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1.  Abstract

Current music software relies on external input from
MIDI capable devices. Because traditional musical
instruments are inherently analog, the interaction of
musicians and computers is rare.

The purpose of this project is to develop a software
package for music education utilizing an acoustical
instrument interface so that players of all instruments
can begin to utilize the computing power of today’s
world. Musicians who play tones into a microphone
will see those tones analyzed in the areas of relative and
absolute pitch.

2.  Overview

2.1 A Brief History of Computers in Music

There has been an interest in using computers to aid in
the creation of music for more than thirty years. Bell
Telephone Laboratories developed a program called
Music 4as early as the 1960’s. Through various updates
and revisions, this program eventually developed into
what is nowCSound. CSoundallows the user to write
programs that represent arrangements of music for
different instruments that will be simulated by the
computer. One of the new features of the program
allows the user to input information into the computer
via a MIDI (Musical Instrument Digital Interface)
equipped instrument [1].

One area where the use of computers in music holds
great promise is in education.Listen,by Imaja, is an
educational software package that teaches students
relative pitch, harmony, intervals between notes, and
chord structure in an interactive environment. For

example, the computer would give an interval to
student studying intervals. The student would then pl
the interval on the keyboard or other MIDI instrumen
and the computer would tell the student if the interv
played was correct or if one of the notes was too high
too low. This package relies on MIDI codes being se
to the computer from  a MIDI capable device [2].

MIDI codes are a form of communication protoco
decided upon by the music manufacturing industry. Th
codes are transmitted serially at a 31.25 K bits/s da
rate and contain information about which key wa
played, when the event started, when the event stopp
what voice patch to use, and other aesthetics involv
with playing a note [3] [4].

In the case of a piano style keyboard being connected
a computer using MIDI, the information traveling to the
computer is generated digitally, transmitted digitally
and manipulated on a digital computer. Throughout th
entire signal chain from the instrument to the compute
the signal is never analog. This is an obstacle f
musical instruments in general since most are inheren
analog. MIDI controllers for instruments such as th
guitar have been developed and in some cases the en
instruments themselves have been designed as
controllers, but an interface to accommodate a
instruments without changing hardware is not in wid
use.

The goal of this project is to create a program that use
computer to recognize musical notes originating fro
an analog source. Users of the program are able to p
notes on an instrument into a microphone. They are th
informed of what note was played and if the note wa
flat, sharp, or in tune. Another option allows the user
learn about the intervals between a group of notes. T
notes can either be played simultaneously
sequentially.

This project could serve as foundational research for t
creation of a complete music education and notati
MS State DSP Conference Fall 1996
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software package for instruments that are not MIDI
capable.

2.2  Overall System Algorithm

Figure 1 illustrates the process by which musical notes
are analyzed with the software developed in this project.
A musical, analog signal is played into a microphone or
other analog transducer. The analog signal is then
converted to a digital signal sampled at a given rate by
the recording feature ofNetwork Audio.

After sampling, a Fast Fourier Transform is used to
convert the time domain signal into the frequency
domain. Once the signal is in the frequency domain, the
peaks in the frequency spectrum are found and passed to
a polynomial interpolation routine to increase the
accuracy of the program. A list of possible notes is then
built. The possible notes in the note list are classified as
notes if they pass given criteria corresponding to
magnitude and overtone patterns that imply musical
signals.

Once the note list has been created, each note is give
note name corresponding to its frequency. Dependi
on the mode of operation, notes are found to be in tu
or not, or the intervals between notes played eith
sequentially or simultaneously are determined.

3.  Musical Signals

3.1 Musical Notes

When describing or measuring musical notes, only
single frequency is usually mentioned. For example, t
musical note A4 is generally accepted to be th
frequency corresponding to 440 Hz. However, when
single musical note is played on an instrument, mo
than one frequency is produced. The addition
frequencies occur at integer multiples of the lowe
frequency, which is the frequency used to name the no
(See Figure 2).

The lowest frequency is called the fundament
frequency and the frequencies occurring at integ
multiples of the fundamental are called harmonics
overtones. Given the frequency,ff, of the fundamental,

the frequency of the nth overtone can be calculated a
follows:

Fast Fourier Transform

Analog to Digital Conversion

Polynomial Interpolation

Classify and Sift
Frequency Data

Update User Interface

Figure 1: Block diagram of the implemented system
showing the main steps in analyzing the
musical signal.
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Figure 2: Frequency Spectrum of a C4 played on a
Trumpet.  Notice the integer relationship
of each overtone frequency to the
fundamental frequency at 261 Hz.
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The relative amplitude of the different harmonics
produced varies from instrument to instrument and this
amplitude pattern defines thetimbre of an instrument.
Timbre is the quality, or color, of a sound based on a
harmonic series.

