. T
notes can either be played simultaneously
sequentially.

This project could serve as foundational research for t
creation of a complete music education and notati
MS State DSP Conference Fall 1996
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software package for instruments that are not MIDI
capable.

2.2  Overall System Algorithm

Figure 1 illustrates the process by which musical notes
are analyzed with the software developed in this project.
A musical, analog signal is played into a microphone or
other analog transducer. The analog signal is then
converted to a digital signal sampled at a given rate by
the recording feature ofNetwork Audio.

After sampling, a Fast Fourier Transform is used to
convert the time domain signal into the frequency
domain. Once the signal is in the frequency domain, the
peaks in the frequency spectrum are found and passed to
a polynomial interpolation routine to increase the
accuracy of the program. A list of possible notes is then
built. The possible notes in the note list are classified as
notes if they pass given criteria corresponding to
magnitude and overtone patterns that imply musical
signals.

Once the note list has been created, each note is give
note name corresponding to its frequency. Dependi
on the mode of operation, notes are found to be in tu
or not, or the intervals between notes played eith
sequentially or simultaneously are determined.

3.  Musical Signals

3.1 Musical Notes

When describing or measuring musical notes, only
single frequency is usually mentioned. For example, t
musical note A4 is generally accepted to be th
frequency corresponding to 440 Hz. However, when
single musical note is played on an instrument, mo
than one frequency is produced. The addition
frequencies occur at integer multiples of the lowe
frequency, which is the frequency used to name the no
(See Figure 2).

The lowest frequency is called the fundament
frequency and the frequencies occurring at integ
multiples of the fundamental are called harmonics
overtones. Given the frequency,ff, of the fundamental,

the frequency of the nth overtone can be calculated a
follows:

Fast Fourier Transform

Analog to Digital Conversion

Polynomial Interpolation

Classify and Sift
Frequency Data

Update User Interface

Figure 1: Block diagram of the implemented system
showing the main steps in analyzing the
musical signal.
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Figure 2: Frequency Spectrum of a C4 played on a
Trumpet.  Notice the integer relationship
of each overtone frequency to the
fundamental frequency at 261 Hz.
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The relative amplitude of the different harmonics
produced varies from instrument to instrument and this
amplitude pattern defines thetimbre of an instrument.
Timbre is the quality, or color, of a sound based on a
harmonic series.

Because musical notes produce a particular pattern of
frequencies and because the energy of noise is
distributed randomly throughout the frequency
spectrum, it is possible to distinguish musical notes
from noise [5]. Characteristic spectra for white noise,
random noise and a musical note are shown in Figure 3.
The distinguishing characteristic of the overtone pattern
was used to identify and classify notes in this project.

3.2 Even-Tempered Tuning

Perhaps the most important interval in music is the
octave. The octave serves to define the musical scale. It
is defined as the interval between two notes where the
higher note is exactly twice the frequency of the lower
note. In Western music, there are 12 notes, called
semitones, which divide up the range between a note
and its octave counter part. Patterns of these notes

played sequentially make up a musical scale. T
distance between two adjacent notes is called a semit
and the distance between two notes with one in betwe
is called a tone or whole tone.

The major scale is defined by the following pattern o
tones and semitones: T, T, S, T, T, T, S. If the eig
frequencies representing the notes in the scale
picked to be musically pleasing, the notes are tuned
ideal temperament. The fourth column of Table 1 shows
the ratios of the frequency of notes in the major scale
relation to the root or lowest note of the scale [6] [7].

A problem is encountered when an instrument is tun
using ideal temperament ratios. If the instrument
tuned to the key of C and all the notes in between C a
its corresponding octave obey the ratios of ide
temperament, the instrument will perform well fo
music written in the key of C. However, if a piece o
music is to be played in a different key using the ide
temperament tuning for the key of C, the ratios betwe
the notes for the new key do not correspond to ide
temperament for the key of C. For example, th
difference in the ratio values for the notes C and D

f n n 1+( ) f f=

(a)

(b)

(c)

Figure 3: Frequency spectra of (a) white noise
(b)  noise with irregular energy
concentration (c)  musical note.

Table 1:  Comparison of Equal and Ideal
Temperament for C Major Scale

Note
Name

Equal Temperament
Ideal

Temperament

Ratio Frequency Ratio

C 1.0000 261.63 1.0000

C# 1.0595 277.18

D 1.1225 293.66 1.1250

D# 1.1892 311.13

E 1.2599 329.63 1.2500

F 1.3348 349.23 1.3333

F# 1.4142 369.99

G 1.4983 391.99 1.5000

G# 1.5874 415.31

A 1.6818 440.00 1.6666

A# 1.7818 466.16

B 1.8877 493.88 1.8750

C 2.0000 523.25 2.0000
MS State DSP Conference Fall 1996
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7 3 6 3
1.125 - 1.000 = 0.125. If a piece of music was in the key
of G, the difference in the ratios between the notes of G
and A is 1.666 - 1.500 = 0.166, which is clearly
different. Therefore, using ideal temperament tuning,
an instrument would have to be retuned anytime it
played in a different key. This is quite undesirable and
makes playing a piece of music that changes keys
impossible.

To remedy the tuning problem, a tuning method called
even temperamentwas derived. Even temperament
tuning divides the distance between semitones such that
each semitone is a factor K larger than the previous
semitone.  That is,

(2)

where .

While no note is exactly in tune using this system, each
note is very close to being in tune. This allows
musicians to play in various keys without having to
retune their instruments. The resulting note frequency
combinations are given in Table 2. The even tempered
scale was used for classifying notes in the project
because it is the accepted tuning scheme for Western
music.

The range of notes listed in Table 2 contains the full
range of a piano tuned using even tempered tuning. The
area of interest for this project was limited to the notes
between 80 Hz, a flat E2, and 2534 Hz, a sharp D#7.
This restriction was made in the interest of frequency
resolution which is discussed in Section 4. The musical
notes not included (shaded in light gray) are on the
extremes of the frequency range of piano and thus, used
less often. Only frequencies within the unshaded range
(the range of interest for this project) were classified as
notes.

f 1 K f 0•=

K 212 1.05946≈=
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4.  Internal Algorithms

4.1 Sample Frequency

The first consideration of the project was to decide on
the frequency at which to sample the analog input
signal. If an analog signal containing a maximum
frequency, fmax, is to be recovered without aliasing, it
must be sampled at a rate greater than its Nyquist rate,
fN [8]. The Nyquist rate for a signal is defined by the
following equation:

(3)

As stated in Section 3.2, the highest note that will be
recognized is a D#7. The frequency for this note is
2489.02 Hz. For best performance, the first overtone of
this note should also be detectable. The first overtone of
a D#7 can be calculated from Equation (1) to be
4978.04 Hz. Therefore, the Nyquist rate is determined
to be 9956.08 Hz. This is the minimum sample
frequency.

