
Mississippi State University Fall ’96

Parallel DSP Group Page 5 of 16

ABSTRACT

There have been a large number of Fast Fourier
Transform (FFT) algorithms which have been
developed over the years. Among these are the Radix-2
algorithm, Radix-4 algorithm, Split-Radix algorithm,
Decimation-in-Time-Frequency algorithm (DITF),
Quick Fourier Transform (QFT), and the Fast Hartley
Transform (FHT). However, there has not been much
prior work where the user is given a single interface to
poly-functional implementation that transparently
optimizes space and time complexity.

In this paper we present the implementation and
benchmarking of the sequential and parallel versions
of the above mentioned FFT algorithms. All
algorithms have been rigorously compared based on
computational time, object size, code size, data
dependence (real or complex) and the number of
mathematical operations involved in the computations.
The results of this endeavor will serve as a frame for
creating an object-oriented FFT environment which
will automatically choose the most efficient algorithm
for a given platform, data set, and order or other user-
specified criteria.

1. INTRODUCTION

The development of Fast Fourier Transform (FFT) has
evolved over many years. The first major breakthrough
was the Cooley-Tukey algorithm developed in the mid-
sixties which resulted in a flurry of activity on FFT’s. [1]
[2] Further research led to the development of the Fast
Hartley Transform and Split-Radix algorithm. Recently
two new algorithms have also emerged: Quick Fourier
Transform and the Decimation-in-Time-Frequency
algorithm. Now research has to be geared towards
finding which of these algorithms is most efficient. The
problem that arises is the inherent trade-off between
computation speed, memory usage and the algorithm
complexity. Instead, we must attempt to find the most

efficient algorithm under the constraints of a particular
application. Our efforts will accomplish this task by
benchmarking each algorithm under a variety of
constraints. The benchmark statistics will be used to
create an automated environment capable of choosing
the most efficient algorithm for a given application.

The FFT is one of the important and most widely used
Digital Signal Processing (DSP) algorithms. FFT
algorithms are efficient methods of calculating the DFT.
The DFT converts the input signal from the discrete
time domain, x(n), to the discrete frequency domain,
X(w), and vice versa. This is very useful in eliminating
the unwanted noise signal from any communication
signal (information bearing signal) being analyzed.
Once the signal is converted into the frequency domain
the noise or unwanted signal frequencies can be
effectively filtered. Then, by using the inverse FFT, the
communication signal can be converted back to the time
domain. The FFT has many wide-ranging applications
in nearly every signal processing field including speech,
image processing, communications, cellular phones,
modems, and digital control systems. [3]

For most applications computation time plays a
significant role in the use of FFT’s. The more time
spent computing means more efficient utilization of
resources; hence, more data can be processed in the
same time. The computation time can be reduced using
the symmetry, periodicity, etc. of the DFT. The
computation time can also be reduced using parallelism
in FFT’s. By using the FFT algorithms in parallel, the
data set can be separated into smaller blocks. The
different blocks of data can then be processed at the
same time across multiple processors. There is, of
course, a trade-off with this method: overhead of
communication between processes. To make efficient
use of the parallel method the communication time must
be minimized.

COMPARATIVE ANALYSIS OF FFT ALGORITHMS IN SEQUENTIAL
AND PARALLEL FORM

Michael Balducci, Ajitha Choudary, Jonathan Hamaker

Parallel DSP Group
Department of Electrical and Computer Engineering

Mississippi State University
Mississippi State, Mississippi 39762

{balducci, ajitha, hamaker}@erc.msstate.edu

Parallel DSP Group Page 6 of 16

s
e
n

re
.

ral
of
d
d-
t a
to
an

g
l
f
t,
1. Theory of FFTs

The Fourier transform,H(w), of a signal,h(t), is given
by the equation of Figure (1a), whereh(t) is the time-
domain signal,t is the time andw is the angular
frequency. The assertion of this equation is that any
time-domain signal can be “transformed” into a function
of frequency. A plot of this frequency-dependent
function gives the frequency content of a particular
signal over the entire frequency spectrum. The resulting
function contains the magnitude and phase information
for each frequency point in the spectrum. This process
of conversion from the time to frequency-domain is
invertible using the Inverse Fourier Transform of Figure
1b. By the inverse transform, a frequency-domain
signal is transformed back to the time domain. [1] [3]

The Discrete Fourier transform (DFT) is the digital
equivalent of the Fourier Transform. It is a bounded
length sequence which is more practical than the infinite
summation of the Fourier Transform. The DFT assumes
that the input signal is periodic with a period equal to
the length of the input sequence. The Discrete Fourier
transform is defined as shown in Figure (2a) and its
inverse is shown in Figure (2b) [7].