Because musical notes produce a particular pattern of
frequencies and because the energy of noise is
distributed randomly throughout the frequency
spectrum, it is possible to distinguish musical notes
from noise [5]. Characteristic spectra for white noise,
random noise and a musical note are shown in Figure 3.
The distinguishing characteristic of the overtone pattern
was used to identify and classify notes in this project.

3.2 Even-Tempered Tuning

Perhaps the most important interval in music is the
octave. The octave serves to define the musical scale. It
is defined as the interval between two notes where the
higher note is exactly twice the frequency of the lower
note. In Western music, there are 12 notes, called
semitones, which divide up the range between a note
and its octave counter part. Patterns of these notes

played sequentially make up a musical scale. T
distance between two adjacent notes is called a semit
and the distance between two notes with one in betwe
is called a tone or whole tone.

The major scale is defined by the following pattern o
tones and semitones: T, T, S, T, T, T, S. If the eig
frequencies representing the notes in the scale
picked to be musically pleasing, the notes are tuned
ideal temperament. The fourth column of Table 1 shows
the ratios of the frequency of notes in the major scale
relation to the root or lowest note of the scale [6] [7].

A problem is encountered when an instrument is tun
using ideal temperament ratios. If the instrument
tuned to the key of C and all the notes in between C a
its corresponding octave obey the ratios of ide
temperament, the instrument will perform well fo
music written in the key of C. However, if a piece o
music is to be played in a different key using the ide
temperament tuning for the key of C, the ratios betwe
the notes for the new key do not correspond to ide
temperament for the key of C. For example, th
difference in the ratio values for the notes C and D

f n n 1+( ) f f=

(a)

(b)

(c)

Figure 3: Frequency spectra of (a) white noise
(b)  noise with irregular energy
concentration (c)  musical note.

Table 1:  Comparison of Equal and Ideal
Temperament for C Major Scale

Note
Name

Equal Temperament
Ideal

Temperament

Ratio Frequency Ratio

C 1.0000 261.63 1.0000

C# 1.0595 277.18

D 1.1225 293.66 1.1250

D# 1.1892 311.13

E 1.2599 329.63 1.2500

F 1.3348 349.23 1.3333

F# 1.4142 369.99

G 1.4983 391.99 1.5000

G# 1.5874 415.31

A 1.6818 440.00 1.6666

A# 1.7818 466.16

B 1.8877 493.88 1.8750

C 2.0000 523.25 2.0000
MS State DSP Conference Fall 1996
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7 3 6 3
1.125 - 1.000 = 0.125. If a piece of music was in the key
of G, the difference in the ratios between the notes of G
and A is 1.666 - 1.500 = 0.166, which is clearly
different. Therefore, using ideal temperament tuning,
an instrument would have to be retuned anytime it
played in a different key. This is quite undesirable and
makes playing a piece of music that changes keys
impossible.

To remedy the tuning problem, a tuning method called
even temperamentwas derived. Even temperament
tuning divides the distance between semitones such that
each semitone is a factor K larger than the previous
semitone.  That is,

(2)

where .

While no note is exactly in tune using this system, each
note is very close to being in tune. This allows
musicians to play in various keys without having to
retune their instruments. The resulting note frequency
combinations are given in Table 2. The even tempered
scale was used for classifying notes in the project
because it is the accepted tuning scheme for Western
music.

The range of notes listed in Table 2 contains the full
range of a piano tuned using even tempered tuning. The
area of interest for this project was limited to the notes
between 80 Hz, a flat E2, and 2534 Hz, a sharp D#7.
This restriction was made in the interest of frequency
resolution which is discussed in Section 4. The musical
notes not included (shaded in light gray) are on the
extremes of the frequency range of piano and thus, used
less often. Only frequencies within the unshaded range
(the range of interest for this project) were classified as
notes.

f 1 K f 0•=

K 212 1.05946≈=
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4.  Internal Algorithms

4.1 Sample Frequency

The first consideration of the project was to decide on
the frequency at which to sample the analog input
signal. If an analog signal containing a maximum
frequency, fmax, is to be recovered without aliasing, it
must be sampled at a rate greater than its Nyquist rate,
fN [8]. The Nyquist rate for a signal is defined by the
following equation:

(3)

As stated in Section 3.2, the highest note that will be
recognized is a D#7. The frequency for this note is
2489.02 Hz. For best performance, the first overtone of
this note should also be detectable. The first overtone of
a D#7 can be calculated from Equation (1) to be
4978.04 Hz. Therefore, the Nyquist rate is determined
to be 9956.08 Hz. This is the minimum sample
frequency.