Once the analog input signal is sampled, it will be
transformed to the frequency domain via a Fast Fourier
Transform (FFT). The frequency resolution for an FFT
is defined as

(4)

wherefs is the sample frequency andN is the number of
points of the FFT [9].

The peaks in the frequency spectrum of a signal that is
transformed with an FFT appear to occur at integer
multiples of the resolution. Therefore, the desired
frequency resolution must also be considered along with
the Nyquist rate when determining the sample
frequency.

There are many algorithms that implement an FFT [10].
The Decimation in Time and Frequency (DITF)
algorithm was implemented first [11]. This algorithm
proved to be extremely slow when performing a 1024
point transform. For the project to execute in real time,
a faster algorithm was necessary. The algorithm known
as the Quick Fourier Transform (QFT) was tested to see
if it had better speed performance [12]. For our
application, and for 1024 points, the QFT was more than

10 times faster than the DITF. This speed enhancem
was sufficient for the project to perform in real time
therefore, the QFT was implemented in the project.

The sample frequency was first set at 20 kHz. Th
choice would have allowed more overtones of the D#
to be detected. However, from Equation (4), it woul
only offer a frequency resolution of 19.53 Hz. For th
low end of the frequency range defined in Table 2, th
resolution would allow up to three semitones to have
peak in the frequency spectrum at the same frequen
value. For example, the frequency spectrum of an F#
G2, and G#2 would all indicate a maximum at 97.66 H
This would not be acceptable.

The first two notes in the frequency detection rang
differ by approximately 5 Hz. Therefore, a resolution o
at least 5 Hz would be needed in order for each note
have a maximum at a unique frequency. From Equati
(4), this would require a sample frequency of 5120 H
However, the Nyquist rate, as discussed previously, s
a lower limit for the sample frequency of 9956 Hz
Therefore, the sample frequency was chosen to be
10 kHz.

The frequency resolution obtained by using a samp
frequency of 10 kHz and a 1024 point FFT is given b
Equation (4) to be 9.765625 Hz. This resolution wi
not provide a unique maximum point in the frequenc
spectrum for all the notes in the desired detectab
range. Polynomial interpolation schemes provide
solution to this deficiency.

4.2 Polynomial Interpolation

The data points (x1,y1),(x2,y2),...,(xn,yn) for a function,
f(x), are the necessary information needed to compu
an interpolating Polynomial, p(x), of order n-1. This
polynomial will be unique and will agree with f(x) for
all data points. A polynomial interpolation scheme i
said to have Lagrange form if it can be written as

(5)

Lk represents a family of polynomials of degree n-
which satisfy

f N 2 f max•=

∆f
f s

N
-----=

PL x( ) ykLk x( )
k 1=

n

∑=
MS State DSP Conference Fall 1996



Audible Frequency Detection and Classification Group Page 6

e
ed
ta

te
ints

r,
e
is
o
e
ed

ints

ive

z,

e
z
the
f

(6)

This definition insures that  for
j = 1,...,n.

For some arbitrary value of x,

(7)

Evaluation of pL(x) will require n+1 evaluations of L(x).
The number of multiplies required to compute pL(x) is

and the number of additions is
[13].

If the data points (x1,y1,y1'),(x2,y2,y2'),...,(xn,yn,yn') are
known for a function, f(x), then it is possible to compute
pH(x) of order 2n-1. This interpolating polynomial has
Hermite form [13]. The Hermite polynomial satisfies
the conditions pH(xi) = f(xi) as well as pH'(xi) = f'(xi) for
all i = 1,2,...n.

The Hermite polynomial is represented by the following
equation:

(8)

where

(9)

(10)

(11)

(12)

For arbitrary values of x, the value of Lk defined in

Equation (7) is used to define the value ofHk and in
the following manner:

(13)

(14)

A 5-point Lagrange interpolation and a 3-point Hermit
interpolation were tested to determine the increas
accuracy that could be obtained by interpolating the da
from the frequency spectrum. The goal of the Hermi
scheme was to interpolate using three consecutive po
(x0,y0), (x1,y1), and (x2,y2), where (x1,y1) is the
maximum point in the frequency spectrum. Howeve
the Hermite scheme requires knowledge of th
derivative of f(x), as seen by Equation (8). This data
not directly available in the frequency spectrum. T
produce a Hermite polynomial, the derivative at th
points of interest was estimated using the center
difference formula for numerical differentiation given
below [13]:

(15)

where h is the distance between consecutive data po
and is the resolution of the FFT in this context.

For the Lagrange interpolation scheme, five consecut
data points, (x0,y0), (x1,y1), (x2,y2), (x3,y3), and (x4,y4)
were used where (x2,y2) is the maximum point in the
frequency spectrum.

Since the resolution of the FFT is approximately 10 H
the true frequency of the input signal will be within 5 Hz
of the maximum in the frequency spectrum. Both of th
interpolating polynomials were evaluated at 0.1 H
increments across a 10 Hz range centered about
maximum data point. From this data, the maximum o

Lk xj( )
0 k j≠,
1 k, j= 

 
 

= j 1 … n, ,=

k 1 … n, ,=

pL xj( ) f xj( ) xj= =

Lk x( )
x xj–

xk xj–
----------------

j 1=
j k≠

n

∏=

n
2

2n 1–+ n
2

n 1–+

pH x( ) Hk x( ) f xk( )
k 1=

n

∑

Ĥk x( ) f′ xk( )
k 1=

n

∑

+=

Hk xj( )
0 k j≠,
1 k, j= 

 
 

= j 1 … n, ,=

k 1 … n, ,=

Hk′ xj( ) 0=
j 1 … n, ,=

k 1 … n, ,=

Ĥk′ xj( )
0 k j≠,
1 k, j= 

 
 

= j 1 … n, ,=

k 1 … n, ,=

Ĥk xj( ) 0= j 1 … n, ,=

k 1 … n, ,=

Ĥk

Hk x( ) 1 2 x xk–( )Lk′ xk( )–[ ]Lk
2

x( )=

Ĥk x( ) x xk–( )Lk
2

x( )=

f′ x0( )
f x0 h+( ) f x0 h–( )–

2h
----------------------------------------------------=
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the interpolation polynomial is determined with an
accuracy of 0.1 Hz.

The two interpolation routines were tested with
computer generated sine waves of known frequency.
The results are listed in Table 3

This data indicates that the 3-point Hermite polynomial
never performs better than the 5-point Lagrange
polynomial. The Hermite is also computationally more
expensive, since it computes Lk as well as Lk' for
k = 1,...,n and must estimate 3 derivatives. Therefore, a
5-point Lagrange interpolating polynomial is used to
determine the maximum point in the frequency
spectrum more accurately.

The Lagrange interpolating algorithm was also tested on
a range of frequencies given in Table 4. This table
indicates the increased accuracy gained by interpolating

as well as the error that still occurs in interpolate
values.

