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SUMMARY

The Department of Electrical and Computer Engineering invites
you to attend a mini-conference on Digital Signal Processing,
being given by students in EE 6773 — Introduction to Digital
Signal Processing. Papers will be presented on:

» parallel implementations of fast Fourier transforms;
* real-time audible frequency detection and classification;
* analysis of forestry images for scenic content.

Students will present their semester-long projects at this
conference. Each group will give a 12 minute presentation,
followed by 18 minutes of discussion. After the talks, each group
will be available for a live-input real-time demonstration of their
project. These projects account for 50% of their course grade,
so critical evaluations of the projects are welcome.
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COMPARATIVE ANALYSIS OF FFT ALGORITHMS IN SEQUENTIAL
AND PARALLEL FORM

Michael Balducci, Ajitha Choudary, Jonathan Hamaker

Parallel DSP Group
Department of Electrical and Computer Engineering
Mississippi State University
Mississippi State, Mississippi 39762
{balducci, ajitha, hamaker}@erc.msstate.edu

ABSTRACT efficient algorithm under the constraints of a particular
application. Our efforts will accomplish this task by

There have been a large number of Fast Fourier penchmarking each algorithm under a variety of
Transform (FFT) algorithms which have been constraints. The benchmark statistics will be used to
developed over the years. Among these are the Radix-Zreate an automated environment capable of choosing
algorithm, Radix-4 algorithm, Split-Radix algorithm,  the most efficient algorithm for a given application.
Decimation-in-Time-Frequency  algorithm (DITF),
Quick Fourier Transform (QFT), and the Fast Hartley
Transform (FHT). However, there has not been much
prior work where the user is given a single interface to
poly-functional implementation that transparently
optimizes space and time complexity.

The FFT is one of the important and most widely used
Digital Signal Processing (DSP) algorithms. FFT

algorithms are efficient methods of calculating the DFT.
The DFT converts the input signal from the discrete
time domain, x(n), to the discrete frequency domain,
X(w), and vice versa. This is very useful in eliminating

In this paper we present the implementation and the unwanted noise signal from any communication
benchmarking of the sequential and parallel versions signal (information bearing signal) being analyzed.

of the above mentioned FFT algorithms. All Once the signal is converted into the frequency domain
algorithms have been rigorously compared based onthe noise or unwanted signal frequencies can be
computational time, object size, code size, dataeffectively filtered. Then, by using the inverse FFT, the

dependence (real or complex) and the number of communication signal can be converted back to the time
mathematical operations involved in the computations. domain. The FFT has many wide-ranging applications
The results of this endeavor will serve as a frame for jn nearly every signal processing field including speech,
creating an object-oriented FFT environment which image processing, communications, cellular phones,
will automatically choose the most efficient algorithm modems, and digital control systems. [3]

for a given platform, data set, and order or other user-

specified criteria. For most applications computation time plays a

significant role in the use of FFT's. The more time
spent computing means more efficient utilization of
resources; hence, more data can be processed in the
1. INTRODUCTION same time. The computation time can be reduced using
the symmetry, periodicity, etc. of the DFT. The

. computation time can also be reduced using parallelism
The development of Fast Fourier Transform (FFT) ha§n FFT’s. By using the FFT algorithms in parallel, the

evolved over many years. The first major breakthroughdata set can be separated into smaller blocks. The
was the Cooley-Tukey algorithm developed in the mid'different blocks of data can then be processed at the
sixties which resulted in a flurry of activity on FFT's. [1] (. o time across multiple processors. There is, of
[2] Further research led to the development of the Fas&ourse, a trade-off with this method: overhead’of

{-|artley TrTnSf%r]m ar;]d Sp“tl'Rad'X algodr!thm._ IT(elgent!y communication between processes. To make efficient
WO néw aigorithms have aiso emerged. Quic OUMeT s of the parallel method the communication time must
Transform and the DeC|mr:1t|on—|n—Tlme—Frequencyb e
i e minimized.
algorithm. Now research has to be geared towards
finding which of these algorithms is most efficient. The
problem that arises is the inherent trade-off between
computation speed, memory usage and the algorithm

complexity. Instead, we must attempt to find the most
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1. Theory of FFTs complexities which are linear with data size. At this

time, no algorithm is available with such performance

) ] o but we can derive a class of algorithms which give an

The Fourier transformid(w), of a signal,n(), is given  ficient alternative to the DFT. These algorithms are

by the equation of Figure (1a), whengt) is the time- o jectively known as Fast Fourier Transforms (FFTS).
domain signal,t is the time andw is the angular

frequency. The assertion of this equation is that any

time-domain signal can be “transformed” into a function

of fr_equen_cy. A plot of this frequency-dependent 2. Algorithms

function gives the frequency content of a particular

signal over the entire frequency spectrum. The resulting

function contains the magnitude and phase informationfhe Fast Fourier Transforms included here use several
for each frequency point in the spectrum. This procesglifferent approaches in reducing the computation cost of
of conversion from the time to frequency-domain is calculating the fourier coefficients. One method
invertible using the Inverse Fourier Transform of Figure employed by several of the algorithms is the divide-and-
1b. By the inverse transform, a frequency-domainconquer approach. These algorithms use the fact that a
signal is transformed back to the time domain. [1] [3] input sequence of length N can generally be broken into
a number of smaller sequences. Since the DFT has an
order of complexity N, breaking the summation inf®
sections of length-N¥ results in a reduction of

00

H(w) = J’h(t) el2mgt la

- complexity as shown in Figure 3. [4]
h 2
h(t) = Elﬁj H(w) e-jot 1b Complexity = E’%&? E%%lz + + E'%EE = %

Figure 3 Complexity of Divide-and-Conquer
approach. Note the reduction in

The Discrete Fourier transform (DFT) is the digital complexity from the O(R) of the DFT.
equivalent of the Fourier Transform. It is a bounded

length sequence which_ is more practical than the infinitéanother approach is to utilize the periodicity of the
summation of the Fourier Transform. The DFT assumeFT, From Figure 4, it can be seen that the multiplying
that the input signal is periodic with a period equal t0tactors of the DFT exhibit both horizontal and vertical
the length of the input sequence. The Discrete Fouriegymmetry about the unit circle when N is a power of
transform is defined as shown in Figure (2a) and itsywo. Thus, by realizing that the coefficients repeat,

Figure 1. Forward and Inverse Fourier Transform

inverse is shown in Figure (2b) [7]. redundant calculations can be eliminated. [3]
N-1 —j2mkn
X(k) = % x(ne N 2a
n=0
N-1 j2mkn

x(n) = % Y XK eN 2b
K=0

Figure 2 Forward and Inverse Discrete Fourier

Transform Figure 4 Plot of V) on the unit circle. This
complex function exhibits both
The DFT is one of the most important concepts in horizontal and vertical symmetry when
digital signal processing but it is not useful for practical N is a power of two.

applications. In computing the DFT directly, there are
4AN? multiplications and N(4N-1) additions, therefore

the computation time is of the order®N This type of
complexity is not satisfactory for large N. We desire

Mississippi State University Fall '96
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2.1. Radix-2 and 4 Algorithms 2.2. Split-Radix Algorithm

2.1.a. Sequential Form 2.2.a. Sequential Form

By limiting our data-length to the form N =\Rwe can By observing Figure 5, it can be seen that even index
define a class of FFTs known as radix algorithms.Points can be calculated independently of the odd
These algorithms successively decompose a single Nhdexed points. This leads to the possibility of making
point DFT into R segments of N/R-point DFTs. The use of more than one algorithm for the data set. The
most widely used of these radix algorithms is the Radix-increase in computational efficiency of the higher order
2 and the Radix-4. Each uses the periodic properties dRadix-4 is attractive, but the limitation in data sequence
the DFT to attain higher efficiency levels. Radix lengths is a hindrance. The Split-Radix utilizes the fact
algorithms can be implemented by either usingthat the data points can be decomposed into even and
Decimation-In-Time (Cooley and Tukey) or by 0dd indices to employ both Radix-2 and 4 algorithms.
Decimation-In-Frequency (Sande and Tukey). Each ofA Radix-2is performed on the even index points. The
these algorithms reduces the number of operations frof@dd points are then decomposed into two N/4 point

O(N2) to O(N log, N). The drawback is that the data sequences where a Radix-4 approach is taken. In

be of ified | h Thi bl b making use of these two techniques, the Split-Radix
mus_t € ot a specine engt ' IS problem can eacquires an increase in computational efficiency over the
avoided by zero-padding with no loss of information.

Radix-2 while retaining the its ability to perform on any
[11[5] power of two. [7]

2.1.b. Parallel Form 2.2.b. Parallel Form

The parallel structure of the radix algorithms is As discussed above,

understood by considering the fact that the DFT can b%omposed of a Radix-2 and two Radix-4 components

decomposed into smaller independent DFTs. ByThese components are independent of each other and,

performing each of these .smaller D_F Ts concurrently, W&hus, can be performed in parallel separate processes.
can take advantage of this parallelism. Figure 5 Show%—igure 6 shows the flow of this process. Also, notice

two stages of a Decimation-In-Time FFT. In this figure, that the Radix-2 and Radix-4 components can each be

one:an_seg;r]rat t_lr_]ﬁ 8-p9|nt DFT is dechocrjnposed Int%ﬂerformed as parallel computations (see section 2.1.b).
,tWO —p0|2nt , SISFT eze, In turn, are each decomposeyy, g manner, we can achieve maximum utilization of
Into two 2-point s.[6] parallel hardware.

the Split-Radix algorithm is

x(0) X(0)

w N/2-Point H
x(1) N — X(2) Radix-2
w -
x(2) > X(4)
12 0 - [
w w N-Point N/4-Point |
x(3) > }8 » ;8 X(6) DFT Radix-4 Spectrum
wg ’
X(4) o X(1)
wi wg N/4-Point
X(5) —r 7 X(@3) Radix-4 | _ @
: -1
wg w3
X(6) oy NN X(5)
. w3 1 w2 wg Figure 6 Parallel composition of the Split-Radix
x(7) > > NN > »— X(7) FFT and FHT.
-1 -1 -1

Figure 5 Flowgraph of an 8-point Decimation-in-
Frequency FFT. The independence of
the odd and even sample calculations
allows for evaluation on separate
processors
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2.3. Fast Hartley Transform difference occurs in the end when the Hartley
coefficients must be converted to Fourier coefficients.
2.3.a. Sequential Form This step introduces additional computations which can

be performed in parallel. [9]

