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ABSTRACT detector. [14] According to Savoji, [35] the essential

characteristics of an ideal endpoint detector are:

Accurate endpoint detection is ia necessary capability reliability, robustness, accuracy, adaptation, simplicity,

for efficient construction of speech databases based onreal-time processing, and no prior knowledge of the

field recordings. The labor required to prepare a noise. Of all of these characteristics, robustness in

database often exceeds the amount of speech data bunfavorable conditions has been the most difficult to

two to three orders of magnitude. The associated costaccomplish.

prevents many historical databases currently stored on

analog or digital tape from being made accessible, ina another problem in speech recognition is the high

useful form, to speech researchers. More recent ;,mntational load on the system. With the detection of

algorithms based on Hidden Markov Models (HMMS) ;. .0, ate begin and end points, wasteful computations
and Neural Networks (NNs) are not always an efficient . . )
will be made. In order to operate in real-time, speech

method of segmenting such data, since they are _ . . :
complex and highly channel dependent. In this paper detection algorithms must be e_fhment both in terms of
we describe the implementation of a family of endpoint the speed of the computation and the memory
detection algorithms which uses signal features based consumption. Also, the input signal must be buffered
on energy and zero-crossing rate. We also present asince the exact start and end of live input is unknown.
detailed comparison of these widely used algorithms This system of buffering allows the real-time endpointer
using an objective evaluation paradigm we have to run in parallel with the live input.

developed. A reference speech database has bee

created as support for this evaluation methodology. Several methods have been used for accurate endpoint
Our implementation makes extensive use of object- getection. Among these methods are zero-crossing
oriented concepts and data-driven programming ra(e(3] energy distribution [2], spectral information,

techniques. A uniform user-interface for all o0 qicity measures [4], and hidden Markov models
algorithms is provided that is based on a novel virtual (HMM) [5] '

class methodology.

1. INTRODUCTION 2. SEGMENTATION

A major source of errors in speech recognition system:'n endpoint detection, one of the most difficult aspects is
is the incorrect selection of the beginning and ending of
speech utterances. A fundamental aspect for these
algorithms is that speech segments must be reliably
separated from non-speech segments. Because the
endeavors to adjust these incorrect beginning and
ending points do not always succeed, robust word begin
and end point detection under unfavorable conditions
still remains an unsolved issue because speech endpoint
detection is trivial when used under ideal conditions; a
simple energy calculation can be used. In recent studies,
it was shown that in a real-world evaluation of a speech_
system which utilizes an isolated-word recognizer moreFigure 1. Speech Waveform.
than 50% of the error rate was credited to the endpoin
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segmentation of utterances. Manual segmentation is aboundaries with simple spectral measures [1]. The zero-
option, but there are several drawbacks. The firstcrossing rate provides a simple spectral measure of the
drawback is that the process is laborious and tedious. frequency in the middle of the signal bandwidth. For
requires extensive listening and spectrogramother speech obstruents, the zero-crossing rate, if the
interpretations. Also, due to the subjective nature of avoicebar dominates, is either low or high. The zero-
manual segmentation, inconsistencies from trial to trial,crossing rate is high when weak fricatives are present.
even if the same utterance is being segmented, als@eak fricatives also cause the most detection
hinder the process. Throughout the past decade, severdifficulties.
methods for automatic segmentation have been
proposed. Finally, van Hamert[37] described an2.1. Segmentation of Connected-Words
automatic segmentation method that combines explicit
information about the speech with the frame-to-frameDefining boundaries within speech segments is
spectral change. The frame-to-frame spectral change isxtremely difficult. Most recognizers erroneously make
in part characterized by a spectral correlation function. the assumption that speech is linear and invariant. The
use of isolated words avoids accounting for the effects
In many commercial recognizers, word units are usecf coarticulation that obviate these assumptions.
and speakers are instructed to pause briefly after eacBoarticulation cannot be ignored when continuous
word which leads to isolated word recognition. A speech is used. Segmenting connected-word speech into
silence 150 and 250 ms between words is sufficieniords is feasible only when each word is clearly spoken
enough so that the utterance is not confused with longnd the vocabulary is very limited.
plosives and allows the recognizer to compare words
rather than sentences. In recent years, recognizers ha@ne approach for continuous word recognition that can
been constructed to reach a capability of recognizingoe applied to words of arbitrary length involves a
connected-word speech. Connected-word speechpeaker-independent, statistical approach. The
implies that there are no pauses required, but each worslegmentation process is followed by isolated word
must be pronounced clearly. Because of the unnaturakcognition on the separated words.
speaking constraints of isolated words, many
applications of connected-word recognition can be2.2. Segmentation of Continuous Speech
considered efficient as in postal codes, telephone
numbers, and spelled-out words. Connected-wordrhe convex hull method [36] is an easier segmentation
recognition is simpler than continuous-speechapproach that is not hindered by connected-word
recognition because clear pronunciations andspeech. Since there are few acoustic cues to distinguish
pronounced stressing of each utterance help minimizevord and syllable boundaries without feedback from
the effects of coarticulation across word boundaries. higher levels, the boundaries obtained with this
vocabulary-independent procedure are for syllables, not
Typical endpoint detectors depend on amplitudewords. It should be noted that the significance of an
functions to separate nonspeech from speech. Onenergy dip for segmentation depends on the energy in
method for finding endpoints locates energy pulsesthe surrounding segments. After speech segments
corresponding to words or syllables and comparing thebetween pauses have been isolated, a convex hull is
energy in decibels against four thresholds k1, k2, k3determined from the speech loudness function, a
and k4. [4,32] When the energy exceeds the lowesperceptually weighted energy vs. time plot that is
threshold, k1,a pulse is considered to be detectetbwpassed to eliminate pitch period effects. A convex
starting at Al, unless the duration A2-Al exceeds 75hull exhibits minimal magnitude, monotonically
ms, A2 is then seen as the start time and the signahondecreasing until the loudness peak and
before A2 is considered breath noise). The end time isnonotonically nonincreasing thereafter. The depth of
similarly determined by means of k2 and k3 each loudness valley under the hull indicated the
(5dB).Successive energy pulses may be considered pasbssibility that a boundary is present. If the maximum
of one unit if the gap time between pulses is less thardepth exceed 2 dB, a boundary is declared and the
150 ms, the longest duration allowed of a typical stopprocess is repeated with new hulls on each side of the
closure. boundary. Because a loudness change is more noticeable
at syllable onset than offset, syllable-initial boundaries