The DFT is one of the most important concepts in
digital signal processing but it is not useful for practical
applications. In computing the DFT directly, there are

4N2 multiplications and N(4N-1) additions, therefore

the computation time is of the order N2. This type of
complexity is not satisfactory for large N. We desire

complexities which are linear with data size. At thi
time, no algorithm is available with such performanc
but we can derive a class of algorithms which give a
efficient alternative to the DFT. These algorithms a
collectively known as Fast Fourier Transforms (FFTs)

2. Algorithms

The Fast Fourier Transforms included here use seve
different approaches in reducing the computation cost
calculating the fourier coefficients. One metho
employed by several of the algorithms is the divide-an
conquer approach. These algorithms use the fact tha
input sequence of length N can generally be broken in
a number of smaller sequences. Since the DFT has

order of complexity N2, breaking the summation intoβ
sections of length-N/β results in a reduction of
complexity as shown in Figure 3. [4]

Another approach is to utilize the periodicity of the
DFT. From Figure 4, it can be seen that the multiplyin
factors of the DFT exhibit both horizontal and vertica
symmetry about the unit circle when N is a power o
two. Thus, by realizing that the coefficients repea
redundant calculations can be eliminated. [3]

H w() h t() ej2πt td

∞–

∞

∫=

h t() 1
2π
------ H w() e j ωt–

∞–

∞

∫=

1a

1b

Figure 1. Forward and Inverse Fourier Transform

X k() x n() e
j2πkn–

N

n 0=

N 1–

∑=

x n() 1
N
---- X k() e

j2πkn
N

k 0=

N 1–

∑=

2a

2b

Figure 2 Forward and Inverse Discrete Fourier
Transform

Complexity
N
β

0

2 N
β

1

2 …
…

N
β

β

2
+ + + N2

β
-------= =

Figure 3 Complexity of Divide-and-Conquer
approach. Note the reduction in

complexity from the O(N2) of the DFT.

Figure 4 Plot of WN on the unit circle. This
complex function exhibits both
horizontal and vertical symmetry when
N is a power of two.
Mississippi State University Fall ’96

Parallel DSP Group Page 7 of 16

ex
d

g
he
er
e

ct
nd

s.
e
nt
In
ix
he

is
ts.
nd,
es.
e
be
b).
f

2.1. Radix-2 and 4 Algorithms

2.1.a. Sequential Form

By limiting our data-length to the form N = RV we can
define a class of FFTs known as radix algorithms.
These algorithms successively decompose a single N-
point DFT into R segments of N/R-point DFTs. The
most widely used of these radix algorithms is the Radix-
2 and the Radix-4. Each uses the periodic properties of
the DFT to attain higher efficiency levels. Radix
algorithms can be implemented by either using
Decimation-In-Time (Cooley and Tukey) or by
Decimation-In-Frequency (Sande and Tukey). Each of
these algorithms reduces the number of operations from

O(N2) to O(N log2 N). The drawback is that the data
must be of a specified length. This problem can be
avoided by zero-padding with no loss of information.
[1] [5]

2.1.b. Parallel Form

The parallel structure of the radix algorithms is
understood by considering the fact that the DFT can be
decomposed into smaller independent DFTs. By
performing each of these smaller DFTs concurrently, we
can take advantage of this parallelism. Figure 5 shows
two stages of a Decimation-In-Time FFT. In this figure,
one can see that the 8-point DFT is decomposed into
two 4-point DFTs. These, in turn, are each decomposed
into two 2-point DFTs.[6]

.

2.2. Split-Radix Algorithm

2.2.a. Sequential Form

By observing Figure 5, it can be seen that even ind
points can be calculated independently of the od
indexed points. This leads to the possibility of makin
use of more than one algorithm for the data set. T
increase in computational efficiency of the higher ord
Radix-4 is attractive, but the limitation in data sequenc
lengths is a hindrance. The Split-Radix utilizes the fa
that the data points can be decomposed into even a
odd indices to employ both Radix-2 and 4 algorithm
A Radix-2 is performed on the even index points. Th
odd points are then decomposed into two N/4 poi
sequences where a Radix-4 approach is taken.
making use of these two techniques, the Split-Rad
acquires an increase in computational efficiency over t
Radix-2 while retaining the its ability to perform on any
power of two. [7]

2.2.b. Parallel Form

As discussed above, the Split-Radix algorithm
composed of a Radix-2 and two Radix-4 componen
These components are independent of each other a
thus, can be performed in parallel separate process
Figure 6 shows the flow of this process. Also, notic
that the Radix-2 and Radix-4 components can each
performed as parallel computations (see section 2.1.
In this manner, we can achieve maximum utilization o
parallel hardware.

