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SUMMARY

The Department of Electrical and Computer Engineering invites
you to attend a mini-conference on Digital Signal Processing,
being given by students in EE 6773 — Introduction to Digital
Signal Processing. Papers will be presented on a wide range of
topics including speech and image processing, parallel
processing, and acoustic echo cancellation.

Students will present their semester-long projects at this
conference. Each group will give a 10 minute presentation,
followed by 5 minutes of discussion. After the talks, each group
will be available for a live-input real-time demonstration of their
project. These projects account for 50% of their course grade,
so critical evaluations of the projects are welcome.



Session Overview

1:00 PM — 1:10 PM: J. Picone, Introduction

1:15 PM — 1:30 PM: N. Doss 1 and T. McMahon, “An Integrated Khoros
and MPI System for the Development of Portable
Parallel DSP Applications”

1:30 PM — 1:45 PM: Y. Chen, L. Wang, A.M. Yusuf, and H. Zhang , “Noise
Reduction in Laser Induced Breakdown
Spectroscopy”

1:45 PM — 2:00 PM: X. Du, W. Couvillion Jr., and M.H. Kiu, “Correction of
Scan-Line Shifts of Digitized Video Images”

2:00 PM — 2:15 PM: J. Beard, S. Given , and B.Y. Young, “DTMF
Detection Using Goertzel’s Algorithm”

2:15 PM — 2:30 PM: C.R. Jones, R. Seelam, M.E. Weber, S. Wilson ,
“Physical Modeling of a String Instrument”

2:30 PM — 2:45 PM: K. Bush, A. Ganapath, J. Trimble , and L. Webster,
“Real-Time Speech Endpoint Detection”

2:45 PM — 3:00 PM: V. Allen, M.E. Henderson , E.S. Wheeler, and
J. Williams, “Active Noise Cancellation in a Highly
Reverberant Chamber”

3:00 PM — 4:00 PM: Demonstrations in 414 and 434 Simrall

1. The person presenting the paper is shown in bold lettering.
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An Integrated Khoros and MPI System for the
Development of Portable Parallel DSP Applications

by

Nathan Doss doss@erc.msstate.edu
Thom McMahon thom@erc.msstate.edu

Parallel DSP Group
Mississippi State University

ABSTRACT

This project combines two public-domain paradigms to create a par-
allel software environment for DSP programming. MPI (Message-
Passing Interface), a message passing system, is an evolving standard
for parallel computing. Khoros is an integrated software environment
for DSP. This purpose of this project is to describe and demonstrate a
software design that exploits Khoros and MPI parallel libraries for the
deployment of parallel DSP. The resulting system enables parallel DSP
using the Khoros system for development and the MPI system for
performance portability. Specifically, the new system provides MPI-
based toolboxes containing data parallel modules and utilizes MPI as a
means of communication between modules.
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Building DSP Applications the Easy Way

❐ Development of DSP Applications

☞ Many DSP applications are developed by
combining and reusing well-understood
libraries or modules.

☞ Tools that provide a visual environment for
combining DSP modules are widely available.

❐ Khoros

☞ Provides an environment for the development
of DSP applications that includes a visual
programming tool called Cantata.

☞ Modules are separate programs that
communicate through shared files or shared
memory.
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Making Applications Faster - Parallel Computing

❐ Parallel Computing

☞ More processors = Faster?
☞ Two important aspects of parallel computing:

- Speedup (benefit of additional processing
   resources)
- Scalability (big and fast? hardware/software)

❐ MPI (Message-Passing Interface)

☞ A standard for high-performance portable
message passing.

☞ Important features
- Point to point communication
- Collective operations
- Support for parallel libraries (safety, scope)

☞ Is message passing the assembly language of
parallel computing?
It’s faster and scales well but in general more
difficult to program with than other

Send

Recv

Point to
Point

Bcast

Bcast

Bcast

Bcast

Collective
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Fast, Easy Development of
Portable Parallel DSP Applications?

How can we best combine a visual DSP programming
environment (i.e. Khoros) with a message-passing
programming system (i.e. MPI)?

☞ Remove burden of parallelization from user.
Same interface - more knobs to tweak.

☞ Take advantage of as many forms of parallelism
as possible.

Data

Task

Pipeline

A     B

C     D

PE2

PE4PE3

PE1

Group1
FFT

Group3
IFFTGroup2

DTMF

Task A Task B
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Khoros/MPI Integrated Environment
Task Parallelism

❐ MPI supports the building of independent non-
interfering libraries.

Communicators
- group (scoping)
- context (safety)

Think: Get Smart cone of silence

❐ Khoros supports task parallelism.

Toolbox operations can execute simultaneously if
there are no graph dependencies between them

FFT

Filter

FFT
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Khoros/MPI Integrated Environment
Parallel “Interbox” Communication

❐ Khoros uses a polymorphic data model.

☞ Abstract interface to data (described by various
parameters such as height, width, time, position).

☞ Allows modules to operate on wide range of data.

❐ Data distribution independence in parallel libraries

☞ An additional factor to consider in parallel libraries
is data distribution (poly-algorithms).

☞ Extension of polymorphic model to include data
distribution

❐ Intergroup collective operations

A general model for intergroup collective
communication is missing in MPI

Task A Task B
200 x 200
Block cyclic

200 x 200
Linear

Redistribution

 in Transit
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Khoros/MPI Integrated Environment
Data Parallel Toolbox Development

❐ Data parallel toolboxes

☞ User selects how many processes the toolbox
operation will use (currently there is not an
interface that allows the user to specify the
machine to run on)

☞ We’ve explored various operations for DSP in the
time-domain and frequency-domain.
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Parallel Toolbox
Time-Domain

❐ FIR & IIR Filters

☞ Direct implementation of FIR filters is
embarrassingly parallel.

☞ IIR filters do net lend themselves to direct
parallelization.

❐ Convolution/Correlation

☞ Parallel structures (i.e., partial fraction expansion)
must be done by hand.

☞ One possible approach:
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Parallel Toolbox
Frequency-Domain

❐ DFT/FFT

☞ Direct evaluation of a DFT
   k = 1 to N

n = 1 to N
No interdependencies between loops.

☞ FFTs viewed as multidimensional (transpose
algorithm)

☞ Binary exchange
☞ Can be viewed as matrix operations.
☞ Parallel FFTs (like sequential FFTs) have been

well studied.

❐ Linear Algebra

❐ Filter Generation
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SUMMARY

❐ Khoros and DSP

Operations too fine-grained (flexibility is benefit) and thus must be
parallelized individually.

Too much overhead (other systems compile to a single program,
data model). More work should possibly be done at compile time.

The current design of Khoros is not a good fit with high-
performance computing.

❐ MPI

Intercommunicator collective operations have been proposed as a
part of the MPI2 standard. These type of operations fit naturally
with pipeline-structured applications.

The coarse-grain message passing model is not a good fit with
Khoros (as it is currently implemented).

❐ Implementation

MPI supported in Khoros (program development, process start-
up).

Setup for intergroup communicators has been implemented
however this has not been integrated into the Khoros polymorphic
data model. A basic set of intergroup collective operations has
been implemented

A few simple DSP operations have been implemented however
the current implementation is far behind our original goals.
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SPECTRUM ESTIMATION AND NOISE REDUCTION

FOR

LASER INDUCED BREAKDOWN SPECTROSCOPY

by

Yuanping Chen ychen@erc.msstate.edu
A. M. Yusuf yusuf@erc.msstate.edu
Liang Wang SPwang@ee.msstate.edu
Hansheng Zhang hz1@ra.msstate.edu

The Spectral Analysis Group
Mississippi State University

ABSTRACT

• Laser induced breakdown spectroscopy (LIBS) is a technique used

to detect certain atomic and molecular species in various

environment.

• Three DSP methods of autocorrelation, adaptive, and low pass filter

were used to reduce the noise respectively.