For those applications where the speech bandwidtiyre more accurately located than syllable-final ones.
exceeds 3 kHz, sufficient spectral information at high

frequencies is present to refine energy-determined
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2.3. Segmentation of Continuous Speech into Phones 3. HIDDEN MARKOV MODELS

One of the most difficult problems in continuous speechyjiygen Markov models are widely used as speech input
recognition is reliably dividing continuous speech into ,hit models in speech recognition and utilize a
phones. No specific approach exists. Typical speeclyi,cnastic model of speech production while offering
parameters and features are usefu_l for Iabelmg th%erformance comparable to time warping in several
segments. The sequence of segmenting and labeling g, yjications at a fraction of the computational cost.
difficult subject. Because_ phone segments Com_a'nl'raining performed on a large speech database
several frames and labeling a phone often requirégeiarmines HMM parameters. The method of HMMs
examination of the spectral behavior of the course of th‘?ncorporates a system that exists in a finite number of

phone’s frames, it is more efficient f[o segment first. Sti"'varying states to model speech generation. Each varying
some systems label each frame independently beforgiie can produce a finite number of outputs. In word
segmentation despite the higher computational 10agjeneration, the system moves from one state to another
involved. Usually, Continuous Speech Recognition, hije each state creates an output until the entire word is
attempts a coarse segmentation first and then refines the, g ced. Figure 2 illustrates this process. In the figure,
boundary placements during the labeling phase. The,tes are represented by circles, and arrow represent
initial segmentation goes beyond the syllable division o nsitions between states. The transitions between the
described above to smaller units such as fricatives, StoPStates and the outputs of each state are random which

and vowels. These units can then be more readily, ;o5 the model to handle subtle variations in timing
located with robust and simple tests involving bandpass,, pronunciation.

energies, zero-crossing rates, and durations. Dynamic

programming is used to overcome errors by aligningeach word is represented by a model of this kind. The
phonetic labels with estimated boundaries. only item a speech recognizer has to work with are the
) . outputs. The primary job of the recognizer is to decide
Even though continuous speech recognition systems Usghich model produced the desired output. The model
formants for labeling, a coarse segmentation can bggeit is not visible to the recognizer. It is inferred from

obtained using more reliable features. In this case, thg,o available data hence the wdriidenin the name
spectrum is typically divided into four regions. Some of \\;qqen Markov model.

these regions roughly correspond to formant ranges.

However, errors such as missed formants are avoided by, transitions between states, the assumption is made
using broad energy measures in each frequency ranggn gt they happen at discrete times and that each

about 80 to 250 Hz, a low range of about 300-1000 Hz’dependent only on state.dn Figure 2, respective

:bn;\l/idzléggrﬁze of 700-2500 Hz, and a high range Ofprobabilities are written by the arrow that represents the

transition. An NxN matrixA containing N states where

Some continuous speech recognition systems also used& T itransition from gto g} is shown below:.