-1

-1

-1

-1 -1

-1

-1

-1

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

X(0)

X(2)

X(4)

X(6)

X(1)

X(3)

X(5)

X(7)

W 8
0

W 8
1

W 8
2

W 8
3

W 8
0

W 8
2

W 8
0

W 8
2

-1

-1

-1

-1

W 8
0

W 8
0

W 8
0

W 8
0

Figure 5 Flowgraph of an 8-point Decimation-in-
Frequency FFT. The independence of
the odd and even sample calculations
allows for evaluation on separate
processors

N-Point N/4-Point
Radix-4

N/4-Point
Radix-4

CPU

CPU

CPU

Spectrum
DFT

N/2-Point
Radix-2

Figure 6 Parallel composition of the Split-Radix
FFT and FHT.
Mississippi State University Fall ’96

Parallel DSP Group Page 8 of 16

y
s.
an

he

s
x
e

ms
th-
be
)
l)
in
ce

ll
he
a.
eal
e

d
0.
es
s’
a

ent.
to
2.3. Fast Hartley Transform

2.3.a. Sequential Form

The Discrete Hartley Transform (DHT), shown in
Figure 7, takes the approach that fewer is better. Since
complex arithmetic requires four real multiplications for
every complex multiplication and two real additions for
every complex addition, it is computationally very
expensive. In addition to requiring more operations,
complex numbers also require more memory since a
complex number consists of two real coefficients. The
DHT reduces the number of computations and memory
used by simplifying the kernel of the DFT to real valued
variables. [8]

This new transform shares many of the properties of the
DFT. Due to the similarity between the DFT and the
DHT, the techniques employed by FFT to calculate the
DFT can be applied to the DHT. This allows for an even
greater reduction in the number of computations.
Although the DHT requires fewer computations that the
DFT, there is a drawback in calculating the fourier
coefficients using the DHT. Additional computations
are required to convert from the DHT to the DFT.
However, since the relationship is linear, the
computation cost is minimal. The relationship between
the DHT and DFT is shown in Figure 8. [8]

2.3.b. Parallel Form

In our efforts, we chose the Split-Radix form of the
FHT. The parallel form of this algorithm follows the
form of the Split-Radix DFT shown in Figure 6. The

difference occurs in the end when the Hartle
coefficients must be converted to Fourier coefficient
This step introduces additional computations which c
be performed in parallel. [9]

2.4. Quick Fourier Transform

2.4.a. Sequential Form

Whereas most FFTs use the periodic properties of t
DFT to reduce complexity, the Quick Fourier Transform
(QFT) uses the symmetry of the cosine and sine term
in the DFT to decrease the number of comple
calculations. The QFT is constructed by breaking th
data set into real cosine terms and imaginary sine ter
and those into their even and odd parts. The leng
(N+1) cosine terms and length-(N-1) sine terms can
recursively decomposed into two length-(N/2 +1
Discrete Cosine Transforms and two length-(N/2-
Discrete Sine Transforms respectively as shown
Figure 9. Using this decomposition process we redu
the complexity of the DFT to a complexity of O(N
log2N). Another important aspect of the QFT is that a
complex operations occur at the last stage of t
decomposition. This makes it well suited for real dat
However, complex data can be processed by taking r
transforms of the real and imaginary portions of th
input separately and combining the results. [10]

2.4.b. Parallel Form

The QFT is recursively decomposed into DCTs an
DSTs according to the tree structure shown in Figure 1
We see from this figure that the operations at the leav
of the tree are independent of the other leave
operations. Thus each leaf can be evaluated by
separate process and the results returned to the par
We take the approach of allowing all processors

XH k() 1

N
-------- xn

2πkn
N

 cos

2πkn
N

 sin+

n 0=

N 1–

∑=

Figure 7 The Discrete Hartley Transform

Re X k()()
XH k() XH N k–()+()

2
---=

Im X k()()
XH k() XH N k–()–()