Once the analog input signal is sampled, it will be
transformed to the frequency domain via a Fast Fourier
Transform (FFT). The frequency resolution for an FFT
is defined as

(4)

wherefs is the sample frequency andN is the number of
points of the FFT [9].

The peaks in the frequency spectrum of a signal that is
transformed with an FFT appear to occur at integer
multiples of the resolution. Therefore, the desired
frequency resolution must also be considered along with
the Nyquist rate when determining the sample
frequency.

There are many algorithms that implement an FFT [10].
The Decimation in Time and Frequency (DITF)
algorithm was implemented first [11]. This algorithm
proved to be extremely slow when performing a 1024
point transform. For the project to execute in real time,
a faster algorithm was necessary. The algorithm known
as the Quick Fourier Transform (QFT) was tested to see
if it had better speed performance [12]. For our
application, and for 1024 points, the QFT was more than

10 times faster than the DITF. This speed enhancem
was sufficient for the project to perform in real time
therefore, the QFT was implemented in the project.

The sample frequency was first set at 20 kHz. Th
choice would have allowed more overtones of the D#
to be detected. However, from Equation (4), it woul
only offer a frequency resolution of 19.53 Hz. For th
low end of the frequency range defined in Table 2, th
resolution would allow up to three semitones to have
peak in the frequency spectrum at the same frequen
value. For example, the frequency spectrum of an F#
G2, and G#2 would all indicate a maximum at 97.66 H
This would not be acceptable.

The first two notes in the frequency detection rang
differ by approximately 5 Hz. Therefore, a resolution o
at least 5 Hz would be needed in order for each note
have a maximum at a unique frequency. From Equati
(4), this would require a sample frequency of 5120 H
However, the Nyquist rate, as discussed previously, s
a lower limit for the sample frequency of 9956 Hz
Therefore, the sample frequency was chosen to be
10 kHz.

The frequency resolution obtained by using a samp
frequency of 10 kHz and a 1024 point FFT is given b
Equation (4) to be 9.765625 Hz. This resolution wi
not provide a unique maximum point in the frequenc
spectrum for all the notes in the desired detectab
range. Polynomial interpolation schemes provide
solution to this deficiency.

4.2 Polynomial Interpolation

The data points (x1,y1),(x2,y2),...,(xn,yn) for a function,
f(x), are the necessary information needed to compu
an interpolating Polynomial, p(x), of order n-1. This
polynomial will be unique and will agree with f(x) for
all data points. A polynomial interpolation scheme i
said to have Lagrange form if it can be written as

(5)

Lk represents a family of polynomials of degree n-
which satisfy

f N 2 f max•=

∆f
f s

N
-----=

PL x( ) ykLk x( )
k 1=

n

∑=
MS State DSP Conference Fall 1996
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This definition insures that  for
j = 1,...,n.

For some arbitrary value of x,

(7)

Evaluation of pL(x) will require n+1 evaluations of L(x).
The number of multiplies required to compute pL(x) is

and the number of additions is
[13].

If the data points (x1,y1,y1'),(x2,y2,y2'),...,(xn,yn,yn') are
known for a function, f(x), then it is possible to compute
pH(x) of order 2n-1. This interpolating polynomial has
Hermite form [13]. The Hermite polynomial satisfies
the conditions pH(xi) = f(xi) as well as pH'(xi) = f'(xi) for
all i = 1,2,...n.

The Hermite polynomial is represented by the following
equation:

(8)

where

(9)

(10)

(11)

(12)

For arbitrary values of x, the value of Lk defined in

Equation (7) is used to define the value ofHk and in
the following manner:

(13)

(14)

A 5-point Lagrange interpolation and a 3-point Hermit
interpolation were tested to determine the increas
accuracy that could be obtained by interpolating the da
from the frequency spectrum. The goal of the Hermi
scheme was to interpolate using three consecutive po
(x0,y0), (x1,y1), and (x2,y2), where (x1,y1) is the
maximum point in the frequency spectrum. Howeve
the Hermite scheme requires knowledge of th
derivative of f(x), as seen by Equation (8). This data
not directly available in the frequency spectrum. T
produce a Hermite polynomial, the derivative at th
points of interest was estimated using the center
difference formula for numerical differentiation given
below [13]:

(15)

where h is the distance between consecutive data po
and is the resolution of the FFT in this context.