Also, Table 4 shows that the FFT produces data points
976.56 Hz and 986.33 Hz. Interpolation is mos
beneficial when the frequency to be detected
approximately half way between consecutive FFT da
points.  These results are illustrated below in Figure 4

A higher number of points could have been used in t
calculation of the FFT in order to produce a bette
resolution as opposed to interpolation. However, even
this option is computationally feasible in real time, it i
not as desirable as interpolation. If 2048 points we
used, the resolution would be 4.88 Hz. A note that
one to two Hz sharp or flat would be likely to have th
same maximum in the frequency spectrum as if it we
played in tune. By interpolating the peak, however, it

Table 3:  Comparison among FFT, Lagrange, and
Hermite

Actual
Peak

FFT
5-point

Lagrange
3-point
Hermite

82.0 78.1 80.1 79.3

154.0 156.3 155.9 156.0

155.0 156.3 156.1 156.2

156.0 156.3 156.2 156.3

157.0 156.3 156.3 156.3

158.0 156.3 156.4 156.3

438.0 439.5 439.3 439.4

440.0 439.5 439.5 439.5

442.0 439.5 440.0 439.7

582.0 585.9 584.0 584.8

584.0 585.9 585.7 585.8

586.0 585.9 585.9 585.9

588.0 585.9 586.2 586.1

590.0 585.9 588.1 587.3

650.0 654.3 651.5 652.5

652.0 654.3 653.9 654.1

654.0 654.3 654.3 654.3

960.0 995.0Frequency (Hz)

FFT peak: 976.56 Hz
LaGrange peak: 979.66 Hz

205.0 240.0Frequency (Hz)

FFT peak: 224.61 Hz
LaGrange peak: 220.65 Hz

Figure 4: Two graphs comparing the accuracy of
frequency data with and without Lagrange
interpolation.  (top) 981 Hz peak generated
with a function generator. (bottom) A3,
which is 220 Hz, played on a bass guitar.
MS State DSP Conference Fall 1996
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likely that a difference of one to two Hz in the signal
will be discernible.

4.3 Sifting Algorithm

A sifting algorithm was implemented to identify and
classify the notes that were played. The course of the
algorithm is as follows. The frequency spectrum derived
from the FFT is scanned to find peaks above a certain
amplitude threshold. Once a peak is found, its
frequency is compared with other peaks already placed
in the note list to determine if it is an integer multiple of
these peaks. If so the peak is classified as a harmonic or
overtone of that note and placed in its array of
overtones. The algorithm then progresses to see if the
peak might be an overtone of any of the other possible
notes in the note list. If, once the note list has been
traversed, the peak has not been classified as an
overtone, it is classified as a possible note.

Once all of the peaks out of the frequency spectrum
have been classified as possible notes or overtones, the
note list is scanned to eliminate any peaks which might
be noise. To accomplish this, the amplitude of the peak

and the number of peaks placed in its overtone array
tested.

To check the amplitude of the possible notes, th
magnitude of the highest peak is used to normalize t
magnitude of all of the peaks. If a peak does not have
magnitude of 0.15 once normalized and the peak does
have at least two overtones, the peak is classified
noise and is eliminated from the note list. If a peak i
the note list satisfies both of these qualifications, then
is considered to be a note and is passed back to
calling function to be named.

4.4 Tuning Overtones

The data in Table 3 and Table 4 indicate that th
interpolation algorithm detects a frequency with a
absolute error less than 2.25 Hz. This error is qui
significant in the lower end of the desired detectio
range. At higher frequencies, however, the error will b
tolerable. Perhaps an example will illustrate this point

A musician plays a note at 110 Hz, which is an A
perfectly in tune. The minimum value that the

Table 4:  Uninterpolated Frequency Values and Interpolated Frequency Values Using 5- point Lagrange
Interpolation for ∆f=9.766 Hz

Generated
Frequency

(Hz)

Uninterpolated
Frequency (Hz)

Interpolated
Frequency

(Hz)

Uninterpolated
Difference (Hz)

Interpolated
Difference

(Hz)

Error Ratio
Magnitude

975.0 976.56 976.36 +1.56 +1.36 1.15

976.0 976.56 976.56 +0.56 +0.56 1.00

977.0 976.56 976.56 -0.44 -0.44 1.00

978.0 976.56 976.66 -1.44 -1.34 1.08

979.0 976.56 977.06 -2.44 -1.94 1.26

980.0 976.56 977.76 -3.44 -2.24 1.54

981.0 976.56 979.66 -4.44 -1.34 3.31

982.0 986.33 983.53 +4.33 +1.53 2.83

983.0 986.33 985.23 +3.33 +2.23 1.49

984.0 986.33 985.93 +2.33 +1.93 1.21

985.0 986.33 986.23 +1.33 +1.23 1.08

986.0 986.33 986.33 +0.33 +0.33 1.00

987.0 986.33 986.33 -0.67 -0.67 1.00
MS State DSP Conference Fall 1996
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interpolation routine would indicate for this tone is
107.75 Hz. By searching a database, it is known that a
frequency of 107.75 Hz should be 110 Hz to be in tune.
The tuning quality of this note is calculated by

(16)

(17)

whereQf is the quality of a note if it is flat,Qs is the
quality of a note if it is sharp,fc is the frequency of the
note played by the instrument, andfT is the frequency of
the note in even-tempered tuning that most closely
matchesfc.

For the example under discussion, Equation (16) yields
a quality of -0.36. The magnitude of the quality must be
greater than or equal to 0.05 to be classified as in tune.
Therefore, the tone played is characterized as very flat,
when it was actually perfectly in tune.

The musician plays another note at 880 Hz, which is an
A5 perfectly in tune. The minimum interpolated value
for this tone is 877.75 Hz. Using Equation (16), the
quality of this tone is computed as -0.05 which would be
characterized as in tune.

With this in mind, and remembering that tones have a
predictable harmonic structure, tuning will be more
accurate by tuning a particular overtone. Continuing the
example, the musician again plays a note at 110 Hz.
The seventh overtone of this tone is 880 Hz. Searching
the database for the fundamental tone, returns that the
tone should be an A2. Then, by tuning the seventh
overtone, the fundamental can be classified as in tune.

This algorithm is solid as long as the overtone which is
tuned is also a note in the database. Since the 2.25 Hz
maximum error associated with the interpolation
algorithm becomes less significant for each successive
overtone, tuning to the highest detected overtone will

provide the best result. However, only the 2n-1
overtones of a tone correspond directly to notes in the
database of notes found in even-tempered tuning.

This problem was investigated further by looking at th
overtones for every tone in the desired detection rang
All the overtones that occur within the bounds of th
maximum frequency in the database were examine
The frequency of each overtone was determined a
then the database was searched to see which tone m
closely matched the overtone in frequency value. Th
Equation (16) or Equation (17) was used to see how t
overtone related to the tone found in the database.