• Eigenanalysis-based frequency estimation was used to estimate the

LIBS spectra.
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Overview of LIBS:

• A pulsed laser beam (532 nm) is focused to the target to induce a
micro-plasma.

• The induced plasma produces very strong optical emission.  The
emission signal is collected and recorded as a spectrum with
optical multichannel (1024) detector.

• Analyzes the spectrum and outputs the result.

Problem:

• The single spectrum is very noisy.

• The existing technology is to average 30 to 50 spectra. This limits
the LIBS to perform a real time operation.
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Algorithms:

☞ Eigenanalysis Frequency Estimation
Spectra
average

Inverse
FFT

Eigenanalysis
frequency
estimationSpectra

input
Frequencies

output
☞ Autocorrelation:

The autocorrelation is designed to suppress the random noise
corrupted signal.  The signal to noise ratio can be improved by this
algorithm.

☞ Adaptive Line Enhancer:

The adaptive line enhancer is designed to suppress the noise
corrupted signals.  A delayed version of the input signal is used as
an input to the adaptive filter whose coefficients are adapted to the
best fit the portion of the   input signal that is uncorrelated with the
noise by minimizing the mean square error.
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Figure 1: Adaptive Line Enhancer
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Algorithms (cont.):

☞ Low Pass FIR Filter Scheme

• Low pass linear phase FIR filter in time axis

• Moving average low pass filter in frequency domain to remove
background noise envelope.

• Debiasing DC component, and thresholding negative noise

☞ Evaluation and Supporting Data.

• Use mean square signal and noise ratio to evaluate the system.
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Conclusion and Future Research:

• Our frequency estimation indicate that an accumulation of at least 20

single spectra is required to get a quality spectrum.

• SNR Improvement of DSP:

13.1 db for low pass filter;

4.2 db for autocorrelation;

5.2 db for adaptive line enhancer.

• The distortion of spectral line is too serious with the method of adaptive

line enhancer.

• Research on a more complicate spectra with above DSP method.

• Continue to develop new DSP technique.
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Corr ectionof Scan-LineShiftsof Digitized
Video Images

by
Xiao-Song Du                  xsdu@erc.msstate.edu

    Warren C. Couvillion Jr.    billy@erc.msstate.edu
    Ming-Hoe Kiu                     kiu@erc.msstate.edu

Digital Imaging Group
Mississippi State University

The United States Forestry Service (USFS) wishes to use
satellite photos to determine the amount of land covered by
forests. The USFS digitized footage shot from a moving air-
plane using a VHS camcorder. These images were to be used
as test data to test the accuracy of the satellite. The digitali-
zation process shifted each scan-line by a random amount.
Image processing techniques originally designed for detect-
ing moving objects were modified to determine the amount
each scan-line was shifted, so that a corrected image could
be created by shifting the scan-lines back to their original
position. These techniques approximately doubled the signal
to noise ratios (SNRs) (in dB) for the special case of images
with only every other scan-line shifted. Attempts to modify
these techniques further to work for images where all scan-
lines were shifted raised the SNR a few tenths of a dB. This
was not enough to visually detect an improvement.
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Intr oduction

❐ The US Forestry Services (USFS) needs to correct
digitized images with each scanline shifted by a random
amount.

☞Images were to be used as test data for a new

         method of determining forest acreage using

         satellite.

❐ The USFS used inexpensive, readily available
equipment.

☞ A method of removing such errors would reduce the
     price of quality digital aerial images.

☞ The  method could reduce the price of creating
quality digital images from VHS tapes.
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Problem Definition

❐ The images are interlaced:

❐ Source of error:

☞ Camera may have moved between when one set of
scan-lines and the next are recorded.

☞ When digitizing the image from VHS tape, sync signal
may not be recognizable to the digitizer.

❐ Error:

☞ Each scan-line is shifted, introducing “jaggies” in the
images.

☞ Distribution of the shifts appear to be random.

Even Lines

Odd Lines
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Existing Technology
Pel-Recursive Algorithm

❐ Originally used for motion compensation of objects from
2-D images.

☞ For our problem, each scan-line is treated as an object.

❐ Method:

☞ Use Low-pass filter to remove noise from the images.
☞ Edge detection.
☞ Use mean filter to remove low amplitude edges from

the images.

☞ Shift the odd line until the “motion” or FD is
minimized.

G(t)

G(t+dt)

FD=G(t)
-G(t+dt)

G(t)=Gradient of even
      line

G(t+dt)=Gradient
      odd line

G(t)-G(t+dt)=Frame
  difference

of
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Algorithm

Generate Test Image

Split it into two
images

Edge Detection

Find Shift and Compensate
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Computing Line Shifts
❐ Minimized absolute difference method:

☞ To find the amount of shift in a line, compute:

for j=0,1,...., n=number of pixels per line;
E: even line value, O: odd line value;

☞ Find i for minimum sumi.

☞ Shift even line i pixels.
❐ Minimized square difference method: Same as above,

except:

❐ Circular cross correlation method:

☞ Compute circular cross correlation function for odd
     and even lines:

☞ Find i for maximum correlation(i).
☞ Shift even line i pixels.

Sumi E j Omodn j i+( )–
j 0=

n

∑=

Sumi E j Omodn j i+( )– 
  2

j 0=

n

∑=

correlation i( ) Ej Omodn j i+( )⋅
j 0=

n

∑=
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How to determine the shifts

❐ Minimized absolute difference.

❐ Example:

☞ Initial position:
Even line:        a,  b,  c,  d.

      Odd line:         q,  r,   s,  t.
Calculate:  Sum0 = |a-q| + |b-r| + |c-s| + |d-t|

☞ Shift to left by one pixel:
Even line:        a,  b,  c,  d.

      Odd line:         r,   s,  t,   q.
Calculate:  Sum1 = |a-r| + |b-s| + |c-t| + |d-q|

☞ Shift to right by one pixel:
Even line:        a,  b,  c,  d.

      Odd line:         t,  q,   r,  s.
Calculate:  Sum2 = |a-t| + |b-q| + |c-r| + |d-s|

☞ Do the above two steps iteratively for some range (for
example: -10 to 10)

☞ You will have a series of Sums andfind
min{Sum0,Sum1,....,SumN}
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Why we can use max correlation’s
position as the shift number?

❐ Cauchy-Schwarz inequality:

❐ If we have a,b,c,d and b,c,d,a, then:

ab + bc + cd + da <= a2 + b2 + c2 + d2 and

ac + bd + ca + db <= a2 + b2 + c2 + d2 etc.

❐ Let

     Even line:      a,  b,  c,  d

     Odd  line:      b,  c,  d,  a

     Then Rx,y(0) = ab + bc + cd + da

❐ If we calculate Rx,y(1) =  a2 + b2 + c2 + d2

At this position, Rx,y(1) has the maximum value, odd line
and even line are matched.

ai bi⋅
i 0=

n

∑ ai
i 0=

n

∑ bi
i 0=

n

∑⋅≤
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Evaluation

❐ Average absolute difference ratio:

❐ Signal to Noise Ratio (SNR):

❐ f(i,j) = Intensity value at pixel (i,j) of the original or good
image.

❐ f”(i,j) = Intensity value at pixel (i,j) of the corrected
image.

Error
1
xy
----- f i j,( ) f '' i j,( )–

f i j,( )
------------------------------------------

0 0,

x y,
∑=

SNR 10
Σf i j,( )2( )

Σ f i j ) f '' i j,( )–,( )( )2
------------------------------------------------------log⋅=
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Results

❐ “Lena”

☞ Average absolute difference ratio = 0.091828
☞ Signal to Noise Ratio = 15.86 dB

❐ Landscape Photo1:

☞Average absolute difference ratio = 0.124022

☞Signal to Noise Ratio = 12.94 dB

Shift Estimation
Method

Average Absolute
Difference Ratio

Signal to Noise
Ratio

Absolute
Difference

0.007375 30.03

Difference Squared 0.006254 30.81

Correlation 0.006254 30.81

Shift Estimation
Method

Average Absolute
Difference Ratio

Signal to Noise
Ratio

Absolute
Difference

0.006883 25.50

Difference Squared 0.007605 25.13

Correlation 0.007605 25.13
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Results(cont.)