For the Lagrange interpolation scheme, five consecut
data points, (x0,y0), (x1,y1), (x2,y2), (x3,y3), and (x4,y4)
were used where (x2,y2) is the maximum point in the
frequency spectrum.

Since the resolution of the FFT is approximately 10 H
the true frequency of the input signal will be within 5 Hz
of the maximum in the frequency spectrum. Both of th
interpolating polynomials were evaluated at 0.1 H
increments across a 10 Hz range centered about
maximum data point. From this data, the maximum o

Lk xj( )
0 k j≠,
1 k, j= 

 
 

= j 1 … n, ,=

k 1 … n, ,=

pL xj( ) f xj( ) xj= =

Lk x( )
x xj–

xk xj–
----------------

j 1=
j k≠

n

∏=

n
2

2n 1–+ n
2

n 1–+

pH x( ) Hk x( ) f xk( )
k 1=

n

∑

Ĥk x( ) f′ xk( )
k 1=

n

∑

+=

Hk xj( )
0 k j≠,
1 k, j= 

 
 

= j 1 … n, ,=

k 1 … n, ,=

Hk′ xj( ) 0=
j 1 … n, ,=

k 1 … n, ,=

Ĥk′ xj( )
0 k j≠,
1 k, j= 

 
 

= j 1 … n, ,=

k 1 … n, ,=

Ĥk xj( ) 0= j 1 … n, ,=

k 1 … n, ,=

Ĥk

Hk x( ) 1 2 x xk–( )Lk′ xk( )–[ ]Lk
2

x( )=

Ĥk x( ) x xk–( )Lk
2

x( )=

f′ x0( )
f x0 h+( ) f x0 h–( )–

2h
----------------------------------------------------=
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the interpolation polynomial is determined with an
accuracy of 0.1 Hz.

The two interpolation routines were tested with
computer generated sine waves of known frequency.
The results are listed in Table 3

This data indicates that the 3-point Hermite polynomial
never performs better than the 5-point Lagrange
polynomial. The Hermite is also computationally more
expensive, since it computes Lk as well as Lk' for
k = 1,...,n and must estimate 3 derivatives. Therefore, a
5-point Lagrange interpolating polynomial is used to
determine the maximum point in the frequency
spectrum more accurately.

The Lagrange interpolating algorithm was also tested on
a range of frequencies given in Table 4. This table
indicates the increased accuracy gained by interpolating

as well as the error that still occurs in interpolate
values.

Also, Table 4 shows that the FFT produces data points
976.56 Hz and 986.33 Hz. Interpolation is mos
beneficial when the frequency to be detected
approximately half way between consecutive FFT da
points.  These results are illustrated below in Figure 4

A higher number of points could have been used in t
calculation of the FFT in order to produce a bette
resolution as opposed to interpolation. However, even
this option is computationally feasible in real time, it i
not as desirable as interpolation. If 2048 points we
used, the resolution would be 4.88 Hz. A note that
one to two Hz sharp or flat would be likely to have th
same maximum in the frequency spectrum as if it we
played in tune. By interpolating the peak, however, it

Table 3:  Comparison among FFT, Lagrange, and
Hermite

Actual
Peak

FFT
5-point

Lagrange
3-point
Hermite

82.0 78.1 80.1 79.3

154.0 156.3 155.9 156.0

155.0 156.3 156.1 156.2

156.0 156.3 156.2 156.3

157.0 156.3 156.3 156.3

158.0 156.3 156.4 156.3

438.0 439.5 439.3 439.4

440.0 439.5 439.5 439.5

442.0 439.5 440.0 439.7

582.0 585.9 584.0 584.8

584.0 585.9 585.7 585.8

586.0 585.9 585.9 585.9

588.0 585.9 586.2 586.1

590.0 585.9 588.1 587.3

650.0 654.3 651.5 652.5

652.0 654.3 653.9 654.1

654.0 654.3 654.3 654.3

960.0 995.0Frequency (Hz)

FFT peak: 976.56 Hz
LaGrange peak: 979.66 Hz

205.0 240.0Frequency (Hz)

FFT peak: 224.61 Hz
LaGrange peak: 220.65 Hz

Figure 4: Two graphs comparing the accuracy of
frequency data with and without Lagrange
interpolation.  (top) 981 Hz peak generated
with a function generator. (bottom) A3,
which is 220 Hz, played on a bass guitar.
MS State DSP Conference Fall 1996
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likely that a difference of one to two Hz in the signal
will be discernible.