The Discrete Hartley Transform (DHT), shown in
Figure 7, takes the approach that fewer is better. Sinc@.4. Quick Fourier Transform
complex arithmetic requires four real multiplications for
every complex multiplication and two real additions for 2.4.a. Sequential Form
every complex addition, it is computationally very
expensive. In addition to requiring more operations,Whereas most FFTs use the periodic properties of the
complex numbers also require more memory since @FT to reduce complexity, the Quick Fourier Transform
complex number consists of two real coefficients. The(QFT) uses the symmetry of the cosine and sine terms
DHT reduces the number of computations and memoryn the DFT to decrease the number of complex
used by simplifying the kernel of the DFT to real valued calculations. The QFT is constructed by breaking the
variables. [8] data set into real cosine terms and imaginary sine terms
and those into their even and odd parts. The length-
(N+1) cosine terms and length-(N-1) sine terms can be
recursively decomposed into two length-(N/2 +1)
Discrete Cosine Transforms and two length-(N/2-I)
Discrete Sine Transforms respectively as shown in
. ] Figure 9. Using this decomposition process we reduce
Figure 7 The Discrete Hartley Transform the complexity of the DFT to a complexity of O(N

) ) log,N). Another important aspect of the QFT is that all
This new transform N h_are_s many of the properties of thecomplex operations occur at the last stage of the
DFT. Due to the similarity between the DFT and the decomposition. This makes it well suited for real data.
DHT, the techmques employed by _FFT to calculate theHowever, complex data can be processed by taking real
DFT can be applied to the DHT. This allows for an eveny,,n«forms of the real and imaginary portions of the

greater reduction in _the number of cqmputatlons.input separately and combining the resuits. [10]
Although the DHT requires fewer computations that the

DFT, there is a drawback in calculating the fourier

N-1
1 Tikn . [21kn
XH(k) = ﬁ z Xn[COSEZN E"' SIH%ZTE]
n=0

coefficients using the DHT. Additional computations _ Sum of Two
are required to convert from the DHT to the DFT. (N/2 +1) - point DCT — RgcurSIve
However, since the relationship is linear, the DCTs
computation cost is minimal. The relationship between
the DHT and DFT is shown in Figure 8. [8]
N-point DFT
(X (K) + X (N —K))
Re(X(R) = ———~
Sum of Two
(N/2 - 1) - point DST — Recursive
m(x(ig) = e®=Xu(N-K) bSTs
2 Figure 9. Flow Diagram of the Quick Fourier
Figure 8 Relations for conversion between Transform
Hartley coefficients and Fourier
coefficients 2.4.b. Parallel Form

The QFT is recursively decomposed into DCTs and

DSTs according to the tree structure shown in Figure 10.
2.3.b. Parallel Form We see from this figure that the operations at the leaves

of the tree are independent of the other leaves’
In our efforts, we chose the Split-Radix form of the operations. Thus each leaf can be evaluated by a
FHT. The parallel form of this algorithm follows the separate process and the results returned to the parent.
form of the Split-Radix DFT shown in Figure 6. The We take the approach of allowing all processors to

Mississippi State University Fall '96
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traverse the QFT'’s tree until a point is reached where all

processors can be utilized by a separate leaf. This —~'<|—.
approach does limit the number of processors to be a DIF Radix-2

power of two but this is a reasonable limitation for

today’s hardware. Figure 10 shows how each processor

is allocated to a branch of each subtree and the x(n) —’|>'_‘ X(K)

communication paths between each processor. DIT Radix-2
0,1,2,3 DIF DIT
e ——
DITF

Figure 11  Block Diagram of DITF algorithm.
Notice that the portions of the DIT and
. , . DIF with fewer computations are used
Indicates calculations which can be

0,1
O processed separately. 0,1,... indicate by the DITF.
processors at that stage of the recursion

DST DST

Indicates direction of communication 2.5.b. Parallel Form
—  between processes.

. Similar to the QFT, the DITF uses a recursive approach

algorithms recursive DIT and a recursive DIF. As with the QFT, the
parallel structure of the DITF is described by Figure 10.
2.5. Decimation-in-Time-Frequency Algorithm Unlike the QFT, the DITF is highly communication
dependent. Each leaf process must communicate at
2.5.a. Sequential Form least once for each frequency point calculated. Thus,

the cost of the tree structured approach for the DITF is
The Decimation-|n-Time-Frequency (D|TF) a|gorithm too hlgh Instead the approach we take for the DITF is
uses both the Radix-2 Decimation-in-Time (DIT) and one of data splitting. Each processor is allocated N/p
Decimation-in-Frequency (DIF) algorithms to form a frequency data points to calculate, where p is the
new recursive algorithm. The DITF is based on thenumber of processors and assuming (N mod p) = 0.
observation that the DIT algorithm has a majority of its
complex operations towards the end of the computation
cycle and the DIF algorithm has a majority towards the
beginning. The DITF makes use of this fact by
performing the DIT at the outset and then switching to almplementation of the FFT algorithms consisted of two
DIF to complete the transform as shown by the blockphases: sequential coding and parallel coding. The
diagram of Figure 11. Combining these algorithmssequential FFT routines have been freely available in the
comes at the cost of computing complex conversionpublic-domain for years. These FFT routines have been
factors at the point of switching. [11] refined over a matter of months and years and each has

been tweaked to the point of maximal efficiency.

3. Implementation

The parallel implementations were developed directly
from the sequential code. To do this, we first carefully
analyzed each FFT routine for structural parallelism.
Secondly, we analyzed the required communication
costs of the parallel structure. Taking both of these into
account, we designed the parallel routines to best take
advantage of the algorithm’s parallelism while
minimizing communication costs.

Mississippi State University Fall '96
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3.1. Parallel Communication Tool one. However, since the amount of memory available is
not static from machine to machine, memory was also
In order to use multiple processors, the data must first bencluded as a measure of efficiency. For many parallel
distributed. Thus, there is a need for a method by whichapplications, an increase in the number of processors
to transfer data between processes. The Messagwvailable directly correlates to the speed-up. This is due
Passing Interface (MPI) provides a means by which tao the fact that the number of processors limits the
transfer data between processes conveniently. Sincgegree to which the data sequence can be decomposed.
MPI is a communication library, it allows for inner- As was illustrated in theory section, decreasing the

workings of the communication protocol to occur length of the data sequence for an éXN)peration
transparent to the calling code. MPI processes are "selfreduces the net number of operations which must be
aware" in the sense that each is assigned a numeric rarpj@rformed. The number of mathematical operations
at start-up that uniquely identifies it. The transfer of was included since it is directly related to the
data using MPI is accomplished by making a call to onecomputation time and the hardware requirements. The
of the library's function. The calling code specifies the additions and multiplications were broken in to floating
transfer by passing sending process'’s rank, the receivingsint and integer operations due to the fact that floating
process's rank, the data type, and the number of datgoint operations are much more costly in computation
elements to be passed. In addition to point-to-pointime than are integer operations. Input sequences of
communication, MPI supports collective and group differing lengths were included to examine increase/
communication. This allows for a reduction in the decrease in the overall cost of the communication.
overhead in sending to a group (broadcast) and receive

from a group (gather) of process. [12] [13] 4.2. Testing Methods

Since the MPI libraries have been ported to many

Operating systems (OS)/achetectureS, porting a parangvaluaﬁon of the above criteria involves many issues
program to another does not require any change in th#hich are not readily apparent. Key amongst these is
communication calls. MPI takes care of the hardwareProcessor loading. One of our most important criteria is
details, allowing the programmer to worry only about SPeed.  Unfortunately this measurement cannot be

the software implementation. This allows for MPI code completely decoupled from the loading of the hardware.
to transcend platforms. To obtain consistent measurements of speed, we must

eliminate the effects of fluctuations in processor
) loading. We accomplish this in two ways: test on
4. Testing Procedures unloaded processors and use an iterative testing method.

We ran our timing tests on relatively unloaded

Giving an objective evaluation of the algorithms processors. These processors were loaded only by our
requires an extensive knowledge of how each comparesrograms and system operations. This eliminated the
over a wide range of circumstances. In particular welatency introduced when another user’'s program is
want to collect statistics which relate directly to executing on our test machines.
application constraints including factors such as, . . .

... _An iterative approach to testing was also used to reduce
memory, speed, data length, and hardware capab|I|t|e§

We also desired test methods which give consistent ano‘1e tran5|ent§ of processor loading. . This method
involved running each test for each algorithm for a large
repeatable results.

number of iterations. For instance, a compute intensive
system operation may have been started in the middle of
one test. This test taken alone would produce invalid
and inconsistent results. On the other hand, performing
this same test over a large number of iterations would
average out that invalid result and produce repeatable
results.

4.1. Criteria

In choosing criteria by which to evaluate the various
algorithms, consideration was given to the different
constraints that would be imposed by a particular
application. The criteria for benchmarking were
computations speed, memory usage, number o¥Ve also used a variety of methods for calculation of the
processors available, input data size, code size, objeéther statistics. Computation speed is measured using
size, and number of mathematical operations (addghe standard unix system utility ‘clock()’.  For

multiplications, and binary shifts). Computation speedevaluation of memory usage, we developed a floating
was selected as the core criteria for comparison sinceoint class which has the feature of accumulating a
the most efficient method is generally the most desirablgount for each byte of memory allocated. This gives a

Mississippi State University Fall '96
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very efficient method of viewing the dynamic memory
management. Counting of mathematical operations was
accomplished in a manner similar to the memory counts.

5. Results

The observed computation time, shown in Figure 12 and
Table 1, illustrates that execution time was of order
Nlog(N) for all algorithms with respect to the data size
The Radix-4 had the least computation time of all
algorithms evaluated, but is limited to data sizes which
are a power of four. The Radix-2 was somewhat slower
than the more computationally efficient Radix-4. For
the odd powers of two, the Split- Radix had the lowest
computation time. Overall, the Split-Radix ranked
between the Radix-2 and Radix-4. This was expected
since the Split-Radix makes uses of both the Radix-2
and Radix-4. Therefore, the computation time for the
Split-Radix is a weighted average of the computation
time of its two sub-components. The FHT, which
utilizes a Split-Radix topology, is somewhat slower than
the Split-Radix FFT. This is due to additional
computation time necessary to transform the Hartley
coefficients to Fourier coefficients.