Continuing the example for an A2, The eighth overton
occurs at 990 Hz. In even tempered tuning, no to
occurs at 990.00 Hz. If the database is searched for t
value, a B5 will be returned which has frequency valu
987.77 Hz. The quality of this note would be calculate
as +0.0380. This quality represents an inherent errorε,
that is introduced when tuning the eighth overtone of a
A2. If the 990 Hz frequency had been a fundament
tone, then the quality would accurately indicate that th
tone was slightly sharp.

The data collected from this process was compiled a
analyzed to see a remarkable trend. The error associa
with a particular overtone is independent of th
fundamental tone. The eighth overtone of any in tun
note has a quality of 0.0380. Table 5 shows the err
corresponding to a given overtone.

A fundamental tone,ff, will have an overtone frequency,
fo, that will be used for tuningff. fo will be compared to
a frequency,fc, from the database. If the inherent erro
ε, is greater than 0, it represents the fraction of th
difference betweenfc and the next note in even tempere
tuning that must be added tofc in order to getfo. This is
seen by Equation (18).

(18)

If ε is less than 0, it represents the fraction of th
difference betweenfc and the previous note in even
tempered tuning that must be subtracted fromfc in order
to getfo.  This is seen by Equation (19).

(19)

Equations (20) and (21) are derived by solvin
Equations (18) and (19) respectively forfc.

Qf

f c f T–

f T

f T

212
---------

 
 
 

–

----------------------------=

Qs

f c f T–

212( ) f T( ) f T–
--------------------------------------=

f 0 f c ε 212( ) f c( ) f c–[ ]+=

f 0 f c ε f c

f c

212
---------–

 
 
 

–=
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If the overtone number, n, associated with the frequency
fo that is to be used in determining the quality of the
fundamental tone,ff, is known, then these equations
allow fo to be modified to a corrected valuefc by using
the ε associated with the given n. Then, the new
frequency,fc, can be used for determining the tuning
quality. When this frequency is compared to a
frequency in the database,fT, there will be no inherent
error, ε, introduced. Q, the quality given by Equation
(16) or (17), will accurately represent the quality offf.

4.5 Interval Detection

Musicians are often interested in the groups of notes
chords that they are playing. An option to identify th
musical interval between two notes was implemente
When called for the first time, the interval detectio
code creates an interval list of all the notes currently
the note list. The interval between each of the notes
the interval list is then calculated.

Each successive time that the interval detection code
called, the note list and the interval list are compared
see if any new notes have been played. New notes
added to the current interval list and all intervals a
recalculated. A function outside the interval detectio
code clears the interval list when the user desires
investigate a different combination of notes.

5.  Project Database

To test the program during the process of developme
a database was created. It consists of sine wav
generated by a digital function generator and music
notes digitally recorded using a microphone and
sampling program calledNetwork Audio. Files in the
database range from containing single frequency d
without instrument overtones to multiple frequency da
with instrument overtones.

File names for the database were standardized to
following format: <source>_<# of principle
frequencies>_<tuning><note>.raw. <source> is a
three-character abbreviation for the instrument.<# of
principle frequencies> is a numeral denoting the
number of principle frequencies (i.e., the number o
notes played) in the sample.<tuning> is a single-
character denoting whether the sample is sharp, flat,
in tune: +, -, ~, respectively.<note> is a three-character
denotation of the note name in the sample. For examp
an A220 were represented as A3~. The file name fo
sample collected from a trumpet playing a sharp A44
would be: tru_1_+A4~.raw. If the sample were a C26
but were in tune: tru_1_~C4~.raw. For a sample fro
an instrument capable of playing multiple tones at onc
such as a guitar playing sharp A440 and in tune C#5
above it would be:  acg_2_+A4~_~C5+.raw.

The archive was constructed of data to be used in th
phases of the project. The first phase contained sin
tones to test the tuner function of the software. F

Table 5:  Deviation of Overtones from Even-
Tempered Scale

Overtone
Number

Deviation from
Even-Tempered

Scale (%)

0 0.00

1 0.1021

2 1.9750

3 0.0511

4 -13.1604

5 1.9750

6 -29.9504

7 0.0511

8 3.8636

9 -13.1805

10 -46.5735

11 1.9580

f c

f 0

1 ε 212 1–( )+
---------------------------------------=

f c

f 0

1 ε 1 212( )⁄ 1–( )+
--------------------------------------------------=
MS State DSP Conference Fall 1996



Audible Frequency Detection and Classification Group Page 11

s
es
o
e
of
ut
or

e
.
of
ss

to
of
e

.
ted
he

ed

in
me
’s
e
al

e
ic
d
o

Phase I of the project, three instruments were used in the
data archive: a guitar, a bass guitar and a trumpet. Each
instrument was recorded in three sets of cases. For each
case, a note was played in tune, then that note was
played out of tune flat, and then it was played out of tune
sharp. Phase I of the archive contains 36 samples in the
range of interest.

In Phase II, two instruments, the guitar and bass guitar,
were each recorded playing each of the twelve intervals
less than an octave. Phase II of the archive contains 24
samples for interval testing.

Phase III of the archive contains sequential notes
designed to test if the software is effective in detecting
note changes. Again, three instruments were used, the
guitar, bass guitar, and trumpet. For each file, a
sequence of three notes was recorded. Each instrument
played three sequences of intervals. The Phase III
archive contains 27 samples.

Phase IV is an archive of chord data recorded from the
guitar and the bass guitar. Each instrument played a
major, minor and diminished triad based on three tones.
The Phase IV archive contains 18 samples.

All of the data in the database was sampled at 20 KHz.
Once the decision was made to run the program at a
sampling rate of 10 KHz, the database files were down
sampled to 10 KHz. This was accomplished through the
use of a program calledsox.

6.  Results

Of 36 Phase I files, we named the correct note 88% of
the time. Of these, 62.2% were tuned correctly. The
note name in the acoustic guitar files were identified
correctly 100% of the time and the tuning was correct
90.3% of these times. The note name in the bass guitar
files were identified correctly 80.7% of the time and the
tuning was correct 52% of these time. The note name
for the trumpet files was identified correctly 87% of the
time and the tuning was correct 83% of these times.
This indicates that our algorithm is effective at
frequencies greater than 130 Hz, but is less effective at
lower frequencies.

Of 24 Phase II files, 33% of the notes and intervals were
identified correctly. For any given two notes, the
interval was always classified correctly. Of the 12

acoustic guitar files, 67% were correct. The four file
that did not yield correct results could be special cas
of overtone interaction or could be attributed t
inaccurate naming of the files. None of the files for th
bass guitar yielded correct results. The lower tone
each file was recorded an octave too low, placing it o
of the range of interest. This accounts for the po
performance for these files.