❐ Lanscape Photo2:

☞ Average absolute difference ratio = 0.100883
☞ Signal to Noise Ratio = 13.04 dB

❐ Landscape Photo3:

☞Average absolute difference ratio = 0.171154

☞Signal to Noise Ratio = 10.54 dB

Shift Estimation
Method

Average Absolute
Difference Ratio

Signal to Noise
Ratio

Absolute
Difference

0.002321 32.50

Difference Squared 0.002717 31.77

Correlation 0.002717 31.77

Shift Estimation
Method

Average Absolute
Difference Ratio

Signal to Noise
Ratio

Absolute
Difference

0.009793 24.60

Difference Squared 0.011545 24.06

Correlation 0.011545 24.06
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Results(cont.)

Original

Distorted,
max shift, 20 pixels

Corrected by cross-
correlation method
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Results(cont.)

Distorted,
 max shift,

   20 pixels

  Corrected by
  cross-
  correlation
  method
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Summary

❐ Scan line shifts are best estimated by:

☞Shifting until the square of the error between two lines

         are minimized.

☞Computing the correlation function between lines and

          shift the distance corresponding to the maximum value.

Futur e Research

❐ Find a method that works when all scan lines are shifted:

☞One approach is to find two successive frames which are

similar to each other, then compensate these two frames

          first. After that, compensate within one frame.

❐ Grow trees in bar codes for easier forest coverage
estimation.
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REAL-TIME DIGITAL DTMF DETECTION USING
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ABSTRACT

We presen t a new type o f d ig i ta l Dua l -Tone
Multifrequency(DTMF) detection scheme based on the
Goertzel DFT algorithm. This detection scheme is more
robust and cost-effective than conventional analog detection
techniques. This algorithm is designed to provide optimal
performance and exceed BellCore[1] specifications for DTMF
detection. The problems associated with closely spaced
signal frequencies and short tone duration are overcome by
proper window and frame selection. Adaptive thresholding is
provided to minimize false outputs due to noise and speech.

The algorithm was tested with a variety of data including
speech, music, and DTMF tones. We find that this detector is
efficient, reliable, and exceeds BellCore standards.
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DIGITAL DTMF DETECTION

❐ What is DTMF Detection?

      ☞ Dual-Tone Multi-Frequency

☞ DTMF: the signaling method for touch-tone.

❐ A good DTMF detector will be robust
to noise, speech, and dial tone.

HIGH

LOW 1209 1336 1477 1633

697 1 2 3 A

770 4 5 6 B

852 7 8 9 C

941 * 0 # D

Table 1: DTMF Frequencies and Character
Assignments
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SIGNAL PROCESSING CHALLENGES

❐ Frequencies are closely spaced

❐ High levels of Speech and Noise

❐ Variations in DTMF signals

❐ Real-time operation

BellCore Specifications

❐ Code Validity Check(one freq. / group)

❐ Signal Power Level
☞ Adaptive Sensitivity(>9dB)
☞ Twist(+4 to -8 dB)

❐ Timing
☞ Signal Duration(min. 40 ms, reject < 24 ms)
☞ Interdigit Time(> 40ms)
☞ Cycle Time(> 93 ms)

❐ Bandwidth
☞ Frequency Accept and Reject Bands(1.5 %-3.5%)
☞ Windows
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MATHEMATICAL BACKGROUND
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Digital DTMF Detection Based on the
Discrete Fourier Transform(DFT)

GOERTZEL ALGORITHM

  16-bit signed integers(sampled data)

INPUT DATA HANDLER

TIMING LOGIC

LEVEL DETECTION LOGIC

KEYPRESS DECISION LOGIC
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METHOD OF EVALUATION

❐ Computer Generated(ideal) Data
☞ Tested accuracy with clean data
☞ Tested accuracy with noisy data(SNR)

❐ Real Data
☞ Tested accuracy with “clean” data
☞ Tested accuracy with noisy data
☞ Tested accuracy with speech and music
      (talk off)
☞ Tested accuracy with dial tone

❐ Real-Time(narecord)

TESTING DATABASE

Software Generated Data 100 files
    7 windows
100 files with noise added

7 windows

Recorded Data Phone 1
   3 files(92 key presses)
Phone 2
   2 files(124 key presses)
Phone 3
   1 file(99 key presses)

Speech Data 151 files(0 key presses)

Music and Speech Data 25 files(0 key presses)
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RESULTS

❐ No failures on talkoff

❐ No failures on dialtone

❐ No failures on music or speech

❐ Error free in all cases.

Windows

SNR Rectangle Triangle Hamming

30 0 0 0

23 0 0 0

20 0 0 0

10 0 0 0

0 7 11 11

-10 84.5 89.7 92.2

-20 100 100 100

-30 100 100 100

Table 1: Percent Error for different SNR’s and Windows
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SUMMARY

❐ Our DTMF Detection scheme is robust to noise,
speech, music, and dial tone.

❐ It exceeds BellCore industry standard specifications
in all cases.

❐ Our implementation meets or exceeds performance
levels of current products( i.e. SNR, DFT points)

❐ Our DTMF detector possesses real-time efficiency.
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ABSTRACT
TODAY:

Simplicity Complexity
    (Plucking a String)                   (Modeling a String)

FUTURE:
Complexity Simplicity

    (Building the Physical                 (Software widely
Instrument) Available)
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OVERVIEW:

Why music synthesis?
        Saves you from hiring a

professional musician
        Instrument availability for the

performer
        Greater understanding of
         physical parameters

On the path to the future:
        Need control over physical
         parameters of instrument
        Physical Modeling - Wave
         Equation
        Digital Waveguide

Why digital waveguide?
        real time applications
        model can be broken into
         functional blocks

What to expect?
       general synthesis engine
                        interchangeable models
                        stand alone synth with GUI
                        implementation into existing platforms
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 WHAT TO IMPLEMENT

Tackling the Problem:
A way to digitally implement a model of a stringed

             instrument that gives the performer expressive
             control.

     Can this be Implemented:
           In real time?
           What are the parameters?
           Accessibility of parameters to allow expressive
              control?
           Limitations of the fidelity?

     In Real Time?
          For any synthesizer to be useful, you must be
            able to “play it” and interact with it in real time.

     Which Parameters to Allow Control?
           Parameters that affect performance:

- Bow Pressure
- Fingering Style
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WHY REINVENT THE WHEEL?

     Existing Synthesis Technology:

           Fourier
- Frequency Analysis

                Current Synthesizers

 - Sample Based

     All Use Static Samples

   One Instrument

                One Playing Style

                One Person

                One Note

From static samples and they emulate other
styles through filtering, pitch transposition, which
produce sonic artifacts.
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Current working Demonstration

Network

Front End
GUI

Engine

SoX

Net
Audio

Terminal
Audio

Synthesizer



DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

DECEMBER 4, 1995 DSP’95 PAGE 54 OF 93

THE BREAKDOWN OF THE DIGITAL WAVEGUIDE
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Waveguide Output -1
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Sum the Top and the Bottom Rail for the Output

Behavior of the Plucked String
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ONE DIMENSIONAL WAVE EQUATION

c
2

x
2

2

∂

∂ U

x
2

2

∂

∂ U=

U(x,t) = displacement
c = speed of propagation

D’ Alembert’s Solution

U x t( , ) U pos x ct–( ) Uneg x ct+( )+=
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Fy(0)

t

T1

x1
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l-x1
c

A1

A2

Force Function of the Plucked String

Zero Crossing

D’ Alembert’s Waveform of the String
Plucked Near the Bridge
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     The initial value of the displacement of each point is
determined by amount & location of initial displacement.