The ranking of the algorithms based on lowest memory
usage, shown in Figure 13 and Table 2, follows the
Ranking for least computation time with one exception.
The DFT was the slowest, but uses the least amount of

memory.
Algorithm Sp_eed Seeed Seeed Seeed S_peed S_peed S_peed
N =64 N =128 N = 256 N =512 N = 1024 N =2048 | N =4096
DFT 61900 248600 996400 | 3994300 | 16009500 | 21280728 | 30576662
RADIX-2 1000 2100 4400 9400 19900 42100 90900
RADIX-4 700 3500 16000 72200
SRFFT 900 1800 3800 7900 16800 35400 76400
FHT 1000 2100 4600 9500 20500 43600 97800
QFT 1100 2500 5600 12300 26900 60700 129300
DITF 49400 165700 596900 | 2214000 6889400 | 7735873 | 11668681
Table 1: Computation Time for Each Algorithm (See Figure 12)
Mississippi State University Fall '96
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Algorithm 'II:')yEgZ1 l\'jllt? I?; ;lt;)da: MILT IE[s Int Adds SE:fr:s '\?t?yTeos?/
DFT Real 2097152 2097152 0 1049600 0 8
Complex 4194304 | 4194304 0 1049600 0 8
RADIX-2 Real 20480 30720 0 15357 1024 12308
Complex 20480 30720 0 15357 1024 12308
RADIX-4 Real 15701 28842 336 8877 2738 4172
Complex 15701 28842 336 8877 2738 4172
SRFFT Real 4668 11722 494 11545 2335 12332
Complex 10016 25488 502 12448 2937 12332
FHT Real 9352 15006 0 4695 2123 4328
Complex 18704 32056 0 8367 4246 16416
QFT Real 4224 14722 8 34517 157 12288
Complex 8448 31492 16 70058 316 24576
DITF Real 48894 47163 0 16927 1 446464
Complex 52996 51796 0 34878 2 462848
Table 2: Table of mathematical operations for each algorithm
Mississippi State University
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107}

RADIX-4

JRADIX-2
FOT
SRFFT

10%

log(Order)

Figure 12  Log-Log Plot of Computation Time vs Order. Notice the N log(N) shape of the curves.
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Figure 15  Typical results for the parallel algorithms. No speedup was achieved for the majority of
the parallel algorithms

mory (Bytes)
o LFHT

$Radix-2
1 SRFFT

$Radix-4

e R e . LIDFT
10f 10° log(Order)
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alternative approach would be to distribute the data

unevenly to allow more communication / execution

overlap. That is, the master node would keep a larger

nartinn nf tha datg for itself. This would allow the

Jup ntinually process data while the other

‘'ocess, and send back their portions.
node is completing its computations at
ne the processed data from other nodes
an uneven data distribution approach
1ore overlap, but still suffers from the
irden.

lution that eliminates the need for
Jata between processes is multi-
reading uses several processes, all of
ss to the same memory. Therefore,
f one process transmitting its results to
v result will be written to a memory
- 8192 er processes can access. The processes
~ 4096 1 to communicate with one another to
ttion between stages. That is, one
2 to wait for another to complete the
to proceed. The limitation to this
o Prog E TR S Fadmber of processors on any one
eSSOrS 16 p y

4 Best case results for parallel algorithms (DFT). These results occur because data splitting
was possible for the DFT. 7. Future Considerations

In our efforts thus far we have assembled the first

6. Conclusions unified collection of publicly available parallel FFT

algorithms. The sequential code provides public-

domain FFT code for a variety of algorithms under a

Overall, the sequential algorithms proved to faster tharsingle framework. The parallel code will give insight
their parallel counterparts. This can be accounted for bynto the parallel coding of the various FFT algorithms.

the additional time required to communicate between -

nodes. With the parallel algorithms, one node acts as g ecor|1dly, Wf hha\lét'e:_rdelv elqphed haTrg Stat'St'?S. for _the
master distributing the data to other nodes. The mastecri?mdp ex:ty oft el ?go”t ;nsh e.ﬁi Stat'St!CS dg_lfve
then becomes a slave which processes an equal portié[ne developera c ear_plcture orw at.W' erequiredita
of the data. The communication latency was such thal articular algorithm is used. Having these s_tatlstlcs
the master node would complete its data processin akes the guess work out of deve_lop_ment which was
cycle long before any of the other nodes since a sen ecessary to overcome the ambiguity of the big-O
requires much less time than a receive. AfternOtat'on'

completing its data processing cycle, the master nod®erhaps, most importantly our work has laid the
goes into a receive mode waiting to recollect the datdoundation for a class of “intelligent” programs which
processed by other nodes. This causes yet another delayjll automatically choose the best algorithm and
due the imbalance of the send and receive timesxecute it for a given set of user constraints. As the
mentioned. The net result was sequential executiomardware available becomes more diverse, this type of

with waits inserted due to the communications latency. software is becoming a necessity. This constraint driven

In order for any parallel algorithm to be beneficial, thereProgram W'” z_also_ be a bepeﬁual tool to the developer
must be sufficient overlap between execution andbecause I V\."" give a quick way to test performance
communication. An even distribution of data provides under changing design constraints.

for virtually no overlap. Given these results, an There are various possibilities that must be explored

Mississippi State University Fall '96
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before the constraint driven software will become a7.
reality. Foremost among these is to re-evaluate the
parallel structure of the FFT code. Trying to cast the

“tight” sequential code into a parallel form is not likely

to be the best option. We should redevelop the8.
implementation to use the parallel structure of the

algorithm more efficiently.

Also, we must explore other parallel processingg'
techniques. We have seen that the major impedance to
parallel processing of FFTs is communication costs. We

will explore other techniques (such as shared memory)

which allow us to perform the FFTs with a reduced
number of communication calls.
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1. Abstract example, the computer would give an interval to a

student studying intervals. The student would then play

Current music software relies on external input fromthe interval on the keyboard or other MIDI instrument
MIDI capable devices. Because traditional musicaland the computer would tell the student if the interval

instruments are inherently analog, the interaction ofPlayed was correct or if one of the notes was too high or
musicians and computers is rare. too low. This package relies on MIDI codes being sent

to the computer from a MIDI capable device [2].

The purpose of this project is to develop a software

package for music education utilizing an acousticalMIDI codes are a form of communication protocol
instrument interface so that players of all instrumentsdecided upon by the music manufacturing industry. The
can begin to utilize the computing power of today’s codes are transmitted serially at a 31.25 K bits/s data
world. Musicians who play tones into a microphone fate and contain information about which key was

will see those tones analyzed in the areas of relative anglayed, when the event started, when the event stopped,
absolute pitch. what voice patch to use, and other aesthetics involved

with playing a note [3] [4].

In the case of a piano style keyboard being connected to
a computer using MIDI, the information traveling to the
computer is generated digitally, transmitted digitally,
2. Overview and manipulated on a digital computer. Throughout the
entire signal chain from the instrument to the computer,
the signal is never analog. This is an obstacle for
2.1 A Brief History of Computers in Music musical instruments in general since most are inherently
analog. MIDI controllers for instruments such as the
There has been an interest in using computers to aid iguitar have been developed and in some cases the entire
the creation of music for more than thirty years. Bell instruments themselves have been designed as the
Telephone Laboratories developed a program calledontrollers, but an interface to accommodate all
Music 4as early as the 1960's. Through various updatesnstruments without changing hardware is not in wide
and revisions, this program eventually developed intouse.
what is nowCSound CSoundallows the user to write
programs that represent arrangements of music folhe goal of this project is to create a program that uses a
different instruments that will be simulated by the computer to recognize musical notes originating from
computer. One of the new features of the programan analog source. Users of the program are able to play
allows the user to input information into the computer notes on an instrument into a microphone. They are then
via a MIDI (Musical Instrument Digital Interface) informed of what note was played and if the note was
equipped instrument [1]. flat, sharp, or in tune. Another option allows the user to
learn about the intervals between a group of notes. The
One area where the use of computers in music holdsotes can either be played simultaneously or
great promise is in educationListen,by Imaja, is an  sequentially.
educational software package that teaches students
relative pitch, harmony, intervals between notes, andrlhis project could serve as foundational research for the
chord structure in an interactive environment. Forcreation of a complete music education and notation
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software package for instruments that are not MIDIOnce the note list has been created, each note is given a
note name corresponding to its frequency. Depending

capable.
on the mode of operation, notes are found to be in tune
or not, or the intervals between notes played either
2.2 Overall System Algorithm sequentially or simultaneously are determined.

Figure 1 illustrates the process by which musical notes
are analyzed with the software developed in this project.
A musical, analog signal is played into a microphone or
other analog transducer. The analog signal is then
converted to a digital signal sampled at a given rate by
the recording feature dfetwork Audio

3. Musical Signals

3.1 Musical Notes

@ )> & When describing or measuring musical notes, only a
single frequency is usually mentioned. For example, the

musical note A4 is generally accepted to be the

frequency corresponding to 440 Hz. However, when a
single musical note is played on an instrument, more
. ] than one frequency is produced. The additional
Analog to Digital Conversion frequencies occur at integer multiples of the lowest
frequency, which is the frequency used to name the note

J (See Figure 2).
Fast Fourier Transform .
L Polynomial Interpolation I

Classify and Sift

Frequency Data L _
L Update User Interface L UU b\«_}\v

5fo = 1305 Hz
6+ fo = 1566 Hz

fy = 2¢fg =522 Hz
f, = 3fy= 783 Hz

fy= 4ofy = 1044 Hz
fg = 7ofg = 1827 Hz
f; = 8fy = 2088 Hz
fg = Ofo = 2349 Hz

fo= 261 Hz

fa
f5

Figure 1. Block diagram of the implemented system 0.0 Frequency (Hz) 2500.0
showing the main steps in analyzing the
musical signal. Figure 2: Frequency Spectrum of a C4 played on a

Trumpet. Notice the integer relationship
of each overtone frequency to the

After sampling, a Fast Fourier Transform is used to
fundamental frequency at 261 Hz.

convert the time domain signal into the frequency
domain. Once the signal is in the frequency domain, the
peaks in the frequency spectrum are found and passed fthe lowest frequency is called the fundamental
a polynomial interpolation routine to increase thefrequency and the frequencies occurring at integer
accuracy of the program. A list of possible notes is thenmultiples of the fundamental are called harmonics or
built. The possible notes in the note list are classified a®vertones. Given the frequendy, of the fundamental,
notes_ if they pass given criteria corrgsponding ) ©Othe frequency of the 1 overtone can be calculated as
magnitude and overtone patterns that imply mus'calfollows:

signals.
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— played sequentially make up a musical scale. The
fo=(+1)f, @ ™ | _ .
n distance between two adjacent notes is called a semitone