2
---=

Figure 8 Relations for conversion between
Hartley coefficients and Fourier
coefficients

N-point DFT

(N/2 + 1) - point DCT

(N/2 - 1) - point DST

Sum of Two
Recursive
DCTs

Sum of Two
Recursive
DSTs

Figure 9. Flow Diagram of the Quick Fourier
Transform
Mississippi State University Fall ’96

Parallel DSP Group Page 9 of 16

ch
a
e
0.

at
s,
is
is
/p
e

o
he
he
en
has

ly
ly

.
n

to
ke
traverse the QFT’s tree until a point is reached where all
processors can be utilized by a separate leaf. This
approach does limit the number of processors to be a
power of two but this is a reasonable limitation for
today’s hardware. Figure 10 shows how each processor
is allocated to a branch of each subtree and the
communication paths between each processor.

2.5. Decimation-in-Time-Frequency Algorithm

2.5.a. Sequential Form

The Decimation-In-Time-Frequency (DITF) algorithm
uses both the Radix-2 Decimation-in-Time (DIT) and
Decimation-in-Frequency (DIF) algorithms to form a
new recursive algorithm. The DITF is based on the
observation that the DIT algorithm has a majority of its
complex operations towards the end of the computation
cycle and the DIF algorithm has a majority towards the
beginning. The DITF makes use of this fact by
performing the DIT at the outset and then switching to a
DIF to complete the transform as shown by the block
diagram of Figure 11. Combining these algorithms
comes at the cost of computing complex conversion
factors at the point of switching. [11]

2.5.b. Parallel Form

Similar to the QFT, the DITF uses a recursive approa
to the decomposition of the DFT by using both
recursive DIT and a recursive DIF. As with the QFT, th
parallel structure of the DITF is described by Figure 1
Unlike the QFT, the DITF is highly communication
dependent. Each leaf process must communicate
least once for each frequency point calculated. Thu
the cost of the tree structured approach for the DITF
too high. Instead the approach we take for the DITF
one of data splitting. Each processor is allocated N
frequency data points to calculate, where p is th
number of processors and assuming (N mod p) = 0.

3. Implementation

Implementation of the FFT algorithms consisted of tw
phases: sequential coding and parallel coding. T
sequential FFT routines have been freely available in t
public-domain for years. These FFT routines have be
refined over a matter of months and years and each
been tweaked to the point of maximal efficiency.

The parallel implementations were developed direct
from the sequential code. To do this, we first careful
analyzed each FFT routine for structural parallelism
Secondly, we analyzed the required communicatio
costs of the parallel structure. Taking both of these in
account, we designed the parallel routines to best ta
advantage of the algorithm’s parallelism while
minimizing communication costs.

DCT DST

DCT DCT DST DST

0,1,2,3

0,1 2,3

0 1 2 3

0,1,... Indicates calculations which can be
processed separately. 0,1,... indicate
processors at that stage of the recursion

Indicates direction of communication
between processes.

Figure 10 Parallel structure of the QFT and DITF
algorithms

x(n) X(k)

Conversion

DIF Radix-2

DIT Radix-2

DITF

DIF DIT

Figure 11 Block Diagram of DITF algorithm.
Notice that the portions of the DIT and
DIF with fewer computations are used
by the DITF.
Mississippi State University Fall ’96

Parallel DSP Group Page 10 of 16

is
so
lel
ors
ue
e

sed.
e

be
ns
e
he
g
ng
n
of

e/

s
is
is
be
e.
ust
r

n
od.

d
our
he
is

ce
d
e
ve
of

lid
ng
ld
ble

e
ing

ng
a
a

3.1. Parallel Communication Tool

In order to use multiple processors, the data must first be
distributed. Thus, there is a need for a method by which
to transfer data between processes. The Message
Passing Interface (MPI) provides a means by which to
transfer data between processes conveniently. Since
MPI is a communication library, it allows for inner-
workings of the communication protocol to occur
transparent to the calling code. MPI processes are "self-
aware" in the sense that each is assigned a numeric rank
at start-up that uniquely identifies it. The transfer of
data using MPI is accomplished by making a call to one
of the library's function. The calling code specifies the
transfer by passing sending process's rank, the receiving
process's rank, the data type, and the number of data
elements to be passed. In addition to point-to-point
communication, MPI supports collective and group
communication. This allows for a reduction in the
overhead in sending to a group (broadcast) and receive
from a group (gather) of process. [12] [13]

Since the MPI libraries have been ported to many
operating systems (OS)/achetectures, porting a parallel
program to another does not require any change in the
communication calls. MPI takes care of the hardware
details, allowing the programmer to worry only about
the software implementation. This allows for MPI code
to transcend platforms.