a four category initial segmentation for vowels, silences,

fricatives and dips. Silence can then be determined by r 7
segments longer than a minimum duration whose energy 030501 0 O
above 300 Hz falls below some threshold that is 020404 0 O
normally set about 3 dB above the background noise -

level. A vowel would include voiced segments longer A 0 01030501
than some duration with more energy at high 0 0.10.1050.8
frequencies than low frequencies. After a silence, a 02 0 0 0206

frame could be checked for brief energy burst in the
high range. If this burst were greater than a certain time
frame, this would fall into the fricative category. If it
were less than that range, it could be a stop burst or & should be noted that the probabilities of the outgoing
stop aspiration. A dip would then be an energy drop oftransitions from any state sum to 1; therefore, each row
more than about 60% relative to adjacent energy peak®f A must sum to 1. By making the transitions
Nasals are easily identified by mid-range dips. Dip nondeterministic, the model can handle deletions or
detectors usually smooth the energy parameters over @ petitions of states, which is a highly desirable
few frames before segmentation is attempted. capability. The system also has more than one starting
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_ N
State&pi(t) = Y ap(t-1)

i=1

pi(t) represents the ith element of the vector p(t). The
probabilities of all the states at time t can be shown by

p(t) = Ap(t-1) = A" *p(1)

Similarly,
N
p{z at time § = % by p(t)
i=1
= b'k p(t)

b’ A 'p(1)
Figure 2. HMM State Diagram.

Thus, the model of any word is the set of parameters
M={N,p(1),A,B}. To train a recognizer, a library of
state. p(1) represents the initial state probabilities, wherModels must be constructed. For each word, we have to
pi(1)=P{initial state ¢. find the number of states, the transition matrix A, the
initial-state probability p(1), and the output probability
For a finite set of M possible outputs;fzeach state g B. At recognition time, the system is given a sequence
has an M vector p(b;=P{output 7 | state=g}. The of observed outputs O where the unknown is identified
oUtouts of all the Istatlies can then be represented by (2 that word whose model has the highest probability of
NxI\F/)I matrix B whose ith row vector is b?T AlSO eacyh forming the observed outputs. For each model Mi, the
: ’ system determines P{O,¥| the probability that
row of B has to sum to 1 since the output probabilities y . oM P . y M
for each state must sum to 1. gave rise to O, and the unknown is identified as that
word j for which P{O|M} is the maximum.

This model also assumes a finite number of discrete )
outputs; therefore, in a continuous signal, e.g. a SpeecPhone models that are HMMs schooled on phonetically-
signal, a method has to be discovered that selectPalanced sentences allow for the word pronunciations in

reasonable prototype outputs forJzRabineret al. & conversation to become move distinct. Each

(1983) solved this issue through the use of Vectorconversation Is “me'a”gf‘?d through a hierarchi_cal-
guantization. Vector quantization automatically resultgd'@mmar speech recognition algorithm that utilizes

in a desirable clustering where each cluster is associatECOrr_ESpon_dlng conversation, V\_/ord, and phqne mod_els.
with an output z Rabineret al. also found that During this process, a word is characterized by its

. . . beginning time and duration. After all words have been
recognition performance with a left-to-right model, as characterized, they are combined to reproduce the
shown in Figure 3, was far superior to that of less-

. ; > original conversion. This produces a time-aligned
constrained forms. In a left-to-right model, an earlier - P g

tat tb ¢ dto b h X . ~_record. Instead of using two single-channel signals, a
state cannot be returned to because there IS a SiNg ¢, ypined-channel signal has proven to be more efficient
starting and a single ending state.

in time and error prevention in this time-alignment
process. Because empty portions transpire in a signal
when a conversation is analyzed, the frequency of errors
entering g from g; is equal to the probablity of having gg(;:{)sinn;%r_ecwat:re]eslmsgile-channel s!gnal. Using _the
) ) ) ) gnals to align the entire
been in q at time (t-1), times the probablity of ,nyersation requires an effective way of manipulating
transition. To find the over-all probability of being if g  the simultaneous speech. For example, when two people
we sum these products over all possible previousare engaged in a conversation, words for the first

With the probabilities, a discrete-time, discrete-state
Markov process exists. At any time t, the probability of
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and learn which is extremely useful in processing and
recognizing speech. ANNSs also tend to be more robust

and fault tolerant.
. . 5. ALGORITHMS

ELOLOLOO
A

5.1. Class Structure

A key component in the development of the algorithms

is the circular class structure for real time endpoint

Figure 3. Left-to-Right HMM. detections. Virtual functions using the C++ language are
used to develop a set of standard calls for opening files,
reading parameters and detecting endpoints. This class

speaker or the second speaker are aligned, but not fchas sub-classes that are implementations of the different

both. The recognizer has to decide which of the twoalgorithms to be compared. A diagram of the class

paths will align the best and selects that path. Onestructure is shown in the figure below. These virtual

drawback to this approach is that only data from onefunctions will allow the user to switch between

speaker is realized during simultaneous speech, bualgorithms without recompiling the code. A circular

simultaneous speech is normally very brief whenever itbuffer allows for real-time processing.

occurs. This method does not prove to be extremely ag

in enabling the alignment procedure to decipher5.2. Simple Energy

simultaneous speech.

The first endpoint detection algorithm tested is the

4. ARTIFICIAL NEURAL NETWORKS simple energy calculation. This code is a real-time
implementation of the ISIP energy based algorithm.