) ) . ~and the distance between two notes with one in between
The relative amplitude of the different harmonics s called a tone or whole tone.

produced varies from instrument to instrument and this

amplitude pattern defines tftembre of an instrument.  The major scale is defined by the following pattern of
Timbre is the quality, or color, of a sound based on aiones and semitones: T, T, S, T, T, T, S. If the eight
harmonic series. frequencies representing the notes in the scale are
picked to be musically pleasing, the notes are tuned to
Because musical notes produce a particular pattern qfjeal temperamentThe fourth column of Table 1 shows
frequencies and because the energy of noise ige ratios of the frequency of notes in the major scale in

distributed randomly ~throughout the frequency rejation to the root or lowest note of the scale [6] [7].
spectrum, it is possible to distinguish musical notes

from noise [5]. Characteristic spectra for white noise, Table 1: Comparison of Equal and Ideal
random noise and a musical note are shown in Figure 3. Temperament for C Major Scale
The distinguishing characteristic of the overtone patter
d to identi d classi tes in thi ject.
was used to identify and classify notes in this projec Equal Temperament Ideal
Note Temperament
A Name
Ratio Frequency Ratio
C 1.0000 261.63 1.0000
C# 1.0595 277.18
> (@)
D 1.1225 293.66 1.1250
A D# 1.1892 311.13
E 1.2599 329.63 1.2500
‘ F 1.3348 349.23 1.33
- () F# 1.4142 369.99
A G 1.4983 391.99 1.5000
G# 1.5874 415.31
‘ ‘ ‘ ‘ A 1.6818 440.00 1.666
A# 1.7818 466.16
| > (©
1.8877 493.88 1.8750
Figure 3: Frequency spectra of (a) white noise
(b) noise with irregular energy C 2.0000 523.25 2.0000

concentration (c) musical note.
A problem is encountered when an instrument is tuned
using ideal temperament ratios. If the instrument is
3.2 Even-Tempered Tuning tuned to the key of C and all the notes in between C and
its corresponding octave obey the ratios of ideal
Perhaps the most important interval in music is thetemperament, the instrument will perform well for
octave. The octave serves to define the musical scale. tusic written in the key of C. However, if a piece of
is defined as the interval between two notes where thenusic is to be played in a different key using the ideal
higher note is exactly twice the frequency of the lowertemperament tuning for the key of C, the ratios between
note. In Western music, there are 12 notes, calledhe notes for the new key do not correspond to ideal
semitones, which divide up the range between a notgemperament for the key of C. For example, the
and its octave counter part. Patterns of these notegifference in the ratio values for the notes C and D is
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1.125-1.000 = 0.125. If a piece of music was in the key
of G, the difference in the ratios between the notes of G
and A is 1.66 - 1.500 = 0.16, which is clearly
different. Therefore, using ideal temperament tuning,
an instrument would have to be retuned anytime it
played in a different key. This is quite undesirable and
makes playing a piece of music that changes keys
impossible.

To remedy the tuning problem, a tuning method called
even temperamentvas derived. Even temperament
tuning divides the distance between semitones such that
each semitone is a factor K larger than the previous
semitone. That is,

where K = 12/2=1.05946 .

While no note is exactly in tune using this system, each
note is very close to being in tune. This allows
musicians to play in various keys without having to £
retune their instruments. The resulting note frequencyﬁl’
combinations are given in Table 2. The even temperedS
scale was used for classifying notes in the project
because it is the accepted tuning scheme for Westerrg
music.

pered Piano Scale

lues

The range of notes listed in Table 2 contains the full S
range of a piano tuned using even tempered tuning. The>
area of interest for this project was limited to the notes o)
between 80 Hz, a flat E2, and 2534 Hz, a sharp D#7.§-
This restriction was made in the interest of frequency T
resolution which is discussed in Section 4. The musicalg;
notes not included (shaded in light gray) are on the o
extremes of the frequency range of piano and thus, use®
less often. Only frequencies within the unshaded rangé_
(the range of interest for this project) were classified as
notes.
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4. Internal Algorithms 10 times faster than the DITF. This speed enhancement
was sufficient for the project to perform in real time;
therefore, the QFT was implemented in the project.
4.1 Sample Frequency

The sample frequency was first set at 20 kHz. This
The first consideration of the project was to decide onchoice would have allowed more overtones of the D#7
the frequency at which to Samp|e the ana|og inputtO be detected. HOWGVGF, from Equation (4), it would
Signa|_ If an ana|og 5igna| Containing a maximum onIy offer a frequency resolution of 19.53 Hz. For the
frequency, fax is to be recovered without aliasing, it 10w end of the frequency range defined in Table 2, this
must be sampled at a rate greater than its Nyquist ratég—:-solutlon would allow up to three semitones to have a

fy [8]. The Nyquist rate for a signal is defined by the peak in the frequency spectrum at the same frequency
following equation: value. For example, the frequency spectrum of an F#2,

G2, and G#2 would all indicate a maximum at 97.66 Hz.
This would not be acceptable.

fn = 2¢ foax 3

The first two notes in the frequency detection range
differ by approximately 5 Hz. Therefore, a resolution of

at least 5 Hz would be needed in order for each note to

2489.02 Hz. For best performance, the first overtone Opave amaximum at a unique frequency. From Equation

this note should also be detectable. The first overtone 0(‘4)’ this would requ_ire a sample_ frequency Of_5120 Hz.
a D#7 can be calculated from Equation (1) to be However, the Nyquist rate, as discussed previously, sets

4978.04 Hz. Therefore, the Nyquist rate is determineoahlo"\"far Iimi; for thel sfample frequenc% of 995§ Hz.
to be 9956.08 Hz. This is the minimum sampIeT erefore, the sample frequency was chosen to be

frequency. 10 kHz.

As stated in Section 3.2, the highest note that will be
recognized is a D#7. The frequency for this note is

The frequency resolution obtained by using a sample
Frequency of 10 kHz and a 1024 point FFT is given by
Equation (4) to be 9.765625 Hz. This resolution will

not provide a unique maximum point in the frequency
spectrum for all the notes in the desired detectable
range. Polynomial interpolation schemes provide a
solution to this deficiency.

Once the analog input signal is sampled, it will be
transformed to the frequency domain via a Fast Fourie
Transform (FFT). The frequency resolution for an FFT
is defined as

f
N

(7]

Af = 4

wherefy is the sample frequency amdis the number of 4.2 Polynomial Interpolation

points of the FFT [9]. The data points (xy;),(X2,Y5),....(%,.yy) for a function,

The peaks in the frequency spectrum of a signal that ig(x)’ are the necessary information needed to compute

transformed with an FFT appear to occur at mtegeran mterpolatl_ng Polypom|al, p(x), of order n-1. This
. : -~ polynomial will be unique and will agree with f(x) for
multiples of the resolution. Therefore, the desired . L . .
. . all data points. A polynomial interpolation scheme is
frequency resolution must also be considered along with_. o .
; - said to have Lagrange form if it can be written as
the Nyquist rate when determining the sample

frequency. N
There are many algorithms that implement an FFT [10]. PL(x) = Z YiLk(X) ©)
The Decimation in Time and Frequency (DITF) k=1

algorithm was implemented first [11]. This algorithm

proved to be extremely slow when performing a 1024L represents a family of polynomials of degree n-1
point transform. For the project to execute in real time,which satisfy

a faster algorithm was necessary. The algorithm known

as the Quick Fourier Transform (QFT) was tested to see

if it had better speed performance [12]. For our

application, and for 1024 points, the QFT was more than
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go,kzj0 j = ..., N
L(x) =0 , _°.0 : (6)
Dla k - JD k = 1, ..., N
This definition insures thab (X;) = f(x;) = x;  for
j=1,..,n.
For some arbitrary value of x,
L) ﬁ X—X,
k(X) =
Ll xe=x @)
j#k

Evaluation of p(x) will require n+1 evaluations of L(x).
The number of multiplies required to compute(y) is

n’+2n-1 and the number of additions i®*+n—1
[13].

If the data points (xy1,¥1),(X2,Y2,Y2),-: (% YnYn) are

Page 6
~ 00, k# 0O j =
H'(X;)) = O 0 (1)
) Dl’k = JI:I k = ’ 1
~ j =1, ...
Hk(x;) = 0 : oo (12)
k=1..n

For arbitrary values of x, the value ofyLdefined in

Equation (7) is used to define the value-yfand Ay in
the following manner:

Ho(X) = [1=2(x= %)L (x)IL () (13)

Fe(¥) = (x= %)L () (14)

A 5-point Lagrange interpolation and a 3-point Hermite
interpolation were tested to determine the increased
accuracy that could be obtained by interpolating the data
from the frequency spectrum. The goal of the Hermite

known for a function, f(x), then it is possible to compute scheme was to interpolate using three consecutive points
p(x) of order 2n-1. This interpolating polynomial has (x,yq), (x,.y;), and (%.y,), where (xy;) is the

Hermite form [13]. The Hermite polynomial satisfies maximum point in the frequency spectrum. However,

the conditions p(x;) = f(x;) as well as p'(x;) = f'(x;) for
alli=1,2,...n.

the Hermite scheme requires knowledge of the
derivative of f(x), as seen by Equation (8). This data is
not directly available in the frequency spectrum. To

The Hermite polynomial is represented by the followingproduce a Hermite polynomial, the derivative at the

equation:

Pu(¥) = 3 H(0F(x) +
k=1

i (®)

T A0 (%)

k=1
where

00k#j0 j=1 ..

0D =G og i ©
=1

HO(x) =0 ) _ : (10)

MS State DSP Conference

points of interest was estimated using the centered
difference formula for numerical differentiation given
below [13]:

f (%o +h) = f(x,—h)
2h

f'(xo) = (15)

where h is the distance between consecutive data points
and is the resolution of the FFT in this context.

For the Lagrange interpolation scheme, five consecutive

data points, (¥Yo), (X1.Y1), (X2:¥2), (X3.¥3), and (4,Y4)
were used where §y,) is the maximum point in the

frequency spectrum.

Since the resolution of the FFT is approximately 10 Hz,
the true frequency of the input signal will be within 5 Hz

of the maximum in the frequency spectrum. Both of the
interpolating polynomials were evaluated at 0.1 Hz
increments across a 10 Hz range centered about the
maximum data point. From this data, the maximum of

Fall 1996
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the interpolation polynomial is determined with an as well as the error that still occurs in interpolated
accuracy of 0.1 Hz. values.