4.3 Sifting Algorithm

A sifting algorithm was implemented to identify and
classify the notes that were played. The course of the
algorithm is as follows. The frequency spectrum derived
from the FFT is scanned to find peaks above a certain
amplitude threshold. Once a peak is found, its
frequency is compared with other peaks already placed
in the note list to determine if it is an integer multiple of
these peaks. If so the peak is classified as a harmonic or
overtone of that note and placed in its array of
overtones. The algorithm then progresses to see if the
peak might be an overtone of any of the other possible
notes in the note list. If, once the note list has been
traversed, the peak has not been classified as an
overtone, it is classified as a possible note.

Once all of the peaks out of the frequency spectrum
have been classified as possible notes or overtones, the
note list is scanned to eliminate any peaks which might
be noise. To accomplish this, the amplitude of the peak

and the number of peaks placed in its overtone array
tested.

To check the amplitude of the possible notes, th
magnitude of the highest peak is used to normalize t
magnitude of all of the peaks. If a peak does not have
magnitude of 0.15 once normalized and the peak does
have at least two overtones, the peak is classified
noise and is eliminated from the note list. If a peak i
the note list satisfies both of these qualifications, then
is considered to be a note and is passed back to
calling function to be named.

4.4 Tuning Overtones

The data in Table 3 and Table 4 indicate that th
interpolation algorithm detects a frequency with a
absolute error less than 2.25 Hz. This error is qui
significant in the lower end of the desired detectio
range. At higher frequencies, however, the error will b
tolerable. Perhaps an example will illustrate this point

A musician plays a note at 110 Hz, which is an A
perfectly in tune. The minimum value that the

Table 4:  Uninterpolated Frequency Values and Interpolated Frequency Values Using 5- point Lagrange
Interpolation for ∆f=9.766 Hz

Generated
Frequency

(Hz)

Uninterpolated
Frequency (Hz)

Interpolated
Frequency

(Hz)

Uninterpolated
Difference (Hz)

Interpolated
Difference

(Hz)

Error Ratio
Magnitude

975.0 976.56 976.36 +1.56 +1.36 1.15

976.0 976.56 976.56 +0.56 +0.56 1.00

977.0 976.56 976.56 -0.44 -0.44 1.00

978.0 976.56 976.66 -1.44 -1.34 1.08

979.0 976.56 977.06 -2.44 -1.94 1.26

980.0 976.56 977.76 -3.44 -2.24 1.54

981.0 976.56 979.66 -4.44 -1.34 3.31

982.0 986.33 983.53 +4.33 +1.53 2.83

983.0 986.33 985.23 +3.33 +2.23 1.49

984.0 986.33 985.93 +2.33 +1.93 1.21

985.0 986.33 986.23 +1.33 +1.23 1.08

986.0 986.33 986.33 +0.33 +0.33 1.00

987.0 986.33 986.33 -0.67 -0.67 1.00
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interpolation routine would indicate for this tone is
107.75 Hz. By searching a database, it is known that a
frequency of 107.75 Hz should be 110 Hz to be in tune.
The tuning quality of this note is calculated by

(16)

(17)

whereQf is the quality of a note if it is flat,Qs is the
quality of a note if it is sharp,fc is the frequency of the
note played by the instrument, andfT is the frequency of
the note in even-tempered tuning that most closely
matchesfc.

For the example under discussion, Equation (16) yields
a quality of -0.36. The magnitude of the quality must be
greater than or equal to 0.05 to be classified as in tune.
Therefore, the tone played is characterized as very flat,
when it was actually perfectly in tune.

The musician plays another note at 880 Hz, which is an
A5 perfectly in tune. The minimum interpolated value
for this tone is 877.75 Hz. Using Equation (16), the
quality of this tone is computed as -0.05 which would be
characterized as in tune.

With this in mind, and remembering that tones have a
predictable harmonic structure, tuning will be more
accurate by tuning a particular overtone. Continuing the
example, the musician again plays a note at 110 Hz.
The seventh overtone of this tone is 880 Hz. Searching
the database for the fundamental tone, returns that the
tone should be an A2. Then, by tuning the seventh
overtone, the fundamental can be classified as in tune.