One of the new, emerging fields in computing Parenthesis Equation
technology as it applies to speech recognition is in the y(n) = x(n) —ax(n-1)
area of artificial neural networks. Artificial Neural
Networks is the youngest and least well understood 0 o - preemphasis factor
the recognition technologies. )

Energy Equation:
The ANN is based on the idea that complex . )
“computing” operations can be implemented by the = 0= 2y 2 20
massive integration of computing components. Eact snerey EN[ZX " N[ZX(n) ]}D
component performs an elementary computation. Ir
these components, memories are stored, computations
are performed, and relations formed through patterns o
activity of these components. begln end
The ANN contribution to HMMs and the Viterbi search !
is mainly to serve as an alternative computing structure |
for carrying out the necessary mathematical operations |
The development of more compact and efficient |
hardware for real-time implementation is a key
advantage. The ANN method also enhances future
computing tasks by incorporating context or by learning
which features are most effective. “Back-end” ANNs

can be used to refine the recognition scores and aid iFjgure 4. Energy level of the digit “nine”.
the improvement of performance.

ANN solutions can eventually add massively parallel
computing and alternative methods for adaptation to the
techniques that speech researchers use. ANNs can ad:
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(__Signal_Detecior ) | Protected ]

J 1

SignaI_Betector_Base *

| Public I I Private |
| I
Lo!ad ro- Pr!nt Procless -1 Misé. éet_lmp_Name ‘
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*I [ | | Algorithm Specific Functions
Load Print Process Misc. g P

Figure 5. Class Structure Flow Chart.

broadband signals. Thus, the zero crossing rate is less
. accurate. Also, zero crossing rate is not as accurate with
begm end a low signal to noise ratio. Since noise and interference
will corrupt the signal, it is first smoothed to eliminate
multiple zero crossings.

Parenthesis Equation
y(n) = x(n)—ax(n-1)

o - preemphasis factor

%[ Isgnix(n)] - sgnix(m—1)]]w(n—m)
Figure 6. Energy level of the digit “six”.

Zero-Crossing Rate:

sgh = 1 x(n) = pzcthresh

5.3. Energy and Zero Crossings sgn = -1 x(n) < nzcthresh
_ 1
The next algorithm developed is using zero crossings w(n) = (2N) O<n<N-1

The zero crossing rate is generally considered to be «
crude measure of the frequency content of speech. Thw(n) = 0 otherwise
average zero crossing rate is a good frequency estimate
on narrowband signals. However, speech signals are
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ETL: Lower Energy Threshold |
ETU: Upper Energy Threshold
nl, n2: Endpoints

Figure *. Flowchart for Algorithms.

0.1. Public Domain Code (Bruce Lowerre): The circular buffer has to be large enough to hold the

maximum utterance length. The buffer along with the
The public domain code was written by Bruce Lowerre real-time endpointer allows the starting silence before
of Carnegie Mellon University. His C++ based the first utterance to be thrown away. As the start of the
endpointer has evolved from his twenty yearsutterance is detected in real time, the utterance is
experience Workig with live input Speech Signa|3_ ThebUﬁeI’ed until the end is found. Four additional shorts
algorithm runs in real time and uses RMS energy andre allocated along with the buffer length in order to
zero crossing calculations to achieve the endpointingmake room for the start and end markers. The circular
Because the exact start and end of live input is unkownbuffer routine assumes that only one module is writing
the algorithm implements a circular buffer. The circular to the buffer and only one module is reading from the
buffer a|ong with the heart of the program, the buffer. The four data pointers keep track of where data
endpointer, are both implemented as class structures. samples are to be written and read.
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The read pointer points to the next sample to be read andith the other alorithms. Instead, the Lowerre code was
the write pointer points to the next sample to be written.ran separately with its corresponding parameters set
Neither is allowed to over run the other. Two special equal to those in the parameter list of the class structure.
pointers, keeper and eod, ae used by the writithg moduldBecause of the nature of the Lowerre code, maxipause
to mark the start and end of the utterance. In theory, thewas the only parameter equated. In order to compare the
endpointer will run in real-time. The utterance is read Lowerre code with the others, his algorithm was forced
and buffered while the end of the utterance is found in to detect multiple utterances. In doing so, maxipause
less than real time. was equivalent to the minimum utterance separation
parameter in the parameter file. Recall that when the
The endpointer class structure determines the start andsilence count after the end of an utterance exceeds
end of an utterance. It is written to run in real-time with maxipause, “end of utterance” is declared. The same
the live input signal. In doing so, the endpointer has to holds true here. Within a multiple utterance file, when
guess to the possible start and end of an utterance. Sinddne minumum utterance separation is greater than
these guesses can be incorrect, the endpinter may realizraxipause, and the silence count exceeds maxipause,
that it has made a mistake. In this cas, special framehe endpointer declares “end of utterance” and writesthe
labels, EP_RESET and EP_NOTEND, are used tcendpoints. Before any modifications, the endpointer’s
correct a false start and a false end. Frame labels guidprocessing flag would be set to FALSE and processing
the operation of the endpointer. RMS energywould cease. However, for multiple detection, the flag is
calculations and zero crossing counts are used tget to TRUE and processing continues in the same
processs each frame. After the start of the signal isnanner the first utterance was detected. One can
found, the search for the end begins and continues untiVisualize the multiple utterance file being separated into
the parameter, maxipause (end of utterance silence) islocks of single utterances. The Lowerre code performs
exceeded. For non-real time, the search may end for thi¢ natural functions on each block.
previous condition or until the end of file is reached. For
either case, the EP_ENDOFUTT label is returned , andThe energy and zero crossing thresholds were kept
the last possible guess to the end of the utteracneonstant. They were raised, however, to prevent the
(EP_MAYBEEND frame) is taken as the end time. code from detecting interword blips. Since the program
When reading a data file, if ever the last needed to generate an endpoint file with the starting and
EP_MAYBEEND label was cancelled by a ending times of each utterance, the beginning times
EP_NOTEND label, then the endpointer returns “end of were equated to the first EP_NOTENDs of each block.
utterance not found”. Last, there must be sufficient startThe begin time for the very first utterance was equatedto
silence in order for the endpointer to start processingthe start frame of the signal. The ending times were
This is so the first few frames maybe used to calculate equated to the last EP_MAYBEENDSs of each block.
the background noise level.
. _ _ _ 6. The Database
When either threshold is exceeded for six consecutive
frames, the start of utterance is declared. From there,
anytime either the energy or the zero crossing coun
goes below its threshold, that particular frame is labelled
as a possible end (EP_MAYBEEND). However, if at
anytime after the guess either threshold was exceeded