The two interpolation routines were tested with Also, Table 4 shows that the FFT produces data points at
computer generated sine waves of known frequencyy76.56 Hz and 986.33 Hz. Interpolation is most
The results are listed in Table 3 beneficial when the frequency to be detected is

_ ) approximately half way between consecutive FFT data
Table 3: Comparison among FFT, Lagrange, and points. These results are illustrated below in Figure 4.

Hermite
Actual FET 5-point 3-point
Peak Lagrange Hermite
82.0 78.1 80.1 79.3 r
154.0 156.3 155.9 156.0
155.0 156.3 156.1 156.2
i oo FFT peak: 976.56 Hz
156.0 156.3 156.2 156.3 e LaGrange peak: 979.66 H
157.0 156.3 156.3 156.3
158.0 156.3 156.4 156.3 : : :
960.0 Frequency (Hz) 995.0
438.0 439.5 439.3 439.4
440.0 439.5 439.5 439.5
442.0 439.5 440.0 439.7 1
582.0 585.9 584.0 584.8
584.0 | 585.9 585.7 585.8 1
586.0 585.9 585.9 585.9 |
588.0 585.9 586.2 586.1 FET peak 224,61 Fiz
—o . .
590.0 585.9 588.1 587.3 ¢—* LaGrange peak: 220.65 H3 1
650.0 654.3 651.5 652.5 , , , , , ,
6520 | 654.3 653.9 e54.1 | 200 Frequency (Hz) 240.0
Figure 4: Two graphs comparing the accuracy of
654.0 654.3 654.3 654.3 frequency data with and without Lagrange
interpolation. (top) 981 Hz peak generated
This data indicates that the 3-point Hermite polynomial with a function generator. (bottom) A3,
never performs better than the 5-point Lagrange which is 220 Hz, played on a bass guitar.
polynomial. The Hermite is also computationally more
expensive, since it computeg as well as | for A higher number of points could have been used in the

k=1,...,n and must estimate 3 derivatives. Therefore, &alculation of the FFT in order to produce a better
5-point Lagrange interpolating polynomial is used to resolution as opposed to interpolation. However, even if
determine the maximum point in the frequency this option is computationally feasible in real time, it is
spectrum more accurately. not as desirable as interpolation. If 2048 points were
used, the resolution would be 4.88 Hz. A note that is
The Lagrange interpolating algorithm was also tested Ofpne to two Hz sharp or flat would be likely to have the
a range of frequencies given in Table 4. This tablesame maximum in the frequency spectrum as if it were
indicates the increased accuracy gained by interpolating|ayed in tune. By interpolating the peak, however, it is
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Table 4: Uninterpolated Frequency Values and Interpolated Frequency Values Using 5- point Lagrange
Interpolation for Af=9.766 Hz

I?rigi?r:is Uninterpolated Irlltrir(;fé?]tf; U_ninterpolated Igifgzlr?éid Error Ratio
(H2) Frequency (Hz) (H2) Difference (Hz) (H2) Magnitude
975.0 976.56 976.36 +1.56 +1.36 1.15
976.0 976.56 976.56 +0.56 +0.56 1.00
977.0 976.56 976.56 -0.44 -0.44 1.00
978.0 976.56 976.66 -1.44 -1.34 1.08
979.0 976.56 977.06 -2.44 -1.94 1.26
980.0 976.56 977.76 -3.44 -2.24 1.54
981.0 976.56 979.66 -4.44 -1.34 3.31
982.0 986.33 983.53 +4.33 +1.53 2.83
983.0 986.33 985.23 +3.33 +2.23 1.49
984.0 986.33 985.93 +2.33 +1.93 1.21
985.0 986.33 986.23 +1.33 +1.23 1.08
986.0 986.33 986.33 +0.33 +0.33 1.00
987.0 986.33 986.33 -0.67 -0.67 1.00

likely that a difference of one to two Hz in the signal and the number of peaks placed in its overtone array are
will be discernible. tested.

To check the amplitude of the possible notes, the
4.3  Sifting Algorithm magnitude of the highest peak is used to normalize the
magnitude of all of the peaks. If a peak does not have a
A sifting algorithm was implemented to identify and magnitude of 0.15 once normalized and the peak doesn't
classify the notes that were played. The course of thdave at least two overtones, the peak is classified as
algorithm is as follows. The frequency spectrum derivednoise and is eliminated from the note list. If a peak in
from the FFT is scanned to find peaks above a certaitthe note list satisfies both of these qualifications, then it
amplitude threshold. Once a peak is found, itsis considered to be a note and is passed back to the
frequency is compared with other peaks already placedalling function to be named.
in the note list to determine if it is an integer multiple of
these peaks. If so the peak is classified as a harmonic or
overtone of that note and placed in its array of4.4  Tuning Overtones
overtones. The algorithm then progresses to see if the
peak might be an overtone of any of the other possibléeThe data in Table 3 and Table 4 indicate that the
notes in the note list. If, once the note list has beerinterpolation algorithm detects a frequency with an
traversed, the peak has not been classified as aabsolute error less than 2.25 Hz. This error is quite
overtone, it is classified as a possible note. significant in the lower end of the desired detection
range. At higher frequencies, however, the error will be
Once all of the peaks out of the frequency spectruntolerable. Perhaps an example will illustrate this point.
have been classified as possible notes or overtones, the
note list is scanned to eliminate any peaks which mightA musician plays a note at 110 Hz, which is an A2
be noise. To accomplish this, the amplitude of the pealperfectly in tune. The minimum value that the
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interpolation routine would indicate for this tone is This problem was investigated further by looking at the
107.75 Hz. By searching a database, it is known that avertones for every tone in the desired detection range.
frequency of 107.75 Hz should be 110 Hz to be in tune All the overtones that occur within the bounds of the
The tuning quality of this note is calculated by maximum frequency in the database were examined.
The frequency of each overtone was determined and
then the database was searched to see which tone most

= _f_C_:fL closely matched the overtone in frequency value. Then
f O fT N (16)  Equation (16) or Equation (17) was used to see how the
fT —+—0 overtone related to the tone found in the database.
02/20

Continuing the example for an A2, The eighth overtone

occurs at 990 Hz. In even tempered tuning, no tone

— fc B fT occurs at 990.00 Hz. If the database is searched for this
s (1%)“ )— f (17)  value, a B5 will be returned which has frequency value
T T 987.77 Hz. The quality of this note would be calculated

as +0.0380. This quality represents an inherent egyor,
where @ is the quality of a note if it is flatQg is the  that is introduced when tuning the eighth overtone of an

quality of a note if it is sharpf, is the frequency of the A2. If the 990 Hz frequency had been a fundamental
note played by the instrument, afidis the frequency of tone, then the quality would accurately indicate that the

the note in even-tempered tuning that most cIosertone was slightly sharp.

matched.. . .
¢ The data collected from this process was compiled and

i ) ) .. analyzed to see a remarkable trend. The error associated
For the example under discussion, Equation (16) yleld§Nith a particular overtone is independent of the

a quality of -0.36. The magnitude of the quality must befundamental tone. The eighth overtone of any in tune

greater than or equal to 0.05 to be classified as in tung, 1o has 2 quality of 0.0380. Table 5 shows the error
Therefore, the tone played is characterized as very ﬂatcorresponding to a given overtone

when it was actually perfectly in tune.

- .. Afundamental tonef;, will have an overtone frequency,
The musician plays another note at 880 Hz, which is ar} that will b d for tuning. f- will b moared t

A5 perfectly in tune. The minimum interpolated value '@ a € used for tuning. 1, ec?o paredto
for this tone is 877.75 Hz. Using Equation (16), the @ frequencyf., from the database. If the inherent error,

quality of this tone is computed as -0.05 which would be€, is greater than 0, it represents the fraction of the

characterized as in tune. difference betweef and the next note in even tempered
tuning that must be added tgin order to gef,. Thisis

With this in mind, and remembering that tones have aseen by Equation (18).

predictable harmonic structure, tuning will be more

accurate by tuning a particular overtone. Continuing the 12

example, the musician again plays a note at 110 Hz. fo = fotel( «/é)(fc) —fl (18)

The seventh overtone of this tone is 880 Hz. Searching

the database for the fundamental tone, returns that thg ¢ is less than 0, it represents the fraction of the

tone should be an A2. Then, by tuning the seventhyifference betweerf; and the previous note in even

overtone, the fundamental can be classified as in t“”e-tempered tuning that must be subtracted fifgin order

This algorithm is solid as long as the overtone which ist0 getl,. This is seen by Equation (19).

tuned is also a note in the database. Since the 2.25 Hz

maximum error associated with the interpolation 0 fC 0
algorithm becomes less significant for each successive f0 = fc— €] [lfc— — (29)
overtone, tuning to the highest detected overtone will 0 1%/25

provide the best result. However, only thé-P _ _ _
overtones of a tone correspond directly to notes in thé=quations (20) and (21) are derived by solving
database of notes found in even-tempered tuning. Equations (18) and (19) respectively for
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Table 5: Deviation of Overtones from Even- 4.5 Interval Detection
Tempered Scale

Musicians are often interested in the groups of notes or

Overtone Deviation from chor_ds that they are playing. An option tq identify the
Even-Tempered musical interval betwe_en tv_vo notes was |mplemen_ted.
Number Scale (%) When called for the first time, the interval detection
code creates an interval list of all the notes currently in
0 0.00 the note list. The interval between each of the notes in
the interval list is then calculated.
1 0.1021
Each successive time that the interval detection code is
2 1.9750 called, the note list and the interval list are compared to
see if any new notes have been played. New notes are
3 0.0511 added to the current interval list and all intervals are
recalculated. A function outside the interval detection
4 -13.1604 code clears the interval list when the user desires to
5 1.9750 investigate a different combination of notes.
6 -29.9504
7 0.0511
8 3.8636 5. Project Database
9 -13.1805 To test the program during the process of development,
a database was created. It consists of sine waves
10 -46.5735 generated by a digital function generator and musical
notes digitally recorded using a microphone and a
11 1.9580 sampling program calletiletwork Audio Files in the

database range from containing single frequency data
f without instrument overtones to multiple frequency data
f 0 (20) with instrument overtones.