Of the nine files in Phase III, all three notes in six of th
files were identified correctly without any problems
One bass guitar file contains notes that were outside
the range of interest as defined by Table 2. Another ba
guitar file causes an error in the software. Listening
this file indicates that there was a large amount
distortion present and this could account for th
software error.

The files in Phase IV were not evaluated critically
However, the results for the Phase IV data are expec
to be comparable to the results of the Phase II data. T
addition of notes played simultaneously is not expect
to adversely affect the performance of the software.

7.  Future Research

It might prove useful to investigate frequency doma
representations of our signals other than the FFT. So
alternatives might be spectral estimation and Prony
method [14] [15]. Estimating the spectrum with thes
techniques could eliminate the need for polynomi
interpolation.

Reducing computation time for one spectrum will b
key to integrating the software into a real-time mus
notation program. Faster FFT algorithms might yiel
this. Also the spectral estimation techniques could d
this.
MS State DSP Conference Fall 1996
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9.  Appendix--Raw Data from Analysis of
Project Database

Table 6:  Results of Analyzing Data from Phase I of
Project Database

Filename
(*.raw)
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acg_1_+C4~ 18 18 18

acg_1_+D4~ 16 16 16

acg_1_+E5~ 7 7 7

acg_1_-C4~ 18 18 18

acg_1_-D4~ 16 16 16

acg_1_-E5~ 8 8 8

acg_1_~C4~ 20 20 7

acg_1_~D4~ 24 24 22

acg_1_~E5~ 7 7 6

bag_1_+A2~ 28 27 1

bag_1_+A3~ 22 22 22

bag_1_+C3~ 29 29 26

bag_1_+C4~ 28 28 28

bag_1_+E2~ 31 19 19

bag_1_-A2~ 30 30 30

bag_1_-A3~ 22 22 22

bag_1_-C3~ 27 0 0

bag_1_-C4~ 20 20 0

bag_1_-E2~ 28 0 0

bag_1_~A2~ 31 30 3

bag_1_~A3~ 26 26 18

bag_1_~C3” 32 30 0

bag_1_~C4~ 21 21 0

bag_1_~E2~ 26 16 0

tru_1_+B4- 18 18 4

tru_1_+C4~ 19 18 18

tru_1_+C5~ 17 17 16

tru_1_+G4~ 19 19 19

tru_1_-B4- 18 18 18

tru_1_-C4~ 14 5 5

tru_1_-C5~ 16 5 5

tru_1_-G4~ 19 16 16

tru_1_~B4- 22 22 7

tru_1_~C4~ 19 19 0

tru_1_~C5~ 18 18 0

tru_1_~G4~ 19 19 0

Table 7: Results of Analyzing Data from Phase II of
Project Database

Filename (*.raw)
Low
Note

High
Note

Interval

acg_2_~C4~_~A4+ C4 A4# m7

A4# A4 P0

acg_2_~C4~_~A4~ E3 B3 P5

E3 G4# M3

B3 B3 P0

B3 G4# M6

G4# G4# P0

acg_2_~C4~_~B4~ B3 A4# M7

A4# A4# P0

* these files cause a software error

Table 6:  Results of Analyzing Data from Phase I of
Project Database
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acg_2_~C4~_~C4+ C4 C5# m2

C5# C5# P0

acg_2_~C4~_~C5~ B3 F6# P5

F6# F6# P0

acg_2_~C4~_~D4+ C4 D4# m3

D4# D4# P0

acg_2_~C4~_~D4~ C4 D4 M2

D4 D4 P0

acg_2_~C4~_~E4~ C4 E4 M3

E4 E4 P0

acg_2_~C4~_~F4+ C4 F4# TT

F4# F4# P0

acg_2_~C4~_~F4~ C4 F4 P4

F4 F4 P0

acg_2_~C4~_~G4+ C4 G4# m6

G4# G4# P0

acg_2_~C4~_~G4~ C4 G4 P5

G4 G4 P0

bag_2_~C3~_~A3+ B2 G3 m6

B2 A3# M7

G3 G3 P0

G3 A3# m3

A3# A3# P0

Table 7: Results of Analyzing Data from Phase II of
Project Database

Filename (*.raw)
Low
Note

High
Note

Interval

* these files cause a software error

bag_2_~C3~_~A3~ A2 B2 M2

A2 G3 m7

A2 A2 P0

B2 B2 P0

B2 G3 m6

B2 A3 m7

G3 G3 P0

G3 A3 M2

A3 A3 P0

bag_2_~C3~_~B3~ B2 G3 m6

B2 B2 P0

G3 G3 P0

G3 B3 M3

B3 B3 P0

bag_2_~C3~_~C3+ *

bag_2_~C3~_~C4~ *

bag_2_~C3~_~D3+ C3 G3 P5

C3 A3# m7

G3 G3 P0

G3 A3# m7

A3# A3# P0

bag_2_~C3~_~D3~ C3 A3 M6

C3 D4 M2

A3 A3 P0

A3 D4 P4

D4 D4 P0

Table 7: Results of Analyzing Data from Phase II of
Project Database

Filename (*.raw)
Low
Note

High
Note

Interval

* these files cause a software error
MS State DSP Conference Fall 1996
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bag_2_~C3~_~E3~ F2 E3 M7

F2 B3 TT

E3 E3 P0

E3 B3 P5

B3 B3 P0

bag_2_~C3~_~F3+ F2# C3 TT

C3 C3 P0

bag_2_~C3~_~F3~ F2 C3 P5

F2 G3 M2

C3 C3 P0

C3 G3 P5

G3 G3 P0

bag_2_~C3~_~G3+ G2# C3 M3

G2# G2# P0

C3 C3 P0

C3 G3# m6

G3# G3# P0

bag_2_~C3~_~G3~ G2 C3 P4

C3 C3 P0

Table 7: Results of Analyzing Data from Phase II of
Project Database

Filename (*.raw)
Low
Note

High
Note

Interval

* these files cause a software error
MS State DSP Conference Fall 1996
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Algorithm to Determine the Scenic Beauty of Images

Nirmala Kalidindi, Liang Zheng, Yaqin Hong

Digital Image Group

Department of Electrical and Computer Engineering

Mississippi State University

Box 9571

Mississippi State, MS 39762

434 Simrall, Hardy Rd.

{kaldindi@isip, zl3@ra, yh4@ra]

Abstract
The United States Forestry Service (USFS)
wishes to determine the scenic quality of the
images to preserve recreation and aesthetic
resources in forest management. They want to
determine a predefined pattern to cut the trees
so as to still retain the scenic beauty even after
cutting the forest by timber loggers. The scenic
beauty will be determined on a scale from “0”
to “1”. We have in our database 679 unique PPM
images of different vegetations taken during all
the seasons of the year. Each of the image is of
4.7 Mb. We have the subjective ratings available
for all the images. These ratings are taken by
showing each of the images to different groups
of people and then converting them to a
standardized scores by using Scenic Beauty
Rating. We attempt to develop a systematic
approach to determine the scenic quality and
correlate them to the subjective ratings
available. Some of the parameters to be
considered are color, size of the trees etc. The
effect of the color can be determined by doing
histogram analysis of the image. The effect of
the size of the trees can be studied by doing edge
detection and computing the number of vertical
lines in the image. Forest scenery that is
undisturbed and having variety of natural

features is preferred while scenery whic
obstructs the view of the forest with lot o
foliage and bushes is not considered
scenic.and images which doesn’t obstruct t
view are preferred as compared to the ones w
more foliage and bushes. The evaluation
performed by running the program through th
images in the database.