     The solution can be represented by dividing the
amplitude of the initial displacement in two halves and
shifting the resulting triangles to the right and left,
summing amplitudes at all points.

     The end of the string supported by the nut is
considered to be rigid and produces inverted reflection.

     The end of supported by the bridge can not be
considered to be rigid. The bridge can be modeled with a
low pass filter.

     The output can be found at any location along the
string by summing the values of the upper and
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BUILDING THE DIGITAL WAVEGUIDE
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WHAT ARE WE LOOKING FOR?

     Objective Measurements:

          Frequency spectrum of the waveguide model can
         be compared to that of a violin with no resonating
         body.

The spectrum of the two signals should change in
          time similarly.

          Frequency spectrum must be
          analyzed over time rather than
          taking a single picture of the
          spectrum.

    Subjective Measurements:

          It is not only important that the
           model be mathematically correct,
           but it must also have a pleasing
          sound.
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     Real time physical modeling is possible.

    Efficient models can be developed from the
    mathematical description of the physical system.

The particular description can be tailored to specific
     instruments.

     Describing the physical characteristics of the
     instrument allows real time control over the
     characteristics of the sound.

     The digital waveguide can be broken down into
     functional blocks that described as standard
     elements of digital signal processing.

WHAT HAVE WE SHOWN?

FUTURE RESEARCH

     Bowed strings

     Models to take more parameters into account

     Including the resonating cavity
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ABSTRACT

• Accurate endpoint detection is a necessary capability for efficient
construction of speech databases based on field recordings.

• This project implements a family of endpoint detection algorithms
which uses signal features based on energy, zero-crossing rate.

• An objective evaluation paradigm has been developed to compare
     the endpoint detection algorithms.

• A reference speech database has been created as support for the
     evaluation methodology.

• Our implementation makes extensive use of object-oriented con-
cepts and data-driven programming techniques.
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Motivation for Developing Endpointer

❏ To provide a real-time version of the ISIP energy
     based algorithm.

❏ To provide a comprehensive comparison of several
     popular algorithms.

❏ Accurate endpoint detection is a key component in the
     development of speech databases.
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DIMENSIONS OF THE PROBLEM

❏ Signal to Noise Ratio

❏ Energy

❏ Zero Crossings

begin             end

 begin                    end
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TODAY’S TECHNOLOGY

❏ Hidden Markov Models

     A recognition strategy that makes use of a
     stochastic model of speech production.  Each
     word in the recognition vocabulary is represented
     by a stochastic model.

❏ Neural Networks

     Solutions can add massively parallel computing
     strategies.  Neural Networks can adapt and learn
     which is extremely useful in processing and
     recognizing speech.  It tends to be more robust
     and fault tolerant.

❏ When using Hidden Markov Models and Neural
     Networks, endpoint detection is not used since
     automatic time alignment is done.
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Class Structure

   Signal_Detector    Protected

Signal_Detector_Base *

Public

 Load              Print           Process         Misc.

Public

        Print

        Load

Process

Misc.

  Signal_Detector_Base

  Signal_Detector_00

Public

 Load              Print           Process         Misc.

  Private

Algorithm Specific Functions

  Signal_Detector_01

Private

Get_Imp_Name

        COFN
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Calculations

Energy

❏ preemphasis filter:

❏ Energy Equation:

Zero Crossings

❏ preemphasis filter:

❏ Zero Crossing Rate

y n( ) x n( ) αx n 1–( )–= α preemphasis factor–→

energy 1 N⁄( )= x
2∑ n( ) 1 N⁄〈 〉 x∑ n( )[ ]

2
–[ ]

y n( ) x n( ) αx n 1–( )–= α preemphasis factor–→

x n〈 〉[ ] x m 1–( )[ ]sgn–sgn[ ]w n m–( )
N
∑

sgn 1= x n( ) pzcthresh≥
sgn 1–= x n( ) nzcthresh≤

w n( ) 1 2N( )⁄= 0 n N 1–≤ ≤
w n( ) 0= otherwise
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Algorithms

E(m) > ITL

?

yes

no

yes

 no

yes

no

yes

no

    i = m

E(i) < ITL

  ?

E(i) > ITU

?

 i = i + 1

m = i + 1

  n1 = i

     i = m

?

n1 = n1 - 1

   DONE

 m = 1

m = m + 1

ETL: Lower Energy Threshold

ETU:  Upper Energy Threshold

n1, n2:  Endpoints
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THE EVALUATION DATABASE

THE EVALUATION METHODOLOGY

Table 1

File # Data Type Sample Data

1 single number “zero”
“two”

2 large number “eighteen”
 “sixteen”

3 two word number “65”
“44”

4 very large number “300,188”

5 phrase “high definition television”

6 sentence pattern “we hold these truths to be
self-evident, that all men are
created equal”

7 spontaneous speech ******************
(approx. 5 sentences)

-0.5                -0.05                         0.05                  0.5

1

 Scoring Function:   +/- (2.22)error - 0.11
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Algorithm Results

Table 1:

Algorithm

Speakers sub del ins  Total sub del ins Total

Female01 .17 1 0 1.17 .16 1 0 1.16

Female02 .18 0 1 1.18 .19 0 1 1.19

Female03 .22 1 0 1.22 .21 1 0 1.21

Avg Fem .19 2 1 1.19 .19 2 1 1.18

Male01 .32 1 0 1.32 .31 1 0 1.31

Male02 .33 0 1 1.33 .34 0 1 1.34

Male03 .18 0 0 0.18 .18 0 0 0.18

Avg Male .28 1 1 0.94 .28 1 1 0.94

Utt Type

Isolated
Digits

0.11 0 0 0.11 0.12 0 0 0.12

Teens 0.10 2 1 3.10 0.06 2 1 3.06

Multi-
Syl Dig

0.12 0 0 0.12 0.11 0 0 0.11

Long Dig 0.17 1 0 1.17 0.15 1 0 1.15

Short Sen 0.24 0 0 0.24 0.28 0 0 0.28

Long Sen 0.20 0 0 0.20 0.32 0 0 0.32

Spon Spc 0.73 0 0 0.73 0.71 0 0 0.71
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Algorithm Results

Algorithm

Speakers sub del ins  Total

Female01  .139    4    5   9.139

Female02  .174    4    1  5.174

Female03  .097    4    1  5.097

Avg Fem   .137    4    2.33   6.467

Male01  .224    8    3  11.22

Male02  .157    5    1  6.157

Male03  .213    9    2  11.21

Avg Male  .198    7.33    2  9.528
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SUMMARY AND CONCLUSIONS

❏ Advantages of object oriented code:
☞ Extensibility
☞ Common framework

❏ Data with different SNRs are required to test the
     robustness of an algorithm.  Our database has
     only data with medium SNR.

❏ Energy with zero-crossings performed better than
     energy alone.

❏ The Lowerre code
☞The code is only written to detect a single utterance
☞Hard coded parameters

❏ Endpoint detection  is used for speech data trimming
     in the creation of databases.

❐ Because of automatic time alignment, endpoint
     detection is not always needed for speech
     recognition, but still plays an important role in
     database preparation.
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ABSTRACT

In an increasingly noisy society methods of reducing noise are
becoming more important. Noise, or unwanted sound, may be
reduced in an environment by two basic means: passive noise
control and active noise control (ANC). Active noise control is a
method of reducing noise by canceling a sound wave with an
inverted copy of itself. This process works best in a simple
environment: one in which the wavelength of the noise is long in
relation to the dimensions of the space. ANC has been most
successful in reducing noise in ducts and headphones
(essentially one dimensional problems). This project will center
around the application of an adaptive algorithm to implement
echo cancellation (similar to existing technology used
extensively in modern telephony).
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ASPECTS OF THE PROBLEM

• Low Frequency Reverberations are Bothersome

✏ Impedes Conversation in Stairwell

✏ Hinders Communication and Causes Fatigue

• Two Possible Solutions:

✏ Passive Noise Reduction--Not Much DSP

✏ Active Noise Cancellation--Best Reduction in Noise

WHAT IS THE THEORY BEHIND E.C.?