© T L el(2a-1)

File names for the database were standardized to the

following format: <source><# of principle

fO frequencies> <tuning><note>raw. <source> is a

f. = 21)  three-character abbreviation for the instrumert# of
1+ |el(1/(*3/2) -1) principle frequencies> is a numeral denoting the

number of principle frequencies (i.e., the number of
If the overtone number, n, associated with the frequencf/]gtes ?Ia):jed) ;n thehs?r:nplte:tunlngT IS ahsmglf?-t
f, that is to be used in determining the quality of the character denoting whether the sample 1S sharp, Tlat, or

fund tal tonef:. is K then th e in tune: +, -, ~, respectively<note>is a three-character
undamental ton€l, 1S known, then these equations yq,qiation of the note name in the sample. For example,

allow f, to be modified to a corrected valdgby using  an A220 were represented as A3~. The file name for a
the € associated with the given n. Then, the newsample collected from a trumpet playing a sharp A440
frequency,f,, can be used for determining the tuning would be: tru_1_+A4~.raw. If the sample were a C261,

quality. When this frequency is compared to abutwereintune: tru_1_~C4~.raw. For a sample from

frequency in the databash, there will be no inherent an instrument capable of playing multiple tones at once,
error, €, introduced. Q, the quality given by Equation such as a guitar playing sharp A440 and in tune C#554
(16) or (17), will accurately represent the qualitfiof ~ above it would be: acg_2_+A4~_~C5+.raw.

The archive was constructed of data to be used in three

phases of the project. The first phase contained single
tones to test the tuner function of the software. For
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Phase | of the project, three instruments were used in thacoustic guitar files, 67% were correct. The four files
data archive: a guitar, a bass guitar and a trumpet. Eactiat did not yield correct results could be special cases
instrument was recorded in three sets of cases. For eadi overtone interaction or could be attributed to
case, a note was played in tune, then that note wamaccurate naming of the files. None of the files for the
played out of tune flat, and then it was played out of tunebass guitar yielded correct results. The lower tone of
sharp. Phase I of the archive contains 36 samples in theach file was recorded an octave too low, placing it out
range of interest. of the range of interest. This accounts for the poor
performance for these files.
In Phase I, two instruments, the guitar and bass guitar,
were each recorded playing each of the twelve interval©f the nine files in Phase l1lI, all three notes in six of the
less than an octave. Phase Il of the archive contains 2lles were identified correctly without any problems.
samples for interval testing. One bass guitar file contains notes that were outside of
the range of interest as defined by Table 2. Another bass
Phase Il of the archive contains sequential notegyuitar file causes an error in the software. Listening to
designed to test if the software is effective in detectingthis file indicates that there was a large amount of
note changes. Again, three instruments were used, théistortion present and this could account for the
guitar, bass guitar, and trumpet. For each file, asoftware error.
sequence of three notes was recorded. Each instrument
played three sequences of intervals. The Phase IIThe files in Phase IV were not evaluated critically.
archive contains 27 samples. However, the results for the Phase IV data are expected
to be comparable to the results of the Phase Il data. The
Phase IV is an archive of chord data recorded from theaddition of notes played simultaneously is not expected
guitar and the bass guitar. Each instrument played #o adversely affect the performance of the software.
major, minor and diminished triad based on three tones.
The Phase IV archive contains 18 samples.

All of the data in the database was sampled at 20 KHz.
Once the decision was made to run the program at a

sampling rate of 10 KHz, the database files were down 7. Future Research
sampled to 10 KHz. This was accomplished through the
use of a program callesbx It might prove useful to investigate frequency domain

representations of our signals other than the FFT. Some
alternatives might be spectral estimation and Prony’s
method [14] [15]. Estimating the spectrum with these
techniques could eliminate the need for polynomial
interpolation.
6. Results

Reducing computation time for one spectrum will be

Of 36 Phase | files, we named the correct note 88% okey to integrating the software into a real-time music

the time. Of these, 62.2% were tuned correctly. Thenotation program. Faster FFT algorithms might yield

note name in the acoustic guitar files were identifiedthis. Also the spectral estimation techniques could do

correctly 100% of the time and the tuning was correctthis.

90.3% of these times. The note name in the bass guitar

files were identified correctly 80.7% of the time and the

tuning was correct 52% of these time. The note name

for the trumpet files was identified correctly 87% of the

time and the tuning was correct 83% of these times.

This indicates that our algorithm is effective at

frequencies greater than 130 Hz, but is less effective at

lower frequencies.

Of 24 Phase Il files, 33% of the notes and intervals were

identified correctly. For any given two notes, the
interval was always classified correctly. Of the 12
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9. Appendix--Raw Data from Analysis of Table 6: Results of Analyzing Data from Phase | of

Project Database Project Database
Q
Filename o |2%8& |B8oe
Table 6: Results of Analyzing Data from Phase | of ™ 22 |E2E |E2%¢
broiect Datab (*.raw) g_w 358 goo
roject Database =an 08 | 508
g LL
ot s2m | 28% tru_1_+B4- 18 18 4
Filename 29 2 PE | 838
(*.raw) Ewn S55 | ESS tru_1 +C4~ 19 18 18
S z8 s 583s
Z L - zZ =
o tru_1_+C5~ 17 17 16
acg_1_+C4~ 18 18 18 tru_1_+G4~ 19 19 19
acg_1 +D4~ 16 16 16 tru_1 -B4- 18 18 18
acg_1 +E5~ 7 7 7 tru_1_-C4~ 14 5 5
acg 1 -C4~ 18 18 18 tru_1 -C5~ 16 5 5
acg_1 -D4~ 16 16 16 tru_1 -G4~ 19 16 16
acg_1 -E5~ 8 8 8 tru_1 ~B4- 22 22 7
acg 1 ~C4~ 20 20 7 tru_1 ~C4~ 19 19 0
acg_1 ~D4~ 24 24 22 tru_1 ~C5~ 18 18 0
acg 1 ~E5~ 7 7 6 tru_1 ~G4~ 19 19 0
bag_1_+A2~ 28 27 1 Table 7: Results of Analyzing Data from Phase Il of
bag_1_+A3~ 22 22 22 Project Database
bag_1_+C3- 29 29 26 Filename (*.raw) Low A Interval
Note Note
bag 1 +C4~ 28 28 28
bag_1 +E2~ 31 19 19 acg_2 ~C4~ ~Ad+ | C4 Ad# m7
bag_1 -A2~ 30 30 30 Adt | A4 PO
bag_1_-A3~ 29 29 2 acg_2 ~C4~ ~A4d~ E3 B3 P5
bag_1 -C3~ 27 0 0 E3 | G4 | M3
bag_1 -Cd~ 20 20 0 B3 | B3 PO
bag_1_-E2~ 28 0 0 B3 | G4 | M6
bag_1 ~A2~ 31 30 3 Ga# | Ga# | PO
bag_1_~A3~ 26 26 18 acg_2 ~C4~ ~B4~ B3 Ad# | M7
bag_1_~C3" 32 30 0 Adt | Ad# | PO
bag_1 ~C4~ 21 21 0 * these files cause a software error
bag 1 ~E2~ 26 16 0
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Table 7: Results of Analyzing Data from Phase Il of
Project Database
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Filename (*.raw) h?)\?é l:Iith Interval Filename (*.raw) klz\;\é :32 Interval

acg_2 ~C4~ ~C4+ C4 C5# m2 bag 2 ~C3~ ~A3~ A2 B2 M2
C5# | Co# PO A2 G3 m7
acg_2 ~C4~ ~C5~ B3 F6# P5 A2 A2 PO
F6# | F6# PO B2 B2 PO
acg_2_~C4~ ~D4+ | C4 D4# m3 B2 G3 mé
D4# | D4# PO B2 A3 m7
acg_2_~C4~_~D4~ | C4 D4 M2 G3 G3 PO
D4 D4 PO G3 A3 M2
acg_2 ~C4~ ~E4~ | C4 E4 M3 A3 A3 PO

E4 E4 PO bag_2 ~C3~_~B3~ B2 G3 mé
acg_2_~C4~ ~F4+ | C4 Fa# TT B2 B2 PO
Fa# | F4# PO G3 G3 PO
acg_2_~C4~ ~F4~ | C4 F4 P4 G3 B3 M3
F4 F4 PO B3 B3 PO

acg_2 ~C4~ ~G4+ | C4 G4a# m6 bag 2 ~C3~ ~C3+ *
Ga# | Ga# PO bag_2 ~C3~_~C4~ *

acg_2_~C4~ ~G4~ | C4 G4 P5 bag_2 ~C3~_~D3+ C3 G3 P5
G4 G4 PO C3 A3# m7
bag_2_~C3~_~A3+ B2 G3 mé G3 G3 PO
B2 A3# M7 G3 A3# m7
G3 G3 PO A3# | A3# PO

G3 A3# m3 bag_2 ~C3~_~D3~ C3 A3 M6
A3# | A3# PO C3 D4 M2
* these files cause a software error A3 | A3 PO
A3 D4 P4
D4 D4 PO

* these files cause a software error
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Table 7: Results of Analyzing Data from Phase Il of

Project Database

Filename (*.raw) h?)\?é l:Iith Interval
bag_2 ~C3~_~E3~ F2 E3 M7
F2 B3 TT
E3 E3 PO
E3 B3 P5
B3 B3 PO
bag 2 ~C3~ ~F3+ Fo#| C3 TT
C3 C3 PO
bag 2 ~C3~ ~F3~ F2 C3 P5
F2 G3 M2
C3 C3 PO
C3 G3 P5
G3 G3 PO
bag 2 ~C3~ ~G3+ G2# C3 M3
G2# G2# PO
C3 C3 PO
C3 G3# m6
G3# G3# PO
bag_2 ~C3~_~G3~ G2 C3 P4
C3 C3 PO

* these files cause a software error
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Algorithm to Determine the Scenic Beauty of Images

Nirmala Kalidindi, Liang Zheng, Yagin Hong

Digital Image Group
Department of Electrical and Computer Engineering
Mississippi State University
Box 9571
Mississippi State, MS 39762
434 Simrall, Hardy Rd.