4. Testing Procedures

Giving an objective evaluation of the algorithms
requires an extensive knowledge of how each compares
over a wide range of circumstances. In particular we
want to collect statistics which relate directly to
application constraints including factors such as
memory, speed, data length, and hardware capabilities.
We also desired test methods which give consistent and
repeatable results.

4.1. Criteria

In choosing criteria by which to evaluate the various
algorithms, consideration was given to the different
constraints that would be imposed by a particular
application. The criteria for benchmarking were
computations speed, memory usage, number of
processors available, input data size, code size, object
size, and number of mathematical operations (adds,
multiplications, and binary shifts). Computation speed
was selected as the core criteria for comparison since
the most efficient method is generally the most desirable

one. However, since the amount of memory available
not static from machine to machine, memory was al
included as a measure of efficiency. For many paral
applications, an increase in the number of process
available directly correlates to the speed-up. This is d
to the fact that the number of processors limits th
degree to which the data sequence can be decompo
As was illustrated in theory section, decreasing th

length of the data sequence for an O(N2) operation
reduces the net number of operations which must
performed. The number of mathematical operatio
was included since it is directly related to th
computation time and the hardware requirements. T
additions and multiplications were broken in to floatin
point and integer operations due to the fact that floati
point operations are much more costly in computatio
time than are integer operations. Input sequences
differing lengths were included to examine increas
decrease in the overall cost of the communication.

4.2. Testing Methods

Evaluation of the above criteria involves many issue
which are not readily apparent. Key amongst these
processor loading. One of our most important criteria
speed. Unfortunately this measurement cannot
completely decoupled from the loading of the hardwar
To obtain consistent measurements of speed, we m
eliminate the effects of fluctuations in processo
loading. We accomplish this in two ways: test o
unloaded processors and use an iterative testing meth

We ran our timing tests on relatively unloade
processors. These processors were loaded only by
programs and system operations. This eliminated t
latency introduced when another user’s program
executing on our test machines.

An iterative approach to testing was also used to redu
the transients of processor loading. This metho
involved running each test for each algorithm for a larg
number of iterations. For instance, a compute intensi
system operation may have been started in the middle
one test. This test taken alone would produce inva
and inconsistent results. On the other hand, performi
this same test over a large number of iterations wou
average out that invalid result and produce repeata
results.

We also used a variety of methods for calculation of th
other statistics. Computation speed is measured us
the standard unix system utility ‘clock()’. For
evaluation of memory usage, we developed a floati
point class which has the feature of accumulating
count for each byte of memory allocated. This gives
Mississippi State University Fall ’96

Parallel DSP Group Page 11 of 16
very efficient method of viewing the dynamic memory
management. Counting of mathematical operations was
accomplished in a manner similar to the memory counts.

5. Results

The observed computation time, shown in Figure 12 and
Table 1, illustrates that execution time was of order
Nlog(N) for all algorithms with respect to the data size
The Radix-4 had the least computation time of all
algorithms evaluated, but is limited to data sizes which
are a power of four. The Radix-2 was somewhat slower
than the more computationally efficient Radix-4. For
the odd powers of two, the Split- Radix had the lowest
computation time. Overall, the Split-Radix ranked
between the Radix-2 and Radix-4. This was expected
since the Split-Radix makes uses of both the Radix-2
and Radix-4. Therefore, the computation time for the
Split-Radix is a weighted average of the computation
time of its two sub-components. The FHT, which
utilizes a Split-Radix topology, is somewhat slower than
the Split-Radix FFT. This is due to additional
computation time necessary to transform the Hartley
coefficients to Fourier coefficients.