Generation of
Echo Replica

Speaker

Microphone
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Steps in System Design

• Estimate Echo Path Characteristic

✏ Select Adaptive Filter Type

✏ Select Algorithm for Adaptation

• Determine Length of Filter Necessary

• Determine the Variance of the Echo Path

✏ Does the Variance Require Continuous Updating of the Filter?

• Evaluate Performance of System on Artificial Data

• Apply System to Real Data
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CURRENT TECHNOLOGY

• QuietQuietTM  Acoustic Echo Cancellation by AT&T

✏ Echo Path Length: Up to 250 ms, nominally

✏ Adaptive Echo Cancellation >45 dB

✏ Convergence Rate 30 dB/sec

✏ Full Duplex Operation Using Center Clipper Control

• Acoustic Echo Control for TMS320C3x by PKI

✏ Echo Path Length: 100 ms

✏ Adaptive Echo Cancellation 45 dB

✏ Convergence Rate 30 dB/sec

✏ Full Duplex Operation Using Center Clipper Control

 APPLICATIONS

• Telephone Circuits/Full-Duplex Data Modem

• Aircraft Cabin Noise Attenuation

• Hearing Aid Feedback Reduction

• Determining Frequency Response of a RoomH(jω)
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SYSTEM BLOCK DIAGRAM
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MATHEMATICAL ANAL YSIS

The reflected echo signal r(i) at time i is given by the
convolution of the far-end reference signal y(i) and the discrete
representation h k of the impulse response of the echo path:

Since Linearity and a finite duration N of the echo-path
response have been assumed, an echo canceller with N taps adapts
the N coefficients a k of its transversal filter to produce a replica of
the echo r(i) defined as follows:

In General, the echo-path impulse response h k is unknown
and may vary slowly with time. Hence, a closed-loop coefficient
adaptation algorithm is required to minimize the average or mean-
squared error (MSE) between the echo and its replica. The update
equation for the coefficients is given by:

r i( ) hky i k–( )
k 0=

N 1–

∑=

r̂ i( ) aky i k–( )
k 0=

N 1–

∑=
ak i 1+( ) ak i( ) 2β 1
M
----- e i m–( )y i m– k–( )

m 0=

M 1–

∑+=



DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

DECEMBER 4, 1995 DSP’95 PAGE 83 OF 93

The closed loop gain of the system is normalized to the
power in the input signal at the current time. In most common
algorithms, the power is estimated using an IIR filter of the signal:

2β 2β i( )
β1

Py i( )
------------= =
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BASIC ADAPTIVE LMS ALGORITHM

DELAY INPUT BY FILTER LENGTH

CALCULATE  FILTER COEFFICIENTS (A K)

GENERATE ECHO ESTIMATE

r̂ y ak⊗=

COMPUTE OUTPUT AND ECHO ESTIMATE ERROR

GET NEXT SIGNAL VALUE

UPDATE FILTER COEFFICIENTS

ak i 1+( ) ak i( ) βe i( )y i k–( )+=
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ECHO CANCELLATION BLOCK DIAGRAM

ROOM

N-TAP
DELAY

COEFF.

UPDATE

FILTER

COEFF.

Output

Input
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EVALUATION OF SOFTWARE

• COLLECTED DATA FROM ROOM

✏ 2 CHIRPS (0-500 kHz, 0-20 kHz)

✏ 2 IMPULSES (100 Hz, 1kHz)

✏ 4 SINUSOIDS (100 Hz, 1kHz, 10kHz)

✏ VARIOUS SPEECH DATA

• EXAMINED SPECTRUM OF ROOM RESPONSE

• TESTED ECHO CANCELLATION ALGORITHM

✏ USING SIMPLE INPUTS AND IMPULSE RESPONSE

✏ USING PERIODIC IMPULSES

✏ BY APPLYING SYNCHRONIZED CHIRP AND ROOM RESPONSE

✏ BY CONVOLVING IMPULSE RESPONSE WITH SPEECH TO GET
COMPLEX ECHO AND THEN APPLYING THE ECA

• PERFORMED DFT’S ON ECHO SIGNAL AND

IMPULSE RESPONSE

• APPLIED ECHO TO IIR FILTER WITH COEFF’S

DETERMINED BY ECA

• PERFORMED DECONVOLUTION IN MATLAB TO

FILTER ECHOS FROM SIGNAL
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Summary
• The filter adaptation algorithm performed as expected.

• Studies on the algorithm indicate that on real data, loop gains of 2-7

are acceptable--yielding a convergence time of ~0.4 seconds.

• SNR ratios greater than 30 dB are well within reason.

• Coefficients need to be adapted only during the first second.

• ‘All’ echoes can be cancelled if the signal generating the echoes is

known exactly, and the echo path is suitably short.

• The echo canceller can take into account changing echo characteristics

only if the signal is known exactly.

• Theoretically, once the coefficients are known for a particular echo

characteristic, an analyzer (IIR) filter could be constructed that would

filter out the echoes without knowing the signal, but any change in the

system would require the filter coefficients to be updated.

• In a similar manner, all noise could be cancelled at a specific point

using the same adaptive filter. Selective frequencies could be cancelled

by banding the input data.

• The linked list data structure, the constant adaptation of the coeffi-

cients, the large tap size, floating point operations, and the generality

of the program limited the speed of the echo canceller significantly.

The canceller was one order of magnitude slower than real-time for

150 taps.
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RESULTS
• The first major echo in the room was recorded at approximately 10 ms

followed by a major reverberation at about 50 ms.