{kaldindi@isip, zI3@ra, yh4@ra]

Abstract features is preferred while scenery which

. . obstructs the view of the forest with lot of
The United State_s Forestry _Serwcg (USFS)foIiage and bushes is not considered as
wishes to determine the scenic quality of thescenic.and images which doesn't obstruct the

Images to_ preserve recreation and aeSthet\'ﬁew are preferred as compared to the ones with
resources in forest management. They want t

: . fhore foliage and bushes. The evaluation is
determlne_a pre(_jeflned pat.tern to cut the tree erformed by running the program through the
S0 as to still retain the scenic beauty even afte -
: . ~images in the database.
cutting the forest by timber loggers. The scenic
beauty will be determined on a scale from “0” .
to“1”. We have in our database 679 unique PPM 1. Introduction
images of different vegetations taken during allWe attempted to develop an algorithm to
the seasons of the year. Each of the image is afetermine the scenic quality of the image on a
4.7 Mb. We have the subjective ratings availablescale from “0” to “1”. The importance of forest
for all the images. These ratings are taken byecreation and landscape scenic quality is being
showing each of the images to different groupgecognized and thus efforts are made to preserve
of people and then converting them to athe scenic quality of the image.The statistical
standardized scores by using Scenic Beautinodels suggest that the density and sawtimber-
Rating. We attempt to develop a systematicsized trees and the proportion and visual
approach to determine the scenic quality angbenetration are positively associated with scenic
correlate them to the subjective ratingsbeauty whilefoliage, twig, small stem screening
available. Some of the parameters to beand the density of small-diameters tree are
considered are color, size of the trees etc. Theegatively associated with scenic beauty.
effect of the color can be determined by doingHistogram analysis and edge detection methods
histogram analysis of the image. The effect ofwere used to analyses the parameters such as
the size of the trees can be studied by doing edgeolor and the size of the trees in the image. The
detection and computing the number of verticalresults from the subjective ratings showed that
lines in the image. Forest scenery that isscenic beauty increases with the level of the
undisturbed and having variety of naturalhardwood retention and the summer, fall and
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spring views were preferred over those taken4. 4 Base, size 1024 x 1536 pixels

during winter. Effort was made to correlate the

output of the algorithm with the subjective 5. 16 Base, size 2048 x 3072 pixels

ratings. We have the database with 679 unique

images. The database has the scenic beautjhe format of the PPM images is described

rating for each of the image. Scenic beautybelow:

rating is a scaling procedure used to correlate
the ratings from different groups of sessions.

Baseline slides are used as reference for all the

rating sessions.
2.PPM Images

The images given by the forestry department
were in Kodak PhotoCD(PCD) format. The
PCD format is a proprietary format and it
could not be viewed with the imagetools
available hence it was required to convert it
into more familiar formats such as gif or
ppm.We chose PPM format for this purpose.
The PCD images were converted into PPM
format through public domain software
“hpcdtoppm” available in the net. This
software tool is used to convert pcd files to
ppm files. hpcdtoppm stands for “Hadmuts pcd
to ppm” The software is available at the URL
“http://www.boutell.com/Ism/Ismbyid.cgi/
000746. This software also needs some
netpbm utilities which are also available as
public domain utilities. The netpbm utilities
can be downloaded from the ftp site dtg://
ftp.cs.ubc.calftp/archive/netpbn¥arious
resolutions of the ppm files can be obtained.

Basically Base/16, Base/4, Base,4Base and 16
Base are available. We have taken the 4 Base

option for our requirement.Any of the

resolution can be obtained by adjusting the
options while executing the “hpcdtoppm”

software. The resolution of each of these
options is given below.

1. Base/16, size 128 x 192 pixels

2. Base/4, size 256 x 384 pixels

3. Base, size 512 x 768 pixels

MS State DSP Conference

A “magic number” for identifying
the file type. A PPM file magic
number is the character stril$. It
should be the first line of the PPM
file.

Whitespace characters such as
blanks, TABs, carriage returns
(CR), line feeds (LF) etc.

The image width in number of
pixels, formatted as ASCII
characters in decimal.

Whitespace characters.

The height again in number of
pixels, formatted as ASCII
characters in decimal.

Whitespace characters.

The maximum color value which
each of the colors in the pixels can
have. This value is again in ASCII
decimal. The maximum value
which it can have is 255.

Whitespace characters.

Width x height pixels, each three
ASCII decimal values having value
between 0 and the specified
maximum color value which it can
take, starting at the top-left corner
pixmap, proceeding in normal
English reading order. The three
values for each pixel represent red,
green, and blue, respectively. A
value of 0 means that the color is
off, and the maximum value means
that the color is at saturation level.

Comments are also allowed in the
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ppm file and they are indicated by ratings that summer and spring are preferred
the character “#”. Any line starting over winter. This is based on the fact that people
with the character “#” to the next prefer green and blue color as compared to red
end-of-line are ignored. and yellow which comes from the inclination of

+  There is also a restriction that the ~ pec.)ple.towards natural colors.
line should not be longer than 70  Eachpixelin PPMis represented by three bytes
characters. one byte for each of the color of red. green and
blue. Algorithm was developed to compute the
Various resolutions of the ppm files can beMean of each of the three fundamental colors in

obtained. Basically Base/16, Base/4, Baselheimageandtocorrelate the mean ofthe colors
4Base and 16 Base are available. We havto the scenic beauty of the image. For construct-
taken the 4 Base option for our requirement.ing the histogram the image is scanned in a sin-

The resolution of each of these options is giverf!€ Pass and a running count of the number of
pixels found at each intensity value is kept.

below. . '
Some of the factors of the image like the natu-
1. Base/16, size 128 x 192 pixels ralness of the image can be determined from the
color as coloris an aid in distinguishing between
2. Basel4, size 256 x 384 pixels what is “natural” and what is “built in”. In par-

ticular, a natural setting’s continuous gradation
in color is often very different from the sharper

3. Base, size 512 x 768 pixels , P ;
contrasts that are found in the built-in environ-

4. 4 Base, size 1024 x 1536 pixels ment. Graph is drawn for the variation of the
’ number of pixels for each value of the color from
5. 16 Base, size 2048 x 3072 pixels “0” to the maximum value of color in the image.

Any of the resolution can be obtained by 4. Edge Detection Overview
adjusting the options while executing theEdge detection is an important part in image

hpcdtoppm software. analysis. Edges characterize object boundaries
_ _ and are therefore useful for segmentation and
3. Histogram Analysis identification of objects in scenes. Edge is

Coloris one of the noticeable features ofaforesfjle."fIneOI as the .bo.undary betweef‘ two regions
with relatively distinct gray-level discontinuity

environment. It is affected by the temporal nd the abrupt transition between two regions
rhythm of seasons. Color variation by season i€ bt . d
can be determined on the basis of gray-level

one of the most notable changes in forest vege=

tation. Summer, Fall and Spring views aredlsc.:onpnu!ty. The magnitude of the first
derivative is used to detect the presence of an

judged as significantly more scenic than winter L . :
views. The preference is related to seasonal co dge and. bk Of th? edge is determined
y the sign of the derivative. Thus the two

or patterns.As human preferences vary with COITmportant properties for establishing similarity

or change, change of seasonis animportant fad” .
tor in determining the quality of an image. of edge pixels are the strength and the response

ofthe gradient operator used to produce the edge
Our approach was to extract the mean of eaCBier and the direction of the gradient.

of the color in the image. Color has a major ef-
fect in determining the scenic quality of the im-
age. The variation of seasons changes the colof
intheimage. Itwas observed from the subjective

Our approach was to extract the number of long
rees in the image. We believed that computing
Re number of vertical lines in the image would

MS State DSP Conference Fall’96



Image Processing Group: Scenic Beauty Estimation Page 4

indicate the presence of the long trees and alsfirst applies the masks in the horizontal and the
the approximate length of the tree. We used th&ertical direction to retrieve the horizontal and
algorithm of canny-edge detector to computevertical edges. These edges are then connected
edge detection. together to obtain the horizontal and vertical

The input to the canny edge detector is a PGMineS. A threshold Va..lue |S used both for the
image hence we converted the PPM image ténagnitude and the orientation to detect an edge.
PGM image. The header of the PGM image isT heimage after the edge detection contains only

similar to the PPM file except for the magic two color levels. The block diagram of the edge
number which is “P5” and there are width x detectionis shown below. Two masks which can

height pixels each of 8 bytes representing the

gray value. Edge detection was done to properly Input gray scale
detect the edges and then thresholding them image
through athresholding tracker to obtain both the

horizontal and vertical lines. Algorithm was *

written to calculate the number of vertical lines
after edge detection. By this way both the i
smaller as well as longer vertical lines are Gaussian
obtained. Hence to get the number of longer smoothing
lines athreshold was considered to eliminate the
shorter lines which correspond to foliage or
small bushes in the image. ¢ ¢

4.1Conversion of PPM image to PGM im-

age

The first step of edge detection was to convert
the PPM color image to the gray scale PGM
image. This was done by applying the following

matrix to each of the pixel of the PPM image. ¢ ¢

didy d/dx

Gradient form

Y| |0.299 0.587 0.114/R . q

_ 22) ndf, odf
| 0.596-0.275-0.321 |G| ( Caxd  Cayd
Q  |0.212-0.5230.311]|B

The “Y” value in the above matrix represents l

the “luminance” or brightness of each pixel. The Non Maximal
“RGB” represents the red, green and blue Suppression
intensity of each pixel for the PPM image. Each

pixel in the PPM file is read converted it into a

gray scale value using the above relation and Output image
was written into the PGM file.

4.2Doing edge detection

The canny-edge detector was used to perforrhe used for the detection of edges in the
the edge detection on the gray scale image. orizontal and vertical direction are shown
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below. The mask matrix as well as the imageThe angle gradient is given by the relation
matrix ar given

a(x,y) = tan‘lD(i(D The masks are moved

111213 W1 W2 W3 G |
141516 W4 W5 W6 through the entire image and the gradient for

magnitude and orientation are obtained. We
171819 W7 W8 W9 experimented the algorithm with various
threshold values and it has been found to give a

Where | is the image matrix and W is the maskgood edge detection at a threshold value of 120
matrix. The responses in the x and y directionfor the orientation.

can be obtained by applying the respective

matrix. The mask matrix for the response in the 5. Vertical lines
x direction is given by the matrix [1] and the
mask matrix for the response in the y direction
is given by the matrix [2]. Gx and Gy, the

The output of the canny edge detection
algorithm is a combination of vertical as well as

gradients in the respective directions ardhorizontal lines _smoothened representing line
calculated by the formulas shown below and the€dments. Algorithm was developed to compute
resultant gradient can be computed by thdhe numb_er of_vertlcal lines. The total number
of the vertical lines and the length of each of the
relation /G 2+G 2_ The mask for Iir_1e was compqted.As the length ofthelines-is
X y directly proportional to the length of the trees in
calculatingGX is given by the image they are useful in determining the
number of tall trees and the short bushes.