The ranking of the algorithms based on lowest memory
usage, shown in Figure 13 and Table 2, follows the
Ranking for least computation time with one exception.
The DFT was the slowest, but uses the least amount of
memory.
Mississippi State University Fall ’96

Algorithm
Speed
N = 64

Speed
N = 128

Speed
N = 256

Speed
N = 512

Speed
N = 1024

Speed
N = 2048

Speed
N = 4096

DFT 61900 248600 996400 3994300 16009500 21280728 30576662

RADIX-2 1000 2100 4400 9400 19900 42100 90900

RADIX-4 700 --- 3500 --- 16000 --- 72200

SRFFT 900 1800 3800 7900 16800 35400 76400

FHT 1000 2100 4600 9500 20500 43600 97800

QFT 1100 2500 5600 12300 26900 60700 129300

DITF 49400 165700 596900 2214000 6889400 7735873 11668681

Table 1: Computation Time for Each Algorithm (See Figure 12)

Parallel DSP Group Page 12 of 16
Algorithm
Data
Type

Float
Mults

Float
Adds

Int
Mults

Int Adds
Bin

Shifts
Memory
(bytes)

DFT Real 2097152 2097152 0 1049600 0 8

Complex 4194304 4194304 0 1049600 0 8

RADIX-2 Real 20480 30720 0 15357 1024 12308

Complex 20480 30720 0 15357 1024 12308

RADIX-4 Real 15701 28842 336 8877 2738 4172

Complex 15701 28842 336 8877 2738 4172

SRFFT Real 4668 11722 494 11545 2335 12332

Complex 10016 25488 502 12448 2937 12332

FHT Real 9352 15006 0 4695 2123 4328

Complex 18704 32056 0 8367 4246 16416

QFT Real 4224 14722 8 34517 157 12288

Complex 8448 31492 16 70058 316 24576

DITF Real 48894 47163 0 16927 1 446464

Complex 52996 51796 0 34878 2 462848

Table 2: Table of mathematical operations for each algorithm
Mississippi State University Fall ’96

Parallel DSP Group Page 13 of 16
Figure 12 Log-Log Plot of Computation Time vs Order. Notice the N log(N) shape of the curves.

log(Order)

log(computation time)

QFT

RADIX-4

RADIX-2
FHT
SRFFT
Mississippi State University Fall ’96

Parallel DSP Group Page 14 of 16

emory (Bytes

Log-Log Plo
Speedup

No. of Processors FFT Order

16
64

256
1024

2048
4096

8192
1

2
4

8
16

0

0.2

0.4

0.6

0.8

1.0

Figure 15 Typical results for the parallel algorithms. No speedup was achieved for the majority of
the parallel algorithms
)

log(Order)

DITF
QFT

FHT
Radix-2
SRFFT

Radix-4

DFT
Mississippi State University Fall ’96t of Memory Usage vs Order for Each Algorithm.

Parallel DSP Group Page 15 of 16

ta
n
er

er
ns.
at
des
h

or
ti-
l of
re,
to

y
sses
to

ne
he
is
uld
e

st

c-
a
t

he
e
a
s

as
O

e

d
e
of

en
r

e

ed

dup

No.

2

4 Best case
was possi
6. Conclusions

Overall, the sequential algorithms proved to faster than
their parallel counterparts. This can be accounted for by
the additional time required to communicate between
nodes. With the parallel algorithms, one node acts as a
master distributing the data to other nodes. The master
then becomes a slave which processes an equal portion
of the data. The communication latency was such that
the master node would complete its data processing
cycle long before any of the other nodes since a send
requires much less time than a receive. After
completing its data processing cycle, the master node
goes into a receive mode waiting to recollect the data
processed by other nodes. This causes yet another delay
due the imbalance of the send and receive times
mentioned. The net result was sequential execution
with waits inserted due to the communications latency.

In order for any parallel algorithm to be beneficial, there
must be sufficient overlap between execution and
communication. An even distribution of data provides
for virtually no overlap. Given these results, an

alternative approach would be to distribute the da
unevenly to allow more communication / executio
overlap. That is, the master node would keep a larg
portion of the data for itself. This would allow the
master node to continually process data while the oth
nodes receive, process, and send back their portio
Thus, the master node is completing its computations
about the same time the processed data from other no
is arriving. Using an uneven data distribution approac
should allow for more overlap, but still suffers from the
communication burden.

One possible solution that eliminates the need f
transferring of data between processes is mul
threading. Multi-threading uses several processes, al
which have access to the same memory. Therefo
there is no need of one process transmitting its results
another since the result will be written to a memor
space that the other processes can access. The proce
do, however, need to communicate with one another
allow synchronization between stages. That is, o
process may have to wait for another to complete t
results it needs to proceed. The limitation to th
approach would be that the number of processes wo
be limited by the number of processors on any on
machine. [14]

7. Future Considerations

In our efforts thus far we have assembled the fir
unified collection of publicly available parallel FFT
algorithms. The sequential code provides publi
domain FFT code for a variety of algorithms under
single framework. The parallel code will give insigh
into the parallel coding of the various FFT algorithms.