1. Introduction
We attempted to develop an algorithm t
determine the scenic quality of the image on
scale from “0” to “1”. The importance of forest
recreation and landscape scenic quality is bei
recognized and thus efforts are made to prese
the scenic quality of the image.The statistic
models suggest that the density and sawtimb
sized trees and the proportion and visu
penetration are positively associated with scen
beauty while foliage, twig, small stem screenin
and the density of small-diameters tree a
negatively associated with scenic beaut
Histogram analysis and edge detection metho
were used to analyses the parameters such
color and the size of the trees in the image. T
results from the subjective ratings showed th
scenic beauty increases with the level of th
hardwood retention and the summer, fall an
MS State DSP COnference Fall’96
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spring views were preferred over those taken
during winter. Effort was made to correlate the
output of the algorithm with the subjective
ratings. We have the database with 679 unique
images. The database has the scenic beauty
rating for each of the image. Scenic beauty
rating is a scaling procedure used to correlate
the ratings from different groups of sessions.
Baseline slides are used as reference for all the
rating sessions.

2.PPM Images

The images given by the forestry department
were in Kodak PhotoCD(PCD) format. The
PCD format is a proprietary format and it
could not be viewed with the imagetools
available hence it was required to convert it
into more familiar formats such as gif or
ppm.We chose PPM format for this purpose.
The PCD images were converted into PPM
format through public domain software
“hpcdtoppm” available in the net. This
software tool is used to convert pcd files to
ppm files. hpcdtoppm stands for “Hadmuts pcd
to ppm” The software is available at the URL
“http://www.boutell.com/lsm/lsmbyid.cgi/
000746”. This software also needs some
netpbm utilities which are also available as
public domain utilities. The netpbm utilities
can be downloaded from the ftp site at “ftp://
ftp.cs.ubc.ca/ftp/archive/netpbm/”.Various
resolutions of the ppm files can be obtained.
Basically Base/16, Base/4, Base,4Base and 16
Base are available. We have taken the 4 Base
option for our requirement.Any of the
resolution can be obtained by adjusting the
options while executing the “hpcdtoppm”
software. The resolution of each of these
options is given below.

 1. Base/16, size 128 x 192 pixels

 2. Base/4, size 256 x 384 pixels

 3. Base, size 512 x 768 pixels

 4. 4 Base, size 1024 x 1536 pixels

 5. 16 Base, size 2048 x 3072 pixels

The format of the PPM images is describe
below:

• A “magic number” for identifying
the file type. A PPM file magic
number is the character stringP6. It
should be the first line of the PPM
file.

• Whitespace characters such as
blanks, TABs, carriage returns
(CR), line feeds (LF) etc.

• The image width in number of
pixels, formatted as ASCII
characters in decimal.

•  Whitespace characters.

• The height again in number of
pixels, formatted as ASCII
characters in decimal.

•  Whitespace characters.

• The maximum color value which
each of the colors in the pixels can
have. This value is again in ASCII
decimal. The maximum value
which it can have is 255.

•  Whitespace characters.

• Width x height pixels, each three
ASCII decimal values having value
between 0 and the specified
maximum color value which it can
take, starting at the top-left corner
pixmap, proceeding in normal
English reading order. The three
values for each pixel represent red,
green, and blue, respectively. A
value of 0 means that the color is
off, and the maximum value means
that the color is at saturation level.

• Comments are also allowed in the
MS State DSP Conference Fall’96
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ppm file and they are indicated by
the character “#”. Any line starting
with the character “#” to the next
end-of-line are ignored.

• There is also a restriction that the
line should not be longer than 70
characters.

Various resolutions of the ppm files can be
obtained. Basically Base/16, Base/4, Base,
4Base and 16 Base are available. We have
taken the 4 Base option for our requirement.
The resolution of each of these options is given
below.

 1. Base/16, size 128 x 192 pixels

 2. Base/4, size 256 x 384 pixels

 3. Base, size 512 x 768 pixels

 4. 4 Base, size 1024 x 1536 pixels

 5. 16 Base, size 2048 x 3072 pixels

Any of the resolution can be obtained by
adjusting the options while executing the
hpcdtoppm software.

3. Histogram Analysis
Color is one of the noticeable features of a forest
environment. It is affected by the temporal
rhythm of seasons. Color variation by season is
one of the most notable changes in forest vege-
tation. Summer, Fall and Spring views are
judged as significantly more scenic than winter
views. The preference is related to seasonal col-
or patterns.As human preferences vary with col-
or change, change of season is an important fac-
tor in determining the quality of an image.

Our approach was to extract the mean of each
of the color in the image. Color has a major ef-
fect in determining the scenic quality of the im-
age. The variation of seasons changes the colors
in the image. It was observed from the subjective

ratings that summer and spring are preferr
over winter. This is based on the fact that peop
prefer green and blue color as compared to r
and yellow which comes from the inclination o
the people towards natural colors.

Each pixel in PPM is represented by three byt
one byte for each of the color of red. green an
blue. Algorithm was developed to compute th
mean of each of the three fundamental colors
the image and to correlate the mean of the colo
to the scenic beauty of the image. For constru
ing the histogram the image is scanned in a s
gle pass and a running count of the number
pixels found at each intensity value is kep
Some of the factors of the image like the natu
ralness of the image can be determined from t
color as color is an aid in distinguishing betwee
what is “natural” and what is “built in”. In par-
ticular, a natural setting’s continuous gradatio
in color is often very different from the sharpe
contrasts that are found in the built-in environ
ment. Graph is drawn for the variation of th
number of pixels for each value of the color from
“0” to the maximum value of color in the image

4. Edge Detection Overview
Edge detection is an important part in imag
analysis. Edges characterize object boundar
and are therefore useful for segmentation a
identification of objects in scenes. Edge
defined as the boundary between two regio
with relatively distinct gray-level discontinuity
and the abrupt transition between two region
can be determined on the basis of gray-lev
discontinuity. The magnitude of the firs
derivative is used to detect the presence of
edge and the direction of the edge is determin
by the sign of the derivative. Thus the tw
important properties for establishing similarit
of edge pixels are the strength and the respon
of the gradient operator used to produce the ed
pixel and the direction of the gradient.