1-2-1 Apparently tall trees have a positive effect on
[1] the scenic quality whereas the small bushes have
0 0O negative effect. In calculating the length of the
1 2 1 vertical lines care was taken of the deviation of
the tree from the vertical by considering certain
amount of deviation in the horizontal direction
and the mask for calculatinGg is given by also. Also there might be a discontinuity in the
y length of the tree due to the presence of some
obstacle before it. Care was taken for this also
by giving a tolerance limit of about 5 pixels in
-10 the vertical direction.

20

10 6. Computing the scenic beau-
ty

We had to obtain a relation for the scenic beauty

The G, ande are given by the equations:from the analysis of the histogram and the edge
detection. This has to be done so as to correlate
the scenic beauty with the actual mean value of

Gy = (W, +2Wg+Wy) + (W, +2W, +W;  the rating available from the forestry
department. The mean of each of the color in

. the image was obtained from the histogram

Gy = (W3 +2Wg+Wy) + (W +2W, + W7, gnalysis and the number of vertical lines in the

image was obtained from the edge detection.
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The mean of each of the color has beerl to 10. “1” indicating less scenic and “10” in-
normalized inorder to get an exact percentagdicating the most scenicimage. These scores are
ofthe colorin each ofthe image. The percentagéhen converted into standard ratings using Sce-
of the long lines as well as the percentage of thaic Beauty Rating technique.

shortlines inrelation to the total number of ”neSRating scales offer an efficient and widely used
were computed. The facts that green color angheans of recording judgements about many
tall trees has a positive impact on the scenikinds of images. Scenic Beauty Estima-
beauty and the red color and the short bushegon(SBE) is one of the scaling procedure used.
has a negative impact on the scenic beauty i$he main reason for the scaling procedures are
used for computing the weights of different that people will use the rating scale differently
parameters to be used for determining the scenigom one to another in the process of recording
beauty. their perceptions of the images presented for as-
sessment.

7. Evaluation Scaling procedures are effective for adjusting
The relation which we have developed bysome of these differences. All the information
observing the dependency of the variougegarding theimages such as the block number,
parameters on the actual scenic rating was usegelot number, SBE rating, angle and the time at
for evaluating the scenic beauty on some othewhich it is taken is included in the ppm file as
images in the database.We have taken about Zmments. There are 4 blocks and 5 plots per
images from the database and tried to adjust thielock.The distribution of the plots in the blocks
weights of various parameters. After deriving aand the number ofimages is given in the follow-
relation we implemented the relation on anotheing tables.
30images. Though there was deviation from the
actual scenic value they seem to be varying with
the same proportion for all the images. We

Directory b01 (block 1)

evaluated the program on plots 1 and 3 of block Sub Directory Number of Images
1. We provide the results for all the images in
. . po01 32
plot 3 and some images in plot 1.
p002 32
8. Database p003 0
An important aspect is the availability of exten- p004 39
sive well organized database of the forestry im-
ages. These images are the pictures taken of the po20 32

Ouachita forest in the Winona range. We have
in our database 680 unique images. These are -
the images taken of four blocks in the range with Directory b02 (block 2)

each block having five plots. Each of the image Sub Directory Number of Images
is taken during all the seasons of the year and

also with different angles so as to see the effect p00S 40
of the season. p006 32
Thgre are also subjective; scenic beauty rati.ngs p007 32
available for each of the images. These subjec-

p008 32

tive ratings were obtained by showing the im-
ages to people from different walks of life and p019 32
asking them to rate the images on a scale from
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Directory b03 (block 3)
Sub Directory Number of Images Number | Red mear| Green Blue
ofthe im- mean mean
p009 32 age
010 32
P 1 55 62 30
p011 32
2 83 85 69
p012 32
0018 40 3 45 65 36
4 85 97 75
Directory b04 (block 4) 5 33 49 16
Sub Directory Number of Images 6 37 52 24
po13 32 7 52 57 29
p014 32
8 80 84 70
p015 40
0016 3 9 37 54 31
p017 32 10 81 91 63
11 27 30 15
There are 32 images of each plot. This relatiof 12 78 91 69
comes as there are 4 angles per plot and the pi
tureistaken4timesinayear, we have 16imageg 13 52 62 23
of the same plot per year. As in the database
have the images for 2 years there are 32 image 14 e 40 15
for each plot. Some of the plots have 40imagey 15 64 77 36
These additional images are the baseline slid
which are used as reference. 16 66 72 54
17 4 2 27
9. Results ° >
This section contains charts and graphs of th 18 55 61 59
various programs run on the images. Fo 19 38 53 17
convenience sake we are including only th
images from plots 3 and 1 in the website. Thg 20 29 43 16
mean values of the color provided in the
following chart are given in the same order ag 21 47 56 20
the images in the corresponding plots. We hav 22 43 52 22
taken the readings for 32 images from the plo
1 and the firstten images in the plot 3. Sincethqg 23 59 69 30
image names are long we have not include
them here.We will just indicate them by 24 56 62 51
numbers. 25 75 82 40
MS State DSP Conference Fall’'96
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Number| Red mearn, Green Blue Number of | percent of | percent of
of the mean mean the image | longlines | short lines
image
26 69 73 59 1 251 70.34
27 70 84 49 2 0.94 80.56
28 94 105 75 3 3.45 68.45
29 64 73 33 4 2.47 76.10
30 64 72 60 5 1.19 90.41
31 67 83 49 6 3.24 73.89
32 96 108 78 7 5.42 64.88
33 58 65 32 8 2.04 79.84
34 64 68 56 9 3.72 67.64
35 57 72 44 10 1.56 76.14
36 97 108 84 11 3.98 66.77
37 42 52 21 12 3.47 69.21
38 43 50 22 13 .0.88 82.04
39 71 79 43 14 2.12 74.21
40 58 62 o1 15 2.95 68.72
41 66 72 36 16 3.08 72.24
42 85 79 63 17 3.75 70.34
42 46 62 36 18 0.84 81.12
43 87 99 66 19 0.52 83.30
44 45 57 18 20 2.10 74.34
45 41 53 19 21 2.70 78.88
46 71 79 33 22 2.21 72.02
47 87 83 66 23 251 71.13
48 89 84 69 24 4.99 68.42
49 57 64 33 25 4.30 66.81
MS State DSP Conference Fall'96
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Number of | percent of | percent of
the image | long lines | short lines
26 2.78 78.39
27 4.43 67.57
28 2.17 71.71
29 2.50 74.30
30 3.56 69.98
31 4.36 65.62
32 2.29 73.66
33 2.95 70.72
34 1.41 77.89
35 3.31 68.18
36 2.67 73.08
37 1.97 77.13
38 2.45 72.03
39 2.46 72.57
40 2.03 77.37
41 2.74 72.93
42 2.34 74.79
43 3.05 70.30
44 1.10 77.98
45 1.42 77.13
46 2.57 69.58
47 2.69 68.00
48 2.28 75.70
49 3.24 71.04
50 1.96 76.23
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Number of Derived Actual
the image SBE SBE(mean)

1 0.42 4.68

2 0.33 4.64

3 0.50 6.59

4 0.37 4.27

5 0.56 7.25

6 0.51 7.58

7 0.40 4.15

8 0.33 3.94

9 0.49 6.35

10 0.38 7.21

11 0.41 4.58

12 0.33 3.76

13 0.46 6.41

14 0.48 6.00

15 0.45 5.19

16 0.36 4.81

17 0.41 3.22

18 0.33 2.63

19 0.54 6.17

20 0.55 6.73

21 0.46 6.95

22 0.46 6.38

23 0.44 5.49

24 0.35 6.02

25 0.41 4.47
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Number of Derived Actual
the image SBE SBE(mean)
26 0.34 4.15
27 0.43 4.75
28 0.38 4.13
29 0.43 5.72
30 0.36 5.00
31 0.44 5.00
32 0.38 4.41
33 0.42 5.25
34 0.34 4.15
35 0.44 5.74
36 0.36 5.24
37 0.47 6.65
38 0.44 6.61
39 0.40 5.85
40 0.34 6.04
41 0.47 4.37
42 0.35 4.47
43 0.54 4.80
44 0.46 4.65
45 0.57 6.09
46 0.57 5.94
47 0.50 4.76
48 0.36 3.60
49 0.50 5.16
50 0.48 5.05
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The plots for the first five of the images in the

table are given below. The first plot is the histo-
gram plot which shows the number of pixels

present in the image of each value of the color
from zero to the maximum value of color in the

image. The other plot shows the number of lines
for each length of the line. The length of the line

is on the X-axis and the number of lines with

such length is on the Y-axis.

10. Future Work

10.1 Evaluating Scenic Beauty

The evaluation of scenic beauty has been done
by only observing the various parameters com-
puted and figuring out a relation between the
actual scenic beauty and these parameters. The
parameters are the mean value of the colors and
the percentage of the vertical lines in the image.
A better and efficient method would be to use
the neural network as decision box. The param-
eters should be given as the input and the neural
network should be trained with a fair amount of
database to output the actual scenic beauty. It
canthen be usedtotestonthe remainingimages.

Also some other parameters like texture of the

ground and frequency characteristics can be
used to determine the scenic beauty. The effect
of these parameters can be determined using
various image analysis methods and their effect
on the scenic beauty should be evaluated.The
determination of more parameters helps in the

effective determination of the scenic beauty and

a better correlation to the actual scenic value.
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Appendix A: Images Tested:

Red mean =55
Green mean = 62
Blue mean = 30

% long lines = 2.51
% short lines = 70.34
SBE =0.42

Gray scale image

Edge detected image
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Plots showing the number of pixels of each color and the number of vertical lines
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Red mean = 83
Green mean = 85
Blue mean = 69

% long lines = 0.94
% short lines = 80.56
SBE =0.33

Gray scale image

Edge detected image
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Plots showing the number of pixels of each color and the number of vertical lines
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Red mean =45
Green mean =65
Blue mean = 36

% long lines = 3.45
% short lines = 68.45
SBE =0.50

Gray scale image

Edge detected image
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Plots showing the number of pixels of each color and the number of vertical lines
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Red mean = 85
Green mean = 97
Blue mean = 16

% long lines = 2.47
% short lines = 76.10
SBE =0.37

Gray scale image

Edge detected image
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Plots showing the number of pixels of each color and the number of vertical lines
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Red mean = 37
Green mean = 52
Blue mean = 24

% long lines = 3.24
% short lines = 73.89
SBE = 0.56

Gray scale image

Edge detected image
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plots showing the number of pixels of each color and the number of vertical lines
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