• Our figure of merit indicates a 6dB difference between the signal and

the output of the canceller after only 0.4 seconds.
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	ABSTRACT
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	allel software environment for DSP programming. MPI (Message- Passing Interface), a message passi...
	Building DSP Applications the Easy Way
	p Development of DSP Applications
	+ Many DSP applications are developed by combining and reusing well-understood libraries or modules.
	+ Tools that provide a visual environment for combining DSP modules are widely available.
	p Khoros
	+ Provides an environment for the development of DSP applications that includes a visual programm...
	+ Modules are separate programs that communicate through shared files or shared memory.
	Making Applications Faster - Parallel Computing
	p Parallel Computing
	+ More processors = Faster?
	+ Two important aspects of parallel computing:
	- Speedup (benefit of additional processing
	resources)
	- Scalability (big and fast? hardware/software)
	p MPI (Message-Passing Interface)
	+ A standard for high-performance portable message passing.
	+ Important features
	- Point to point communication
	- Collective operations
	- Support for parallel libraries (safety, scope)
	+ Is message passing the assembly language of parallel computing?
	It’s faster and scales well but in general more difficult to program with than other approaches.
	Fast, Easy Development of
	Portable Parallel DSP Applications?
	How can we best combine a visual DSP programming environment (i.e. Khoros) with a message-passing...
	+ Remove burden of parallelization from user.
	Same interface - more knobs to tweak.
	+ Take advantage of as many forms of parallelism as possible.
	Data
	Task
	Pipeline
	Khoros/MPI Integrated Environment
	Task Parallelism
	p MPI supports the building of independent non- interfering libraries.
	Communicators
	- group (scoping)
	- context (safety)
	Think: Get Smart cone of silence
	p Khoros supports task parallelism.
	Toolbox operations can execute simultaneously if there are no graph dependencies between them
	Khoros/MPI Integrated Environment
	Parallel “Interbox” Communication
	p Khoros uses a polymorphic data model.
	+ Abstract interface to data (described by various parameters such as height, width, time, positi...
	+ Allows modules to operate on wide range of data.
	p Data distribution independence in parallel libraries
	+ An additional factor to consider in parallel libraries is data distribution (poly-algorithms).
	+ Extension of polymorphic model to include data distribution
	p Intergroup collective operations
	A general model for intergroup collective communication is missing in MPI
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	SPECTRUM ESTIMATION AND NOISE REDUCTION
	FOR
	LASER INDUCED BREAKDOWN SPECTROSCOPY
	by
	Yuanping Chen ychen@erc.msstate.edu
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	Liang Wang SPwang@ee.msstate.edu
	Hansheng Zhang hz1@ra.msstate.edu
	The Spectral Analysis Group
	Mississippi State University
	ABSTRACT
	Overview of LIBS:
	• A pulsed laser beam (532 nm) is focused to the target to induce a micro-plasma.
	•�The induced plasma produces very strong optical emission. The emission signal is collected and ...
	• Analyzes the spectrum and outputs the result.
	Problem:
	• The single spectrum is very noisy.
	• The existing technology is to average 30 to 50 spectra. This limits the LIBS to perform a real ...
	Algorithms:
	+ Eigenanalysis Frequency Estimation
	+ Autocorrelation:
	The autocorrelation is designed to suppress the random noise corrupted signal. The signal to nois...
	+ Adaptive Line Enhancer:
	The adaptive line enhancer is designed to suppress the noise corrupted signals. A delayed version...
	Algorithms (cont.):
	+ Low Pass FIR Filter Scheme
	• Low pass linear phase FIR filter in time axis
	• Moving average low pass filter in frequency domain to remove background noise envelope.
	• Debiasing DC component, and thresholding negative noise
	+ Evaluation and Supporting Data.
	• Use mean square signal and noise ratio to evaluate the system.
	Conclusion and Future Research:
	• Our frequency estimation indicate that an accumulation of at least 20 single spectra is require...
	• SNR Improvement of DSP:
	13.1 db for low pass filter;
	4.2 db for autocorrelation;
	5.2 db for adaptive line enhancer.
	• The distortion of spectral line is too serious with the method of adaptive line enhancer.
	• Research on a more complicate spectra with above DSP method.
	• Continue to develop new DSP technique.
	Reference:
	1 . P. M. Clarkson, Optimal and Adaptive Signal Processing, CRC Press,1993.
	2 . S. Kay, Modern Spectral Estimation: Theory and Application, Prentice-Hall, NJ, 1987.
	3 . S. Lawrence Marple,Jr, Digital Spectral Analysis with Applications, Prentice-Hall, NJ, 1987.
	4 . B. Widrow and S. D. Stearns, Adaptive Signal Processing, Prentice-Hall, NJ, 1985.
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	Digital Imaging Group Mississippi State University
	Introduction
	p The US Forestry Services (USFS) needs to correct digitized images with each scanline shifted by...
	+ Images were to be used as test data for a new
	method of determining forest acreage using
	satellite.
	p The USFS used inexpensive, readily available equipment.
	+ A method of removing such errors would reduce the
	price of quality digital aerial images.
	+ The method could reduce the price of creating quality digital images from VHS tapes.
	Problem Definition
	p The images are interlaced:
	p Source of error:
	+ Camera may have moved between when one set of scan-lines and the next are recorded.
	+ When digitizing the image from VHS tape, sync signal may not be recognizable to the digitizer.
	p Error:
	+ Each scan-line is shifted, introducing “jaggies” in the images.
	+ Distribution of the shifts appear to be random.
	Existing Technology
	Pel-Recursive Algorithm
	p Originally used for motion compensation of objects from 2-D images.
	+ For our problem, each scan-line is treated as an object.
	p Method:
	+ Use Low-pass filter to remove noise from the images.
	+ Edge detection.
	+ Use mean filter to remove low amplitude edges from the images.
	+ Shift the odd line until the “motion” or FD is minimized.
	Algorithm
	Generate Test Image
	Split it into two
	images
	Edge Detection
	Find Shift and Compensate
	Computing Line Shifts
	p Minimized absolute difference method:
	+ To find the amount of shift in a line, compute:
	for j=0,1,...., n=number of pixels per line;
	E: even line value, O: odd line value;
	+ Find i for minimum sumi.
	+ Shift even line i pixels.
	p Minimized square difference method: Same as above, except:
	p Circular cross correlation method:
	+ Compute circular cross correlation function for odd
	and even lines:
	+ Find i for maximum correlation(i).
	+ Shift even line i pixels.
	How to determine the shifts
	p Minimized absolute difference.
	p Example:
	+ Initial position:
	Even line: a, b, c, d.
	Odd line: q, r, s, t.
	Calculate: Sum0 = |a-q| + |b-r| + |c-s| + |d-t|
	+ Shift to left by one pixel:
	Even line: a, b, c, d.
	Odd line: r, s, t, q.
	Calculate: Sum1 = |a-r| + |b-s| + |c-t| + |d-q|
	+ Shift to right by one pixel:
	Even line: a, b, c, d.
	Odd line: t, q, r, s.
	Calculate: Sum2 = |a-t| + |b-q| + |c-r| + |d-s|
	+ Do the above two steps iteratively for some range (for example: -10 to 10)
	+ You will have a series of Sums and find min{Sum0,Sum1,....,SumN}
	Why we can use max correlation’s
	position as the shift number?
	p Cauchy-Schwarz inequality:
	p If we have a,b,c,d and b,c,d,a, then:
	ab + bc + cd + da <= a2 + b2 + c2 + d2 and
	ac + bd + ca + db <= a2 + b2 + c2 + d2 etc.
	p Let
	Even line: a, b, c, d
	Odd line: b, c, d, a
	Then Rx,y(0) = ab + bc + cd + da
	p If we calculate Rx,y(1) = a2 + b2 + c2 + d2
	At this position, Rx,y(1) has the maximum value, odd line and even line are matched.
	Evaluation
	p Average absolute difference ratio:
	p Signal to Noise Ratio (SNR):
	p f(i,j) = Intensity value at pixel (i,j) of the original or good image.
	p f”(i,j) = Intensity value at pixel (i,j) of the corrected image.
	Results
	p “Lena”
	+ Average absolute difference ratio = 0.091828
	+ Signal to Noise Ratio = 15.86 dB
	p Landscape Photo1:
	+ Average absolute difference ratio = 0.124022
	+Signal to Noise Ratio = 12.94 dB
	Results(cont.)
	p Lanscape Photo2:
	+ Average absolute difference ratio = 0.100883
	+ Signal to Noise Ratio = 13.04 dB
	p Landscape Photo3:
	+ Average absolute difference ratio = 0.171154
	+Signal to Noise Ratio = 10.54 dB
	Results(cont.)
	Original
	Distorted,
	max shift, 20 pixels
	Corrected by cross-
	correlation method
	Results(cont.)
	Distorted,
	max shift,
	20 pixels
	Corrected by
	cross-
	correlation
	method
	Summary
	p Scan line shifts are best estimated by:
	+ Shifting until the square of the error between two lines
	are minimized.
	+ Computing the correlation function between lines and
	shift the distance corresponding to the maximum value.
	Future Research
	p Find a method that works when all scan lines are shifted:
	+ One approach is to find two successive frames which are
	similar to each other, then compensate these two frames
	first. After that, compensate within one frame.
	p Grow trees in bar codes for easier forest coverage
	estimation.
	References
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	3 . R.J.Clarke, Digital Compression of Still images and Video, Harcort Brace & Company, London, U...
	4 . Gonzelez, Woods, Digital Image Processing, 1992.