Our approach was to extract the number of lon
trees in the image. We believed that computin
the number of vertical lines in the image woul
MS State DSP Conference Fall’96
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indicate the presence of the long trees and also
the approximate length of the tree. We used the
algorithm of canny-edge detector to compute
edge detection.

The input to the canny edge detector is a PGM
image hence we converted the PPM image to
PGM image. The header of the PGM image is
similar to the PPM file except for the magic
number which is “P5” and there are width x
height pixels each of 8 bytes representing the
gray value. Edge detection was done to properly
detect the edges and then thresholding them
through a thresholding tracker to obtain both the
horizontal and vertical lines. Algorithm was
written to calculate the number of vertical lines
after edge detection. By this way both the
smaller as well as longer vertical lines are
obtained. Hence to get the number of longer
lines a threshold was considered to eliminate the
shorter lines which correspond to foliage or
small bushes in the image.

4.1Conversion of PPM image to PGM im-
age
The first step of edge detection was to convert
the PPM color image to the gray scale PGM
image. This was done by applying the following
matrix to each of the pixel of the PPM image.

(22)

The “Y” value in the above matrix represents
the “luminance” or brightness of each pixel. The
“RGB” represents the red, green and blue
intensity of each pixel for the PPM image. Each
pixel in the PPM file is read converted it into a
gray scale value using the above relation and
was written into the PGM file.

4.2Doing edge detection
The canny-edge detector was used to perform
the edge detection on the gray scale image. It

first applies the masks in the horizontal and th
vertical direction to retrieve the horizontal an
vertical edges. These edges are then connec
together to obtain the horizontal and vertica
lines. A threshold value is used both for th
magnitude and the orientation to detect an edg
The image after the edge detection contains on
two color levels. The block diagram of the edg
detection is shown below. Two masks which ca

be used for the detection of edges in th
horizontal and vertical direction are show

Y

I

Q

0.299 0.587 0.114

0.596 0.275– 0.321–

0.212 0.523– 0.311

R

G

B

=

Gradient form

d
dx
------ 

  2 d
dy
------ 

  2
+

 d/dx d/dy

Gaussian
smoothing

 Non Maximal
 Suppression

Input gray scale
image

Output image
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below. The mask matrix as well as the image
matrix ar given

Where I is the image matrix and W is the mask
matrix. The responses in the x and y direction
can be obtained by applying the respective
matrix. The mask matrix for the response in the
x direction is given by the matrix [1] and the
mask matrix for the response in the y direction
is given by the matrix [2]. Gx and Gy, the
gradients in the respective directions are
calculated by the formulas shown below and the
resultant gradient can be computed by the

relation . The mask for

calculating  is given by

and the mask for calculating  is given by

The  and    are given by the equations:

The angle gradient is given by the relation

. The masks are moved

through the entire image and the gradient f
magnitude and orientation are obtained. W
experimented the algorithm with variou
threshold values and it has been found to give
good edge detection at a threshold value of 1
for the orientation.

5. Vertical lines
The output of the canny edge detectio
algorithm is a combination of vertical as well a
horizontal lines smoothened representing lin
segments. Algorithm was developed to compu
the number of vertical lines. The total numbe
of the vertical lines and the length of each of th
line was computed. As the length of the lines
directly proportional to the length of the trees i
the image they are useful in determining th
number of tall trees and the short bushes.

Apparently tall trees have a positive effect o
the scenic quality whereas the small bushes ha
negative effect. In calculating the length of th
vertical lines care was taken of the deviation o
the tree from the vertical by considering certa
amount of deviation in the horizontal direction
also. Also there might be a discontinuity in th
length of the tree due to the presence of som
obstacle before it. Care was taken for this al
by giving a tolerance limit of about 5 pixels in
the vertical direction.

6.Computing the scenic beau-
ty

We had to obtain a relation for the scenic beau
from the analysis of the histogram and the ed
detection. This has to be done so as to correl
the scenic beauty with the actual mean value
the rating available from the forestry
department. The mean of each of the color
the image was obtained from the histogra
analysis and the number of vertical lines in th
image was obtained from the edge detection

I 1 I 2 I 3

I 4 I 5 I 6

I 7 I 8 I 9

W1 W2 W3

W4 W5 W6

W7 W8 W9

Gx
2

Gy
2

+

Gx

1– 2– 1–

0 0 0

1 2 1

1[ ]

Gy

1– 0 1

2– 0 2

1– 0 1

Gx Gy

Gx W7 2W8 W9+ + )( W1 2W2 W3+ +( )+=

Gy W3 2W6 W9+ + )( W1 2W4 W7+ + )(+=

α x y),( tan
1– Gx

Gy
------ 

 =
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The mean of each of the color has been
normalized inorder to get an exact percentage
of the color in each of the image. The percentage
of the long lines as well as the percentage of the
short lines in relation to the total number of lines
were computed. The facts that green color and
tall trees has a positive impact on the scenic
beauty and the red color and the short bushes
has a negative impact on the scenic beauty is
used for computing the weights of different
parameters to be used for determining the scenic
beauty.

7. Evaluation
The relation which we have developed by
observing the dependency of the various
parameters on the actual scenic rating was used
for evaluating the scenic beauty on some other
images in the database.We have taken about 20
images from the database and tried to adjust the
weights of various parameters. After deriving a
relation we implemented the relation on another
30 images. Though there was deviation from the
actual scenic value they seem to be varying with
the same proportion for all the images. We
evaluated the program on plots 1 and 3 of block
1. We provide the results for all the images in
plot 3 and some images in plot 1.

8. Database
An important aspect is the availability of exten-
sive well organized database of the forestry im-
ages. These images are the pictures taken of the
Ouachita forest in the Winona range. We have
in our database 680 unique images. These are
the images taken of four blocks in the range with
each block having five plots. Each of the image
is taken during all the seasons of the year and
also with different angles so as to see the effect
of the season.

There are also subjective scenic beauty ratings
available for each of the images. These subjec-
tive ratings were obtained by showing the im-
ages to people from different walks of life and
asking them to rate the images on a scale from

1 to 10. “1” indicating less scenic and “10” in-
dicating the most scenic image. These scores
then converted into standard ratings using Sc
nic Beauty Rating technique.

Rating scales offer an efficient and widely use
means of recording judgements about ma
kinds of images. Scenic Beauty Estima
tion(SBE) is one of the scaling procedure use
The main reason for the scaling procedures a
that people will use the rating scale differentl
from one to another in the process of recordin
their perceptions of the images presented for a
sessment.

Scaling procedures are effective for adjustin
some of these differences. All the informatio
regarding the images such as the block numb
plot number, SBE rating, angle and the time
which it is taken is included in the ppm file a
comments. There are 4 blocks and 5 plots p
block.The distribution of the plots in the block
and the number of images is given in the follow
ing tables.