This algorithm is solid as long as the overtone which is
tuned is also a note in the database. Since the 2.25 Hz
maximum error associated with the interpolation
algorithm becomes less significant for each successive
overtone, tuning to the highest detected overtone will

provide the best result. However, only the 2n-1
overtones of a tone correspond directly to notes in the
database of notes found in even-tempered tuning.

This problem was investigated further by looking at th
overtones for every tone in the desired detection rang
All the overtones that occur within the bounds of th
maximum frequency in the database were examine
The frequency of each overtone was determined a
then the database was searched to see which tone m
closely matched the overtone in frequency value. Th
Equation (16) or Equation (17) was used to see how t
overtone related to the tone found in the database.

Continuing the example for an A2, The eighth overton
occurs at 990 Hz. In even tempered tuning, no to
occurs at 990.00 Hz. If the database is searched for t
value, a B5 will be returned which has frequency valu
987.77 Hz. The quality of this note would be calculate
as +0.0380. This quality represents an inherent errorε,
that is introduced when tuning the eighth overtone of a
A2. If the 990 Hz frequency had been a fundament
tone, then the quality would accurately indicate that th
tone was slightly sharp.

The data collected from this process was compiled a
analyzed to see a remarkable trend. The error associa
with a particular overtone is independent of th
fundamental tone. The eighth overtone of any in tun
note has a quality of 0.0380. Table 5 shows the err
corresponding to a given overtone.

A fundamental tone,ff, will have an overtone frequency,
fo, that will be used for tuningff. fo will be compared to
a frequency,fc, from the database. If the inherent erro
ε, is greater than 0, it represents the fraction of th
difference betweenfc and the next note in even tempere
tuning that must be added tofc in order to getfo. This is
seen by Equation (18).

(18)

If ε is less than 0, it represents the fraction of th
difference betweenfc and the previous note in even
tempered tuning that must be subtracted fromfc in order
to getfo.  This is seen by Equation (19).

(19)

Equations (20) and (21) are derived by solvin
Equations (18) and (19) respectively forfc.

Qf

f c f T–

f T

f T

212
---------

 
 
 

–

----------------------------=

Qs

f c f T–

212( ) f T( ) f T–
--------------------------------------=

f 0 f c ε 212( ) f c( ) f c–[ ]+=

f 0 f c ε f c

f c

212
---------–

 
 
 

–=
MS State DSP Conference Fall 1996



Audible Frequency Detection and Classification Group Page 10

or
e
d.
n
in
in

is
to
are
re
n
to

nt,
es
al
a

ata
ta

the

f

or

le,
r a
0

1,
m
e,
54

ree
gle
or
(20)

(21)

If the overtone number, n, associated with the frequency
fo that is to be used in determining the quality of the
fundamental tone,ff, is known, then these equations
allow fo to be modified to a corrected valuefc by using
the ε associated with the given n. Then, the new
frequency,fc, can be used for determining the tuning
quality. When this frequency is compared to a
frequency in the database,fT, there will be no inherent
error, ε, introduced. Q, the quality given by Equation
(16) or (17), will accurately represent the quality offf.

4.5 Interval Detection

Musicians are often interested in the groups of notes
chords that they are playing. An option to identify th
musical interval between two notes was implemente
When called for the first time, the interval detectio
code creates an interval list of all the notes currently
the note list. The interval between each of the notes
the interval list is then calculated.

Each successive time that the interval detection code
called, the note list and the interval list are compared
see if any new notes have been played. New notes
added to the current interval list and all intervals a
recalculated. A function outside the interval detectio
code clears the interval list when the user desires
investigate a different combination of notes.

5.  Project Database

To test the program during the process of developme
a database was created. It consists of sine wav
generated by a digital function generator and music
notes digitally recorded using a microphone and
sampling program calledNetwork Audio. Files in the
database range from containing single frequency d
without instrument overtones to multiple frequency da
with instrument overtones.

File names for the database were standardized to
following format: <source>_<# of principle
frequencies>_<tuning><note>.raw. <source> is a
three-character abbreviation for the instrument.<# of
principle frequencies> is a numeral denoting the
number of principle frequencies (i.e., the number o
notes played) in the sample.<tuning> is a single-
character denoting whether the sample is sharp, flat,
in tune: +, -, ~, respectively.<note> is a three-character
denotation of the note name in the sample. For examp
an A220 were represented as A3~. The file name fo
sample collected from a trumpet playing a sharp A44
would be: tru_1_+A4~.raw. If the sample were a C26
but were in tune: tru_1_~C4~.raw. For a sample fro
an instrument capable of playing multiple tones at onc
such as a guitar playing sharp A440 and in tune C#5
above it would be:  acg_2_+A4~_~C5+.raw.