Secondly, we have developed hard statistics for t
complexity of the FFT algorithms. These statistics giv
the developer a clear picture of what will be required if
particular algorithm is used. Having these statistic
takes the guess work out of development which w
necessary to overcome the ambiguity of the big-
notation.

Perhaps, most importantly our work has laid th
foundation for a class of “intelligent” programs which
will automatically choose the best algorithm an
execute it for a given set of user constraints. As th
hardware available becomes more diverse, this type
software is becoming a necessity. This constraint driv
program will also be a beneficial tool to the develope
because it will give a quick way to test performanc
under changing design constraints.

There are various possibilities that must be explor

of Processors
FFT Order

16
64

256
1024

2048
4096

8192

4
8

16

 results for parallel algorithms (DFT). These results occur because data splitting
ble for the DFT.
Mississippi State University Fall ’96

Parallel DSP Group Page 16 of 16

A
cal

.

.

before the constraint driven software will become a
reality. Foremost among these is to re-evaluate the
parallel structure of the FFT code. Trying to cast the
“tight” sequential code into a parallel form is not likely
to be the best option. We should redevelop the
implementation to use the parallel structure of the
algorithm more efficiently.

Also, we must explore other parallel processing
techniques. We have seen that the major impedance to
parallel processing of FFTs is communication costs. We
will explore other techniques (such as shared memory)
which allow us to perform the FFTs with a reduced
number of communication calls.

8. Acknowledgments

We would like to thank the following persons for their
support: Dr. Joseph Picone, Dr. Tony Skjellum, and the
members of each of their groups. Most importantly we
thank Aravind Ganapathiraju for his leadership and
interest in our efforts.

9. References

1. Oppenheim, Alan V., Ronald W. Shafer.Discrete-
Time Signal Processing.Prentice Hall. Englewood
Cliffs, New Jersey 1989. pp 587-610.

2. Bracewell, Ronald N.The Fourier Transform and
Its Applications, Second Edition.McGraw-Hill
Book Company. New York, 1978. pp356-381.

3. Proakis, John G. and Dimitris G. Manolakis.
Digital Signal Processing: Principles, Algorithms,
and Applications, Third Edition.Prentice Hall,
Upper Saddle River, New Jersey, 1996. pp230-256,
394-494.

4. Roberts, Richard A., Clifford T. Mullis. Digital
Signal Processing. Addison Wesley, Reading,
Massachusetts, 1987. pp 148-162.

5. Blahut, Richard E. Fast Algorithms for Digital
Signal Processing. Addison Wesley, Reading,
Massachusetts, 1985. pp 114-152, 240-280.

6. Tatyana D. Roziner, et. al., “Fast Fourier
Transforms Over Finite Groups by Multiprocessor
Systems,” IEEE Trans. on ASSP, vol. 38, no. 2,
February 1990. pp 226-239.

7. P. Duhamel and H.Hollomann, “Split radix FFT
algorithm,” Electron. Lett., vol. 20, pp. 14-16, Jan.
1984.

8. R. Bracewell. The Hartley TransformOxford,
England: Oxford Press, 1985, chapter 4.

9. “ Implementing 2-D and 3-D Discrete Hartley
Transforms on a Massively Parallel SIMD Mesh
Computer.” Technical Report CS-TR-95-01,
University of Central Florida, Orlando, FL.

10. H. Guo, G.A. Sitton, C.S. Burrus. “The Quick
Discrete Fourier Transform.” ICASSP94 Digital
Signal Processing.vol III. Institute for Electrical
and Electronics Engineers. pp. 445-447, 1994.

11. Saidi, Ali. “Decimation-In-Time-Frequency FFT
Algorithm.” ICASSP94
Digital Signal Processing. vol III. Institute for
Electrical and Electronics Engineers.
pp. 453-456, 1994.

12. “ Message Passing Interface Forum. MPI:
Message-Passing Interface Standard. Techni
Report Computer Science Department”Technical
Report CS-94-230, University of Tennessee,
Knoxville, TN, May 5 1994.