Directory b01 (block 1)

Sub Directory Number of Images

p001 32

p002 32

poo3 40

p004 39

p020 32

Directory b02 (block 2)

Sub Directory Number of Images

p005 40

p006 32

p007 32

p008 32

p019 32
MS State DSP Conference Fall’96
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There are 32 images of each plot. This relation
comes as there are 4 angles per plot and the pic-
ture is taken 4 times in a year, we have 16 images
of the same plot per year. As in the database we
have the images for 2 years there are 32 images
for each plot. Some of the plots have 40 images.
These additional images are the baseline slides
which are used as reference.

9. Results
This section contains charts and graphs of the
various programs run on the images. For
convenience sake we are including only the
images from plots 3 and 1 in the website. The
mean values of the color provided in the
following chart are given in the same order as
the images in the corresponding plots. We have
taken the readings for 32 images from the plot
1 and the first ten images in the plot 3. Since the
image names are long we have not included
them here.We will just indicate them by
numbers.

Directory b03 (block 3)

Sub Directory Number of Images

p009 32

p010 32

p011 32

p012 32

p018 40

Directory b04 (block 4)

Sub Directory Number of Images

p013 32

p014 32

p015 40

p016 32

p017 32

Number
of the im-

age

Red mean Green
mean

Blue
mean

1 55 62 30

2 83 85 69

3 45 65 36

4 85 97 75

5 33 49 16

6 37 52 24

7 52 57 29

8 80 84 70

9 37 54 31

10 81 91 63

11 27 30 15

12 78 91 69

13 52 62 23

14 32 40 15

15 64 77 36

16 66 72 54

17 46 52 27

18 55 61 59

19 38 53 17

20 29 43 16

21 47 56 20

22 43 52 22

23 59 69 30

24 56 62 51

25 75 82 40
MS State DSP Conference Fall’96
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Number
of the
image

Red mean Green
mean

Blue
mean

26 69 73 59

27 70 84 49

28 94 105 75

29 64 73 33

30 64 72 60

31 67 83 49

32 96 108 78

33 58 65 32

34 64 68 56

35 57 72 44

36 97 108 84

37 42 52 21

38 43 50 22

39 71 79 43

40 58 62 51

41 66 72 36

42 85 79 63

42 46 62 36

43 87 99 66

44 45 57 18

45 41 53 19

46 71 79 33

47 87 83 66

48 89 84 69

49 57 64 33

Number of
the image

percent of
long lines

percent of
short lines

1 2.51 70.34

2 0.94 80.56

3 3.45 68.45

4 2.47 76.10

5 1.19 90.41

6 3.24 73.89

7 5.42 64.88

8 2.04 79.84

9 3.72 67.64

10 1.56 76.14

11 3.98 66.77

12 3.47 69.21

13 .0.88 82.04

14 2.12 74.21

15 2.95 68.72

16 3.08 72.24

17 3.75 70.34

18 0.84 81.12

19 0.52 83.30

20 2.10 74.34

21 2.70 78.88

22 2.21 72.02

23 2.51 71.13

24 4.99 68.42

25 4.30 66.81
MS State DSP Conference Fall’96
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Number of
the image

percent of
long lines

percent of
short lines

26 2.78 78.39

27 4.43 67.57

28 2.17 71.71

29 2.50 74.30

30 3.56 69.98

31 4.36 65.62

32 2.29 73.66

33 2.95 70.72

34 1.41 77.89

35 3.31 68.18

36 2.67 73.08

37 1.97 77.13

38 2.45 72.03

39 2.46 72.57

40 2.03 77.37

41 2.74 72.93

42 2.34 74.79

43 3.05 70.30

44 1.10 77.98

45 1.42 77.13

46 2.57 69.58

47 2.69 68.00

48 2.28 75.70

49 3.24 71.04

50 1.96 76.23

Number of
the image

Derived
SBE

Actual
SBE(mean)

1 0.42 4.68

2 0.33 4.64

3 0.50 6.59

4 0.37 4.27

5 0.56 7.25

6 0.51 7.58

7 0.40 4.15

8 0.33 3.94

9 0.49 6.35

10 0.38 7.21

11 0.41 4.58

12 0.33 3.76

13 0.46 6.41

14 0.48 6.00

15 0.45 5.19

16 0.36 4.81

17 0.41 3.22

18 0.33 2.63

19 0.54 6.17

20 0.55 6.73

21 0.46 6.95

22 0.46 6.38

23 0.44 5.49

24 0.35 6.02

25 0.41 4.47
MS State DSP Conference Fall’96
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The plots for the first five of the images in th
table are given below. The first plot is the histo
gram plot which shows the number of pixel
present in the image of each value of the col
from zero to the maximum value of color in the
image. The other plot shows the number of line
for each length of the line. The length of the lin
is on the X-axis and the number of lines wit
such length is on the Y-axis.

10. Future Work
10.1 Evaluating Scenic Beauty

The evaluation of scenic beauty has been do
by only observing the various parameters com
puted and figuring out a relation between th
actual scenic beauty and these parameters. T
parameters are the mean value of the colors a
the percentage of the vertical lines in the imag
A better and efficient method would be to us
the neural network as decision box. The param
eters should be given as the input and the neu
network should be trained with a fair amount o
database to output the actual scenic beauty
can then be used to test on the remaining imag

Also some other parameters like texture of th
ground and frequency characteristics can
used to determine the scenic beauty. The effe
of these parameters can be determined us
various image analysis methods and their effe
on the scenic beauty should be evaluated.T
determination of more parameters helps in th
effective determination of the scenic beauty an
a better correlation to the actual scenic value
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Appendix A: Images Tested:

Gray scale image

Edge detected image

Red mean = 55
Green mean = 62
Blue mean = 30
% long lines = 2.51
% short lines = 70.34
SBE = 0.42
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Plots showing the number of pixels of each color and the number of vertical lines
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Red mean = 83
Green mean = 85
Blue mean = 69
% long lines = 0.94
% short lines = 80.56
SBE = 0.33

Gray scale image

Edge detected image
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Plots showing the number of pixels of each color and the number of vertical lines
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Red mean = 45
Green mean = 65
Blue mean = 36
% long lines = 3.45
% short lines = 68.45
SBE = 0.50

Gray scale image

Edge detected image
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Plots showing the number of pixels of each color and the number of vertical lines
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Red mean = 85
Green mean = 97
Blue mean = 16
% long lines = 2.47
% short lines = 76.10
SBE = 0.37

Gray scale image

Edge detected image
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Plots showing the number of pixels of each color and the number of vertical lines



Image Processing Group: Scenic Beauty Estimation Page 20

MS State DSP Conference Fall’96

Red mean = 37
Green mean = 52
Blue mean = 24
% long lines = 3.24
% short lines = 73.89
SBE = 0.56

Gray scale image

Edge detected image
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plots showing the number of pixels of each color and the number of vertical lines
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