the last EP_MAYBEEND was cancelled bit inteqers. Two sets of micronhones and pre-a
(EP_NOTENDreturned). The parameter, maxipause_ - €9ers. TWo SEts o7 microphones and pre-amps.
ere used in the recording of the data as described in

defines the maximum amount of time a speaker coulc%abIe 1
pause before the endpointer stopped processing an :
returned the endpoints. This holds true also for silenc
found at the end of a speech file.

he training database for the algorithms was recorded in
he ISIP Demo Room under typical office environment
conditions (no special care was taken to keep the noise
level of the ambient environment low). The data was
recorded as two-channel 16 kHz data and stored as 16

“he corpus is composed of three male and three female
speakers with unique voice characteristics. Table2
depicts the recording set each speaker used. The use of

Bruce Lowerre wrote his endpointer to detect ON€ jitferent recording sets is of importance because one
utterance at a time. The code is maximized for single 9 P

channel, 8K Hz data. His data files consist of 8 bit, 8k P1€C€ Of equipment does not have the same set of
Hz a-law data: 8 bit, 8K Hz mu-law data: and 16 bit characteristics such as gain or resolution as the other

linear data which are byte swapped. He indicates tha?irnilar piece of equipment.

.raw files renamed with a .16l extension would not be
byte swapped. Rather than rename the .raw files in th
project database, the swap procedure for .raw files wa
commented out.

o fully test the enpoint detection software, words that
end on differned sounds, pitches, or frequencies were
selected.

%ach word spoken in the database was carefully chosen.

The algorithm was not integrated into the class structure
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Utterance Type
Isolated Digits
SET Q) (2) Teens
microphone Audio Technicg  Radio Shack Multi-syllable
AT9100 33-2001A Digit Strings
unidirectional omnidirectional —
dynamic dynamic 4 Long Digit
Strings
pre-amp Teac Cassettg Radio Shack
Tape Deck 15-961 5 Phrases
\Adﬁﬂci))l(pe\l:dlo 6 Sentences
7 Spontaneous
Table 1. Recording Equipment Sets. Speech
Table3. Utterance Type.
« Isolated digits spoken are as follows:
Speaker Gender Recording Set “;ero”_, ‘one”, _“tWOH_' “three”, “four”,
“f've”,“SlX”,“SeVen”,“elght”,“n'ne”, and "Oh"”.
spk_f01 female AT9100
spk_f02 temale RS 33-2001A « Teens spoken are as follows:
spk_fo3 female RS 33-2001A “thirteen”, “fourteen”, “fifteen”, “sixteen”, “seventeen”,
“eighteen”, and “nineteen”.
spk_mO01 male AT9100
spk_mo2 male AT9100 « Multi-syllabi digit strings spoken are as follows:
spk_m03 male RS 33-2001A “twenty-seven”, “forty-four”, “sixty-five”, “seventy-

seven”, and “ninety-nine”.

Table 2. Use of Recording Sets. « Long digit strings spoken are as follows:

“one million two hundred and thirty-six”, “three hundred
thousand one hundred and eighty-eight”, and “thirteen
million four hundred thousand three hundred and sixty-
one”.