13. Snir, Marc. et. al.MPI: The Complete Reference
The MIT Press, Cambridge,Massachusetts, 1996

14. Fox, Geoffrey C. et. al.Solving Problems On
Concurrent Processors.Prentice Hall, Englewood
Cliffs, New Jersey, 1988.
Mississippi State University Fall ’96

	ABSTRACT
	1. INTRODUCTION

	COMPARATIVE ANALYSIS OF FFT ALGORITHMS IN SEQUENTIAL AND PARALLEL FORM
	Michael Balducci, Ajitha Choudary, Jonathan Hamaker
	Parallel DSP Group
	Department of Electrical and Computer Engineering
	Mississippi State University
	Mississippi State, Mississippi 39762
	{balducci, ajitha, hamaker}@erc.msstate.edu
	1. Theory of FFTs
	Figure�1 . Forward and Inverse Fourier Transform
	Figure�2 Forward and Inverse Discrete Fourier Transform

	2. Algorithms
	Figure�3 Complexity of Divide-and-Conquer approach. Note the reduction in complexity from the O(N...
	Figure�4 Plot of WN on the unit circle. This complex function exhibits both horizontal and vertic...

	2.1.�� Radix-2 and 4 Algorithms
	2.1.a.�� Sequential Form
	2.1.b.�� Parallel Form
	Figure�5 Flowgraph of an 8-point Decimation-in- Frequency FFT. The independence of the odd and ev...

	2.2.�� Split-Radix Algorithm
	2.2.a.�� Sequential Form
	2.2.b.�� Parallel Form
	Figure�6 Parallel composition of the Split-Radix FFT and FHT.

	2.3.�� Fast Hartley Transform
	2.3.a.�� Sequential Form
	Figure�7 The Discrete Hartley Transform
	Figure�8 Relations for conversion between Hartley coefficients and Fourier coefficients

	2.3.b.�� Parallel Form

	2.4.�� Quick Fourier Transform
	2.4.a.�� Sequential Form
	Figure�9 . Flow Diagram of the Quick Fourier Transform

	2.4.b.�� Parallel Form
	Figure�10 Parallel structure of the QFT and DITF algorithms

	2.5.�� Decimation-in-Time-Frequency Algorithm
	2.5.a.�� Sequential Form
	Figure�11 Block Diagram of DITF algorithm. Notice that the portions of the DIT and DIF with fewer...

	2.5.b.�� Parallel Form
	3. Implementation

	3.1.�� Parallel Communication Tool
	4. Testing Procedures

	4.1.�� Criteria
	4.2.�� Testing Methods
	5. Results
	Figure�12 Log-Log Plot of Computation Time vs Order. Notice the N log(N) shape of the curves.
	Figure�13 Log-Log Plot of Memory Usage vs Order for Each Algorithm.
	Figure�14 Best case results for parallel algorithms (DFT). These results occur because data split...

	6. Conclusions
	7. Future Considerations
	8. Acknowledgments
	9. References
	1. Oppenheim, Alan V., Ronald W. Shafer. Discrete- Time Signal Processing. Prentice Hall. Englewo...
	2. Bracewell, Ronald N. The Fourier Transform and Its Applications, Second Edition. McGraw-Hill B...
	3. Proakis, John G. and Dimitris G. Manolakis. Digital Signal Processing: Principles, Algorithms,...
	4. Roberts, Richard A., Clifford T. Mullis. Digital Signal Processing. Addison Wesley, Reading, M...
	5. Blahut, Richard E. Fast Algorithms for Digital Signal Processing. Addison Wesley, Reading, Mas...
	6. Tatyana D. Roziner, et. al., “Fast Fourier Transforms Over Finite Groups by Multiprocessor Sys...
	7. P. Duhamel and H.Hollomann, “Split radix FFT algorithm,” Electron. Lett., vol. 20, pp. 14-16, ...
	8. R. Bracewell. The Hartley Transform Oxford, England: Oxford Press, 1985, chapter 4.
	9. “Implementing 2-D and 3-D Discrete Hartley Transforms on a Massively Parallel SIMD Mesh Comput...
	10. H. Guo, G.A. Sitton, C.S. Burrus. “The Quick Discrete Fourier Transform.” ICASSP94 Digital Si...
	11. Saidi, Ali. “Decimation-In-Time-Frequency FFT Algorithm.” ICASSP94 Digital Signal Processing....
	12. “Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. Technical Report...
	13. Snir, Marc. et. al. MPI: The Complete Reference. The MIT Press, Cambridge, Massachusetts, 1996.
	14. Fox, Geoffrey C. et. al. Solving Problems On Concurrent Processors. Prentice Hall, Englewood ...
	Figure 15 Typical results for the parallel algorithms. No speedup was achieved for the majority o...