	REAL-TIME DIGITAL DTMF DETECTION USING GOERTZEL’S ALGORITHM
	by
	Jimmy Beard beard@ee.msstate.edu
	Steve Given given@isip.msstate.edu
	Brian Young byoung@ee.msstate.edu
	DTMF Detection Group
	Mississippi State University
	ABSTRACT
	We present a new type of digital Dual-Tone Multifrequency(DTMF) detection scheme based on the Goe...
	The algorithm was tested with a variety of data including speech, music, and DTMF tones. We find ...
	DIGITAL DTMF DETECTION
	p What is DTMF Detection?
	+ Dual-Tone Multi-Frequency
	+ DTMF: the signaling method for touch-tone.
	Table 1: DTMF Frequencies and Character Assignments

	p A good DTMF detector will be robust to noise, speech, and dial tone.
	SIGNAL PROCESSING CHALLENGES
	p Frequencies are closely spaced
	p High levels of Speech and Noise
	p Variations in DTMF signals
	p Real-time operation
	BellCore Specifications
	p Code Validity Check(one freq. / group)
	p Signal Power Level
	+ Adaptive Sensitivity(>9dB)
	+ Twist(+4 to -8 dB)
	p Timing
	+ Signal Duration(min. 40 ms, reject < 24 ms)
	+ Interdigit Time(> 40ms)
	+ Cycle Time(> 93 ms)
	p Bandwidth
	+ Frequency Accept and Reject Bands(1.5 %-3.5%)
	+ Windows
	MATHEMATICAL BACKGROUND
	Discrete Fourier Transform
	Rectangular Time Window
	(Uniform)
	Triangular Time Window
	(Bartlett)
	Hamming Time Window
	(Raised Cosine)
	Digital DTMF Detection Based on the Discrete Fourier Transform(DFT)
	GOERTZEL ALGORITHM
	INPUT DATA HANDLER
	TIMING LOGIC
	LEVEL DETECTION LOGIC
	KEYPRESS DECISION LOGIC
	METHOD OF EVALUATION
	p Computer Generated(ideal) Data
	+ Tested accuracy with clean data
	+ Tested accuracy with noisy data(SNR)
	p Real Data
	+ Tested accuracy with “clean” data
	+ Tested accuracy with noisy data
	+ Tested accuracy with speech and music
	(talk off)
	+ Tested accuracy with dial tone
	p Real-Time(narecord)
	TESTING DATABASE
	RESULTS
	p No failures on talkoff
	p No failures on dialtone
	p No failures on music or speech
	p Error free in all cases.
	Table 1: Percent Error for different SNR’s and Windows

	SUMMARY
	p Our DTMF Detection scheme is robust to noise, speech, music, and dial tone.
	p It exceeds BellCore industry standard specifications in all cases.
	p Our implementation meets or exceeds performance levels of current products( i.e. SNR, DFT points)
	p Our DTMF detector possesses real-time efficiency.
	REFERENCES

	1 . Digital Simulation Test Tape.” Bell Communication Research Technical Reference TR-TSY-D00763,...
	2 . Blahut, Richard E. Fast Algorithms For Digital Signal Processing. Addison-Wesley Publishing C...
	3 . Manolakis, Dimitris G. and John G. Proakis. Digital Signal Processing. 2nd edition. Macmillan...
	4 . “Dual-Tone Multifrequency Receiver Generic Requirements for End- to-End Signaling Over Tandem...
	5 . Burrus, C. S. and T. W. Parks. DFT/FFT and Convolution Algorithms: Theory and Implementations...
	6 . Marple, S. Lawrence Jr. Digital Spectral Analysis. Prentice-Hall, Inc., 1987, pp. 136-44.
	7 . Keiser, Bernhard E. and Strange, Eugene. Digital Telephony and Network Integration. Van Nostr...
	8 . Freeman, Roger L. Telecommunication System Engineering: Analog and Digital Network Design. Jo...
	THE PHYSICAL MODELING OF A STRINGED INSTRUMENT
	by
	C. R. Jones cjones@ee.msstate.edu
	Raja Seelam seelam@isip.msstate.edu
	Mary E. Weber weber@isip.msstate.edu
	Scott Wilson wilson@ee.msstate.edu
	The Vibrators
	Mississippi State University
	ABSTRACT
	TODAY:
	Simplicity Complexity
	(Plucking a String) (Modeling a String)
	FUTURE:
	Complexity Simplicity
	(Building the Physical (Software widely
	Instrument) Available)
	OVERVIEW:
	Why music synthesis?
	Saves you from hiring a
	professional musician
	Instrument availability for the
	performer
	Greater understanding of
	physical parameters
	On the path to the future:
	Need control over physical
	parameters of instrument
	Physical Modeling - Wave
	Equation
	Digital Waveguide
	Why digital waveguide?
	real time applications
	model can be broken into
	functional blocks
	What to expect?
	general synthesis engine
	interchangeable models
	stand alone synth with GUI
	implementation into existing platforms
	WHAT TO IMPLEMENT
	Tackling the Problem:
	A way to digitally implement a model of a stringed
	instrument that gives the performer expressive
	control.
	Can this be Implemented:
	In real time?
	What are the parameters?
	Accessibility of parameters to allow expressive
	control?
	Limitations of the fidelity?
	In Real Time?
	For any synthesizer to be useful, you must be
	able to “play it” and interact with it in real time.
	Which Parameters to Allow Control?
	Parameters that affect performance:
	- Bow Pressure
	- Fingering Style
	WHY REINVENT THE WHEEL?
	Existing Synthesis Technology:
	Fourier
	- Frequency Analysis
	Current Synthesizers
	- Sample Based
	All Use Static Samples
	One Instrument
	One Playing Style
	One Person
	One Note
	From static samples and they emulate other styles through filtering, pitch transposition, which p...
	Current working Demonstration
	THE BREAKDOWN OF THE DIGITAL WAVEGUIDE
	The initial value of the displacement of each point is determined by amount & location of initial...
	The solution can be represented by dividing the amplitude of the initial displacement in two halv...
	The end of the string supported by the nut is considered to be rigid and produces inverted reflec...
	The end of supported by the bridge can not be considered to be rigid. The bridge can be modeled w...
	The output can be found at any location along the string by summing the values of the upper and l...
	Objective Measurements:
	Frequency spectrum of the waveguide model can
	be compared to that of a violin with no resonating
	body.
	The spectrum of the two signals should change in
	time similarly.
	Frequency spectrum must be
	analyzed over time rather than
	taking a single picture of the
	spectrum.
	Subjective Measurements:
	It is not only important that the
	model be mathematically correct,
	but it must also have a pleasing
	sound.
	Real time physical modeling is possible.
	Efficient models can be developed from the
	mathematical description of the physical system.
	The particular description can be tailored to specific
	instruments.
	Describing the physical characteristics of the
	instrument allows real time control over the
	characteristics of the sound.
	The digital waveguide can be broken down into
	functional blocks that described as standard
	elements of digital signal processing.
	Bowed strings
	Models to take more parameters into account
	Including the resonating cavity
	REFERENCES
	1 . Bladier, Benjamin, On the Bridge of the Violoncello Compt. Rend., March 1960.
	2 . Campbell, Murray and Clive Greated, The Musician’s Guide to Acoustics, Schirmer Books, New Yo...
	3 . Cremer, Lothar, The Influence of “Bow Pressure” on the Movement of a Bowed String, Catgut Aco...
	4 . Cremer, Lothar, The Physics of the Violin, The MIT Press, Cambridge, Massachusetts, 1981.
	5 . Hutchings, C. M., The Physics of Violins, Scientific American, Inc., 1962.
	6 . Itokawa, Hideo, and Chihiro Kumagai, On the Study of Violin and Its Making, Report of the Ins...
	7 . Morse, P.M., Vibration and Sound, American Institute of Physics for the Acoustical Society of...
	8 . Ohlson, Harry F. Elements of Acoustical Engineering, D. Van Nostrand Co., Inc., New York, New...
	9 . Ousterhout, John K. Tcl and the Tk Toolkit, Addison-Wesley Publishing Company, Reading, Massa...
	10 . Reid, Christopher E. and Thomas B. Passin, Signal Processing in C, John Wiley & Sons, Inc., ...
	11 . Rorabaugh, C. Britton, Digital Filter Designer’s Handbook: Featuring C Routines, Me Graw - H...
	12 . Smith III, Julius O., “Physical Modeling Using digital Waveguides,” Computer Music Journal, ...