The filename convention for the data storage is as
follows:

spk_f01/spk_f01_05.raw « Phrases spoken are as follows:

“f01” denotes f | k ber 1; D . .
enotes female speaker number “flexibility in a job applicant is important”,“the 1996

edition of the Far Side calendar”, “the ghost relinquished
her multitude of tricks”, “high definition television”, and
“Webster’s tenth annual unabridged dictionary”.

“05” denotes utterance number 5;
“.raw” denotes the binary speech data.

Table 3 contains the information that was spoken in eacr* Sentences spoken are as follows:

respective utterance type. )
“We hold these truths to be self-evident, that all men are

created equal, “that among these rights are life, liberty,
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and the pursuit of happiness”, and “it is the right of high quality digital audio tape deck.

people to alter or to abolish it, and to institute new

government, laying its foundation on such principles  The individual constructing the database was allowed to

and organizing its powers”. adjust gain, but not any other audio parameter, in
playing the data.

o Spontaneous speech spoken was a reply to the

statement: 5.7. Data Collection

“Please tell me what you like and dislike about your To collect the data, the researcher recruited one speaker
courses/job this semester.” Each utterance isat a time. Several ISIP tools were employed to record
approximately five sentences long. and play the data. Once the command to record the data
was issued to the machine, the researcher prompted the
Each speaker spoke the same utterances, but he or sBgeaker to utter the utterances of the desired utterance
was allowed to pick the order. The total training type. For example, if the female speaker one was asked

database consisted of 42 different files. to speak the isolated digits, the information for those
_ _ utterances was stored in the file “spk_f01_0l1.raw”.
5.4. Subject Selection Once the speaker’s utterances were recorded, the

utterances were checked by playing them and
Of course, such evaluations depend heavily on thedentifying that all utterances for that respective filetype
diligence of the subjects. Subjects with the following were present. After all seven utterance types for a
characteristics were selected basedapriori  speaker were recorded and stored in a directory, the data
knowledge of their capabilities: was converted from two-channel data to single-channel
) N o ~ data using a simple C program to down-sample the data.
* American citizens for whom English is their first The data was converted to single-channel because two-
and primary language; channel data occupies more space on the system and one
] ) channel is sufficient to analyze the data.
* normal speech (ho known speech impediments or

other abnormalities); 5.8. Handmarking the Data

¢ college-educated adults (a mixture of under-

Once all data was collected, each data file was
graduate students and faculty);

handmarked. Each data file was viewed using the ISIP
tool plot_signal. Once the utterance was displayed on
the screen, the endpoints were marked. To decipher
where to precisely mark the endpoints, a significant
change in energy was a key factor. Also, a recognizable
gap space existed between the utterances which aided in

. i ; .~ ~the handmarking of the endpoints. The endpoints for

environment ambient environment for the evaluation. : . . . .
. . . ach file were stored in a file with the extension
The room used during the evaluation was a termlnal“9 ”
: X : .endpts”. For example,

room with a fairly low background noise level
(approx. 50 dBA). This room contained a number of
X terminals and small Unix workstations, and was fairly
quiet, but during the period of the collection of the
database, the room was lightly populated, the door to the

« distinct voice characteristics.
5.5. The Ambient Environment

All attempts were made to provide a normal, office

spk_f0l/spk_f01 05.endpts

“f01” denotes female speaker number 1;

room was left open, and hence the room was relatively “05” denotes utterance number 5:
noisy.(but did contain several subjects performing the
experiment as well as an occasional group of students “ endpts” denotes the endpoint file.

working at the terminals).

In the endpt file, the endpoint information was stored as
5.6. The D/A Audio Interface follows:

The D/A audio interface employed in this project was 0 beg_time = 1.705 secs end_time = 1.915 secs

the SONY Super Bit Mapping, High Density Linear A/
D D/A Converter 60ES. This D/A audio interface is a 1 beg_time = 2.533 secs end_time = 2.763 secs
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The ‘0’ or the ‘1’ in front of beg_time denotes utterance The important part of evaluation was setting of

number. parameters for the different speech types. The results of
the evaluation are biased by these settings. After a lot of

Figure 4 displays the signal as viewed with plot_signal.iterations we decided of the parameter settings which

Figure 5 shows the handmarked endpoints using thigive us the best performance of all the algorithms.

ISIP tool plot_endpoints. Plot_endpoints references

both the .raw file and the .endpts file. In Figure 5, 7. SUMMARY

accurate endpoints of each utterance are clearly marke:

When handmarked incorrectly, plot_endpoints returns

Figure 6. After the third utterance in Figure 6, an error

has been detected and is easily seen.