The archive was constructed of data to be used in th
phases of the project. The first phase contained sin
tones to test the tuner function of the software. F

Table 5:  Deviation of Overtones from Even-
Tempered Scale

Overtone
Number

Deviation from
Even-Tempered

Scale (%)

0 0.00

1 0.1021

2 1.9750

3 0.0511

4 -13.1604

5 1.9750

6 -29.9504

7 0.0511

8 3.8636

9 -13.1805

10 -46.5735

11 1.9580

f c

f 0

1 ε 212 1–( )+
---------------------------------------=

f c

f 0

1 ε 1 212( )⁄ 1–( )+
--------------------------------------------------=
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Phase I of the project, three instruments were used in the
data archive: a guitar, a bass guitar and a trumpet. Each
instrument was recorded in three sets of cases. For each
case, a note was played in tune, then that note was
played out of tune flat, and then it was played out of tune
sharp. Phase I of the archive contains 36 samples in the
range of interest.

In Phase II, two instruments, the guitar and bass guitar,
were each recorded playing each of the twelve intervals
less than an octave. Phase II of the archive contains 24
samples for interval testing.

Phase III of the archive contains sequential notes
designed to test if the software is effective in detecting
note changes. Again, three instruments were used, the
guitar, bass guitar, and trumpet. For each file, a
sequence of three notes was recorded. Each instrument
played three sequences of intervals. The Phase III
archive contains 27 samples.

Phase IV is an archive of chord data recorded from the
guitar and the bass guitar. Each instrument played a
major, minor and diminished triad based on three tones.
The Phase IV archive contains 18 samples.

All of the data in the database was sampled at 20 KHz.
Once the decision was made to run the program at a
sampling rate of 10 KHz, the database files were down
sampled to 10 KHz. This was accomplished through the
use of a program calledsox.

6.  Results

Of 36 Phase I files, we named the correct note 88% of
the time. Of these, 62.2% were tuned correctly. The
note name in the acoustic guitar files were identified
correctly 100% of the time and the tuning was correct
90.3% of these times. The note name in the bass guitar
files were identified correctly 80.7% of the time and the
tuning was correct 52% of these time. The note name
for the trumpet files was identified correctly 87% of the
time and the tuning was correct 83% of these times.
This indicates that our algorithm is effective at
frequencies greater than 130 Hz, but is less effective at
lower frequencies.

Of 24 Phase II files, 33% of the notes and intervals were
identified correctly. For any given two notes, the
interval was always classified correctly. Of the 12

acoustic guitar files, 67% were correct. The four file
that did not yield correct results could be special cas
of overtone interaction or could be attributed t
inaccurate naming of the files. None of the files for th
bass guitar yielded correct results. The lower tone
each file was recorded an octave too low, placing it o
of the range of interest. This accounts for the po
performance for these files.

Of the nine files in Phase III, all three notes in six of th
files were identified correctly without any problems
One bass guitar file contains notes that were outside
the range of interest as defined by Table 2. Another ba
guitar file causes an error in the software. Listening
this file indicates that there was a large amount
distortion present and this could account for th
software error.

The files in Phase IV were not evaluated critically
However, the results for the Phase IV data are expec
to be comparable to the results of the Phase II data. T
addition of notes played simultaneously is not expect
to adversely affect the performance of the software.

7.  Future Research

It might prove useful to investigate frequency doma
representations of our signals other than the FFT. So
alternatives might be spectral estimation and Prony
method [14] [15]. Estimating the spectrum with thes
techniques could eliminate the need for polynomi
interpolation.

Reducing computation time for one spectrum will b
key to integrating the software into a real-time mus
notation program. Faster FFT algorithms might yiel
this. Also the spectral estimation techniques could d
this.
MS State DSP Conference Fall 1996
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9.  Appendix--Raw Data from Analysis of
Project Database