	Real-Time Speech Endpoint Detector
	by
	Kevin Bush bush@isip.msstate.edu
	Aravind Ganapathiraju ganapath@isip.msstate.edu
	Paul Kornman
	Jim Trimble III trimble@isip.msstate.edu
	Leigh Webster webster@isip.msstate.edu
	Speech Processing Group
	Mississippi State University
	ABSTRACT
	the endpoint detection algorithms.
	evaluation methodology.
	Motivation for Developing Endpointer
	o To provide a real-time version of the ISIP energy
	based algorithm.
	o To provide a comprehensive comparison of several
	popular algorithms.
	o Accurate endpoint detection is a key component in the
	development of speech databases.
	DIMENSIONS OF THE PROBLEM
	o Signal to Noise Ratio
	o Energy
	o Zero Crossings
	TODAY’S TECHNOLOGY
	o Hidden Markov Models
	A recognition strategy that makes use of a
	stochastic model of speech production. Each
	word in the recognition vocabulary is represented
	by a stochastic model.
	o Neural Networks
	Solutions can add massively parallel computing
	strategies. Neural Networks can adapt and learn
	which is extremely useful in processing and
	recognizing speech. It tends to be more robust
	and fault tolerant.
	o When using Hidden Markov Models and Neural
	Networks, endpoint detection is not used since
	automatic time alignment is done.
	Class Structure
	Calculations
	Energy
	o preemphasis filter:
	o Energy Equation:
	Zero Crossings
	o preemphasis filter:
	o Zero Crossing Rate
	Algorithms
	THE EVALUATION DATABASE
	Table 1

	THE EVALUATION METHODOLOGY
	Algorithm Results
	Table 1:

	Algorithm Results
	SUMMARY AND CONCLUSIONS
	o Advantages of object oriented code:
	+ Extensibility
	+ Common framework
	o Data with different SNRs are required to test the
	robustness of an algorithm. Our database has
	only data with medium SNR.
	o Energy with zero-crossings performed better than
	energy alone.
	o The Lowerre code
	+The code is only written to detect a single utterance
	+Hard coded parameters
	o Endpoint detection is used for speech data trimming
	in the creation of databases.
	p Because of automatic time alignment, endpoint
	detection is not always needed for speech
	recognition, but still plays an important role in
	database preparation.
	REFERENCES
	1. L.R. Rabiner and M.R. Sambur, “An algorithm for determining the
	endpoints of isolated utterances,” Bell System Technical Journal, vol. 54,
	pp. 297-315, 1975.
	2. R. Tucker, “Voice Activity Detection Using a Periodicity Measure,” IEEE
	Proceedings, Part 1, Communications, Speech, Vision, vol. 139, pp.
	337-380, Aug. 1992.
	3. J. Junqua, B. Mak, and B. Reaves, “A Robust Algorithm for Word
	Boundary Detection in Presence of Noise,” IEEE Transacitions on Speech
	and Audio Processing, vol. 2, No. 3, pp. 406-412, July 1994.
	4. L.F. Lamel, L.R. Rabiner, A.E. Rosenberg, and J.G. Wilpon, “An
	Improved Endpoint Detector for Isolated Word Recognition,” IEEE
	Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-29,
	pp. 777-785, Aug. 1981.
	5. B. Wheatley, et. al., “Robust Automatic Time Alignment of
	Orthographic Transcription with Unconstrained Speech,” IEEE
	Proceedings ICASSP, vol. 1, pp. 533-536, 1992
	6. D.P. Morgan and C.L. Scofield, Neural Networks and Speech Processing,
	Kluwer Academic Publishers, Norwell, Massachusetts, U.S.A., 1991.
	ACOUSTIC NOISE CANCELLATION USING ADAPTIVE FILTERING TECHNIQUE
	by
	Mark Henderson henders@isip.msstate.edu
	Erik Wheeler wheeler@isip.msstate.edu
	Vincent Allen allen@isip.msstate.edu
	John Williams SPwillia@ee.msstate.edu
	Echo Cancellation Group
	Mississippi State University
	ABSTRACT
	In an increasingly noisy society methods of reducing noise are becoming more important. Noise, or...
	ASPECTS OF THE PROBLEM
	WHAT IS THE T HEORY BEHIND E.C.?
	Steps in System Design

	Since Linearity and a finite duration N of the echo-path response have been assumed, an echo canc...
	BASIC ADAPTIVE LMS ALGORITHM
	DELAY INPUT BY FILTER LENGTH
	CALCULATE FILTER COEFFICIENTS (AK)
	GENERATE ECHO ESTIMATE
	COMPUTE OUTPUT AND ECHO ESTIMATE ERROR
	GET NEXT SIGNAL VALUE
	UPDATE FILTER COEFFICIENTS
	ECHO CANCELLATION BLOCK DIAGRAM
	ROOM
	N-TAP DELAY
	COEFF.
	UPDATE
	FILTER
	COEFF.
	EVALUATION OF SOFTWARE
	REFERENCES
	Echo Cancellation Algorithms:
	1 . Murano, Kazuo; Unagami, Shigeyuki; Amano, Fumio; “Echo Cancellation and Applications,” in IEE...
	2 . Petillon, Thierry; Gilloire, Andre; Theodoridis, Sergios; “The Fast Newton Transversal Filter...
	3 . Gilloire, Andre; Vetterli, Martin; “Adaptive Filtering in Subbands with Critical Sampling: An...
	4 . van de Kerkhof, Leon M.; Kitzen, Wil J. W.; “Tracking of a Time-Varying Acoustic Impulse Resp...

	Echo Cancellation Applications:
	5 . Clark, Robert; “Active Damping on Enclosed Sound Fields Through Direct Rate Feedback Control,...
	6 . Gingell, M.J.; Hay, B.G.; Humphrey, L.D. “A Block Mode Update Echo Canceller Using Custom LSI...
	7 . Kates, James M.; “Feedback Cancellation in Hearing Aids: Results from a Computer Simulation,”...
	8 . Kuo, Sen M.; Pan Zhibing; “Distributed Acoustic Echo Cancellation System with Double-Talk Det...
	9 . Messerschmitt, David; Hedberg, David; Cole, Christopher; Haoui, Amine; Winship, Peter; “Digit...
	10 . Messerschmitt, David; “Echo Cancellation in Speech and Data Transmission,” in IEEE Journal o...
	11 . Picone, J.; Johnson, M.A.; Hartwell, W.T.; “Enhancing Speech Recognition Performance with Ec...
	12 . Ruckman, C.E;, “Active Noise Control FAQ,” Available via anonymous ftp as from ftp://rtfm.mi...
	13 . Shieh, Chifong; Bai,Mingsian R.; “Active Noise Cancellation by Using The Linear Quadratic Ga...
	14 Sondhi, Man Mohan; Berkley, David A.; “Silencing Echoes on the Telephone .Network,” in Proceed...
	15 . Tokhi, M.O.; Leitch, R.R.; Active Noise Control, Oxford Science Publications, Clarendon Pres...

	Digital Signal Processing:
	16 . Proakis, J.G.;.�Manolakis, D.G.; Digital Signal Processing: Principles, Algorithms, and Appl...

	Object-Oriented Software:
	17 . Schildt, Herbert; Teach Yourself C, 2nd ed., McGraw Hill, Berkeley, California, USA, 1994.

	Math Tools:
	18 . The Student Edition of MATLAB, Prentice Hall, Englewood Cliffs, New Jersey, USA, 1992.

	On the Net/Current DSP Hardware:
	19 . http//www.ti.com/sc/docs/dsps/softcoop/ Software Overviews for several different echo cancel...