A major cause of errors in isolated word speech

recognition systems is the inaccurate detection of the

beginning and ends of speech utterances. It is important

in many applications, such as speech recognition over

6. EVALUATION telephone lines, where the SNR is very low, to have a

robust endpoint detection algorithm. Such algorithms

An integral part of any software development is still have application in a wide variety of areas including

evaluation and benchmarking. One of the challenges ilspeaker dependent speech recognition. Characteristics

benchmarking endpoint detection algorithms is thatof human speech such as low energy fricatives and

there are no hard rules for determining the endpointsplosives at the end of utterances make endpoint

Another problem is that the algorithm may not detectdetection difficult.

the exact number of utterances that are listed in the

hand-marked database. Many algorithms have been proposed for endpoint
detection. Features such as energy [1-3], zero crossing

To evaluate the algorithms under development, arrate [1-4], and periodicity [4], have been used. These

objective scoring function was developed. This functionalgorithms are straightforward to implement when

determines and records the accuracy of the endpoints.

One file per speaker was scored during a single pass of

the function. The scoring function compared the

handmarked data with the output of the algorithms.

For error difference between the handmarked data an
the output of the algorithms in the range (-0.05,0.05) n
penalty was assigned. If the difference was betwegq

[0.05 ,0.5] or [-0.05,-0.5], a penalty that was linearly] Algorithm Bruce Lowerre Code
scaled was assigned. If the difference in the two valugr

was greater than 0.5 or -0.5, a penalty of 1 was issuef Speakers sub del ins Totitl
Once all penalties were calculated, they were summg: |
to a grand total. Penalties were further separated asft Female01| .284 4 3 7.28F
whether the penalty was an insertion or a deletion. F

this application, a deletion denotes that an utterand Fémale02 | .231 4 3 7-23I]-

endpoint was not detected by the algorithm and
insertion implies that the algorithm detected an Female03| .151 3 2 .15

additional endpoint in the file.

Avg Fem | .222 | 3.67| 2.63] 6.56p
MaleO1 262 | 6 1 7.263
Male02 261 5 1 6.261]

1

—\“ - J( - —7.— Male03 | .301| 10 | 3 13.3(
1 1

05 005 | 005 05 AvgMale | 274 | 7 | 167] 8944

Table 6. Bruce Lowerre Code Score.
Figure 7. Scoring function.
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Algorithm Simple Energy Algorithm | Energy & Zero Crossing Raje
Speakers] sub del ins Tothl Speakers sub de ing  Totyy
FemaleO1| .17 1| O 1.17 FemaleO1| .16 1 0 1.16
FemaleO2| .18| O 1 1.18 Female02| .19 0 1 1.19
FemaleO3| .22 1| 0| 1.22 FemaleO3| .21 1 0 1.21
AvgFem | .19 | 2 1 1.19 Avg Fem | .19 2 1 1.18
MaleO1 321110 1.32 MaleO1 31 1 0 1.31
Male02 331 0] 1] 133 Male02 .34 0 1 1.34
Male03 A8 | 0| 0| 0.18 Male03 .18 0 0 0.18
AvgMale | .28 | 1 1 0.94 Avg Male | .28 1 1 0.94
Utt Type Utt Type
Isolated |0.12| 0 | O | 0.11 Isolated | 0.12 | O 0 0.12
Digits Digits
Teens 019 2| 1| 3.10 Teens 0.06 | 2 1 3.06
Multi- 0.12/ 0 | 0 | 0.12 Multi- 011 | O 0 0.11
Syl Dig Syl Dig
Long Dig | 0.27{ 1 | O | 1.17 Long Dig | 0.15 | 1 0 1.15
ShortSen|] 0.24 0| 0| 0.24 Short Sen|] 0.28 | O 0 0.28
LongSen| 0.20 O| O| 0.20 LongSen| 032 | O 0 0.32
SponSpc| 0.73 O 0 0.73| SponSpc| 0.71| O 0 0.71
Table 4. Energy Score. Table 5. Energy and Zero Crossing Score.

compared to the more recently proposed algorithms  performs the initial segmentation of the speech signal,
based on Hidden Markov Models (HMMs) [5] and and passes it to the NN for additional processing.
Neural Networks (NNs) [6]. The latter are more robust

and accurate, but are very complex to initialize, and areThe motivation for developing our algorithm resulted
usually highly channel dependent. In fact, when using from the need for such an algorithm in a project

NNs for speech recognition, a conventional algorithm involving the creation of a large Japanese language
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speech database. This database contains digits, isolatatie algorithm could optimally perform.
and four-digit sequences, monosyllables, control words,

and several hundred Japanese city names. The data
originally were stored on digital audio tapes, and are

Minimum Minimum

being automatically processed for use in speech Type of Utterance | Utterance

recognition technology development by the endpoint utterance | Separation Duration

detection algorithms described here. (secs_) (secs_)

A comprehensive comparison of the several popular Isolated Digits .20 .06

algorithms will be presented. The primary aim of our

implementation is to provide the user with an Teens 40 10

assortment of algorithms from a common software Multi Syllable 30 10

interface. Our implementation makes extensive use of Digits

object-oriented concepts, data-driven programming —

techniques, and a novel virtual class methodology. Long Digit 1.0 10
Strings

We have created a reference database for our project. |t g,,ort Sentences 90 10

is composed of speech data recorded in a moderately
noisy environment using a 16 kHz sample frequency. | Long Sentencesg .90 .10
Isolated words, sentences, and paragraphs are used fgr
the prompting text material. The database contains threg¢
male speakers and three female speakers. Reference
endpoints were created by hand-marking the data usin
visual and auditory tools. An objective evaluation
paradigm was developed to support optimization of
each algorithm on the reference database.