Table 6:  Results of Analyzing Data from Phase I of
Project Database

Filename
(*.raw)
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acg_1_+C4~ 18 18 18

acg_1_+D4~ 16 16 16

acg_1_+E5~ 7 7 7

acg_1_-C4~ 18 18 18

acg_1_-D4~ 16 16 16

acg_1_-E5~ 8 8 8

acg_1_~C4~ 20 20 7

acg_1_~D4~ 24 24 22

acg_1_~E5~ 7 7 6

bag_1_+A2~ 28 27 1

bag_1_+A3~ 22 22 22

bag_1_+C3~ 29 29 26

bag_1_+C4~ 28 28 28

bag_1_+E2~ 31 19 19

bag_1_-A2~ 30 30 30

bag_1_-A3~ 22 22 22

bag_1_-C3~ 27 0 0

bag_1_-C4~ 20 20 0

bag_1_-E2~ 28 0 0

bag_1_~A2~ 31 30 3

bag_1_~A3~ 26 26 18

bag_1_~C3” 32 30 0

bag_1_~C4~ 21 21 0

bag_1_~E2~ 26 16 0

tru_1_+B4- 18 18 4

tru_1_+C4~ 19 18 18

tru_1_+C5~ 17 17 16

tru_1_+G4~ 19 19 19

tru_1_-B4- 18 18 18

tru_1_-C4~ 14 5 5

tru_1_-C5~ 16 5 5

tru_1_-G4~ 19 16 16

tru_1_~B4- 22 22 7

tru_1_~C4~ 19 19 0

tru_1_~C5~ 18 18 0

tru_1_~G4~ 19 19 0

Table 7: Results of Analyzing Data from Phase II of
Project Database

Filename (*.raw)
Low
Note

High
Note

Interval

acg_2_~C4~_~A4+ C4 A4# m7

A4# A4 P0

acg_2_~C4~_~A4~ E3 B3 P5

E3 G4# M3

B3 B3 P0

B3 G4# M6

G4# G4# P0

acg_2_~C4~_~B4~ B3 A4# M7

A4# A4# P0

* these files cause a software error

Table 6:  Results of Analyzing Data from Phase I of
Project Database
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acg_2_~C4~_~C4+ C4 C5# m2

C5# C5# P0

acg_2_~C4~_~C5~ B3 F6# P5

F6# F6# P0

acg_2_~C4~_~D4+ C4 D4# m3

D4# D4# P0

acg_2_~C4~_~D4~ C4 D4 M2

D4 D4 P0

acg_2_~C4~_~E4~ C4 E4 M3

E4 E4 P0

acg_2_~C4~_~F4+ C4 F4# TT

F4# F4# P0

acg_2_~C4~_~F4~ C4 F4 P4

F4 F4 P0

acg_2_~C4~_~G4+ C4 G4# m6

G4# G4# P0

acg_2_~C4~_~G4~ C4 G4 P5

G4 G4 P0

bag_2_~C3~_~A3+ B2 G3 m6

B2 A3# M7

G3 G3 P0

G3 A3# m3

A3# A3# P0

Table 7: Results of Analyzing Data from Phase II of
Project Database

Filename (*.raw)
Low
Note

High
Note

Interval

* these files cause a software error

bag_2_~C3~_~A3~ A2 B2 M2

A2 G3 m7

A2 A2 P0

B2 B2 P0

B2 G3 m6

B2 A3 m7

G3 G3 P0

G3 A3 M2

A3 A3 P0

bag_2_~C3~_~B3~ B2 G3 m6

B2 B2 P0

G3 G3 P0

G3 B3 M3

B3 B3 P0

bag_2_~C3~_~C3+ *

bag_2_~C3~_~C4~ *

bag_2_~C3~_~D3+ C3 G3 P5

C3 A3# m7

G3 G3 P0

G3 A3# m7

A3# A3# P0

bag_2_~C3~_~D3~ C3 A3 M6

C3 D4 M2

A3 A3 P0

A3 D4 P4

D4 D4 P0

Table 7: Results of Analyzing Data from Phase II of
Project Database

Filename (*.raw)
Low
Note

High
Note

Interval

* these files cause a software error
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bag_2_~C3~_~E3~ F2 E3 M7

F2 B3 TT

E3 E3 P0

E3 B3 P5

B3 B3 P0

bag_2_~C3~_~F3+ F2# C3 TT

C3 C3 P0

bag_2_~C3~_~F3~ F2 C3 P5

F2 G3 M2

C3 C3 P0

C3 G3 P5

G3 G3 P0

bag_2_~C3~_~G3+ G2# C3 M3

G2# G2# P0

C3 C3 P0

C3 G3# m6

G3# G3# P0

bag_2_~C3~_~G3~ G2 C3 P4

C3 C3 P0

Table 7: Results of Analyzing Data from Phase II of
Project Database

Filename (*.raw)
Low
Note

High
Note

Interval

* these files cause a software error
MS State DSP Conference Fall 1996
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