Spontaneous 3.0 .10
Speech

q‘ables 4, 5 and 6 show the results of the evaluation of
the energy algorithm, the zero crossing & energy
algorithm and the public domain code. Some conclusive
results can be seen from these tables. The energy and
) . ) ) ) ) . zero crossing algorithms perform equally well in most
The implementation described in this paper is availableof the cases. The advantage of using zerocrossings can
as public domain software via anonymous ftp at be seen more clearly when dealing with speech data
isip.msstate.edu. Supporting tools, such as an endpointyith a low SNR like that recorded from a telephone. We
plotter, signal plotter, and signal manipulation programs have done our experiments with data having an SNR in
are also available. the range of 50dB-60dB. This could be the reason why

the performances of the two algorithms was identical.

The Zero crossing algorithm does, however, perform

8. RESULTS well when dealing with spontaneous speech.

The parameters which effect the performance ofThe performance analysis results of the Bruce Lowerre
algorithms the most are thminimum utterance  code are misleading. The code was originally written to
separationand theminimum utterance duration. The  detect endpoints of a single utterance per file. The code
minimum utterance separation is the minimum gapwas changed so as to detect multiple utterances per file.
between speech units we expect the algorithm torhe parameters for the code are hard coded and hence
segment. If we are dealing with short sentences the unitthe performance was bad. Though the score for
of speech are each of the short sentences and thsubstitutions was close to that of other algorithms, the
minimum utterance separation will be about 1 sec.number of deletions and additions was far too high. The
which is nominal by any speaking standards. Theperformance of the algorithms differentiating on the sex
Minimum utterance duration is the minimum duration of the speakers is identical, though the performance on
of the speech unit we expect the algorithms to segmenspeech data of females is better than that for male
the input speech data into. For example, if we arespeakers.

dealing with long digit strings the minimum utterance

duration ranges from 1 to 2 secs. depending on the 9. CONCLUSIONS

application. These settings affect the performance of the

algorithms in that , if these parameters are not correctly

set there will be more insertions and deletions than whatn this paper, a comparison of three algorithms for
speech endpoint detection has been done. The

performance evaluation shows that the energy and zero
crossing algorithm performs marginally better than the
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energy algorithm. The Bruce Lowerre code is not very  Morgan and C.L. Scaffold, Neural Networks
suitable for processing of multiple-utterance-per-file  and Speech Processing, Keller Academic Publish-
sort of data. The results encourage us to use the energy ers, Narrowly, Massachusetts, U.S.A., 1991.

and zero crossing algorithm as an automatic word da’@ Noboru Sugamura "Continuous Speech Recognition
trimming tool. In the near future we propose to add new" - ’

algorithms to the existing structure of the code which ~ USing Large Vocabulary Word Spotting and CV Syl-
use features like spectral slope and periodicity. We plan  1able Spotting,"Proc. ICASSP 90yol. 1 pp. 121-
to evaluate the performance of the algorithms using data  124.

with low SNR , especially telephone data so that theg. Robert J. McAulay and Thomas F. Quatieri,"Pitch

code can be made the front end of an automatic  Estimation and \oicing Detection based on a Sinu-

telephone data collection system. Tests have to  ¢qi4q) Speech Model,Proc. ICASSP 90yol.1,
performed on data from a larger database than the one pp.249-252

we used. The software will be available on public i o

domain after fine refinements to the algorithms are9. J.G.Wilpon, D.M.Demarco,R.P.Mikkilineni,"Isolated
made. The supporting software tools like the signal  Word Recognition Over the DDD Telephone Net-
plotter, the endpoint plotter etc. will also be made  work - Results of Two Extensive Field Studies,”
available. Proc. ICASSP 88y0l. 1 ,pp.55-58.

10. P. Haffner, M. Franzini and A.Waibel,” Integrating
12. ACKNOWLEDGEMENTS Time Allignment and Neural Networks for High
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The authors are grateful to Dr. Joseph Picone for all the Proc. ICASSP 9vol.1 ,pp. 105 -108.

support he has given towards this project and also .

supplying us with software tools to perform this project. 11. P. Ramesh, S.Katagiri and C-H lee,” A New Con-
We would also like to thank Dr. William Ebel for his nected Word Recognition Algorithm Based on
suggestions . We would like to acknowledge the work  HMM/LVQ Segmentation and LVQ Classification,”
done by Mr. Paul Kornman towards this project. He was  Proc. ICASSP 9¢pl. 1 ,pp. 113-116.
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