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Figure 1. Speech Waveform.
ABSTRACT

Accurate endpoint detection is ia necessary capabilit
for efficient construction of speech databases based o
field recordings. The labor required to prepare a
database often exceeds the amount of speech data
two to three orders of magnitude. The associated co
prevents many historical databases currently stored o
analog or digital tape from being made accessible, in a
useful form, to speech researchers. More recen
algorithms based on Hidden Markov Models (HMMs)
and Neural Networks (NNs) are not always an efficient
method of segmenting such data, since they ar
complex and highly channel dependent. In this pape
we describe the implementation of a family of endpoin
detection algorithms which uses signal features base
on energy and zero-crossing rate. We also present
detailed comparison of these widely used algorithm
using an objective evaluation paradigm we have
developed. A reference speech database has be
created as support for this evaluation methodology
Our implementation makes extensive use of objec
oriented concepts and data-driven programming
techniques. A uni form user- inter face for al l
algorithms is provided that is based on a novel virtua
class methodology.

1. INTRODUCTION

A major source of errors in speech recognition system
is the incorrect selection of the beginning and ending
speech utterances. A fundamental aspect for the
algorithms is that speech segments must be reliab
separated from non-speech segments. Because
endeavors to adjust these incorrect beginning a
ending points do not always succeed, robust word beg
and end point detection under unfavorable conditio
still remains an unsolved issue because speech endp
detection is trivial when used under ideal conditions;
simple energy calculation can be used. In recent studi
it was shown that in a real-world evaluation of a speec
system which utilizes an isolated-word recognizer mo
than 50% of the error rate was credited to the endpo
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detector. [14] According to Savoji, [35] the essentia
characteristics of an ideal endpoint detector ar
reliability, robustness, accuracy, adaptation, simplicit
real-time processing, and no prior knowledge of th
noise. Of all of these characteristics, robustness
unfavorable conditions has been the most difficult t
accomplish.

Another problem in speech recognition is the hig
computational load on the system. With the detection
inaccurate begin and end points, wasteful computatio
will be made. In order to operate in real-time, speec
detection algorithms must be efficient both in terms o
the speed of the computat ion and the memo
consumption. Also, the input signal must be buffere
since the exact start and end of live input is unknow
This system of buffering allows the real-time endpointe
to run in parallel with the live input.

Several methods have been used for accurate endp
detection. Among these methods are zero-crossi
rate[3], energy distribution [2], spectral information
periodicity measures [4], and hidden Markov mode
(HMM) [5].

2. SEGMENTATION

In endpoint detection, one of the most difficult aspects
Fall’95
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segmentation of utterances. Manual segmentation is an
option, but there are several drawbacks. The first
drawback is that the process is laborious and tedious. It
requi res extensive l is tening and spectrogram
interpretations. Also, due to the subjective nature of a
manual segmentation, inconsistencies from trial to trial,
even if the same utterance is being segmented, also
hinder the process. Throughout the past decade, several
methods for automatic segmentation have been
proposed. Finally, van Hamert[37] described an
automatic segmentation method that combines explicit
information about the speech with the frame-to-frame
spectral change. The frame-to-frame spectral change is
in part characterized by a spectral correlation function.

In many commercial recognizers, word units are used
and speakers are instructed to pause briefly after each
word which leads to isolated word recognition. A
silence 150 and 250 ms between words is sufficient
enough so that the utterance is not confused with long
plosives and allows the recognizer to compare words
rather than sentences. In recent years, recognizers have
been constructed to reach a capability of recognizing
connected-word speech. Connected-word speech
implies that there are no pauses required, but each word
must be pronounced clearly. Because of the unnatural
speaking constraints of isolated words, many
applications of connected-word recognition can be
considered efficient as in postal codes, telephone
numbers, and spelled-out words. Connected-word
recognit ion is simpler than continuous-speech
recogni t ion because clear pronunciat ions and
pronounced stressing of each utterance help minimize
the effects of coarticulation across word boundaries.

Typical endpoint detectors depend on amplitude
functions to separate nonspeech from speech. One
method for finding endpoints locates energy pulses
corresponding to words or syllables and comparing the
energy in decibels against four thresholds k1, k2, k3,
and k4. [4,32] When the energy exceeds the lowest
threshold, k1,a pulse is considered to be detected
starting at A1, unless the duration A2-A1 exceeds 75
ms, A2 is then seen as the start time and the signal
before A2 is considered breath noise). The end time is
s imi lar ly determined by means of k2 and k3
(5dB).Successive energy pulses may be considered part
of one unit if the gap time between pulses is less than
150 ms, the longest duration allowed of a typical stop
closure.

For those applications where the speech bandwidth
exceeds 3 kHz, sufficient spectral information at high
frequencies is present to refine energy-determined

boundaries with simple spectral measures [1]. The ze
crossing rate provides a simple spectral measure of
frequency in the middle of the signal bandwidth. Fo
other speech obstruents, the zero-crossing rate, if
voicebar dominates, is either low or high. The zero
crossing rate is high when weak fricatives are prese
Weak fr icat ives also cause the most detect io
difficulties.

2.1. Segmentation of Connected-Words

Defining boundaries within speech segments
extremely difficult. Most recognizers erroneously mak
the assumption that speech is linear and invariant. T
use of isolated words avoids accounting for the effec
of coarticulation that obviate these assumption
Coarticulation cannot be ignored when continuou
speech is used. Segmenting connected-word speech
words is feasible only when each word is clearly spoke
and the vocabulary is very limited.

One approach for continuous word recognition that c
be applied to words of arbitrary length involves
speaker-independent, statist ical approach. T
segmentation process is followed by isolated wo
recognition on the separated words.

2.2. Segmentation of Continuous Speech

The convex hull method [36] is an easier segmentati
approach that is not hindered by connected-wo
speech. Since there are few acoustic cues to distingu
word and syllable boundaries without feedback fro
higher levels, the boundaries obtained with th
vocabulary-independent procedure are for syllables, n
words. It should be noted that the significance of a
energy dip for segmentation depends on the energy
the surrounding segments. After speech segme
between pauses have been isolated, a convex hul
determined from the speech loudness function,
perceptually weighted energy vs. time plot that i
lowpassed to eliminate pitch period effects. A conve
hull exhibits minimal magnitude, monotonically
nondecreas ing un t i l t he loudness peak an
monotonically nonincreasing thereafter. The depth
each loudness valley under the hull indicated th
possibility that a boundary is present. If the maximum
depth exceed 2 dB, a boundary is declared and t
process is repeated with new hulls on each side of t
boundary. Because a loudness change is more noticea
at syllable onset than offset, syllable-initial boundarie
are more accurately located than syllable-final ones.
MS State DSP Conference Fall’95
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2.3. Segmentation of Continuous Speech into Phones

One of the most difficult problems in continuous speech
recognition is reliably dividing continuous speech into
phones. No specific approach exists. Typical speech
parameters and features are useful for labeling the
segments. The sequence of segmenting and labeling is
difficult subject. Because phone segments contain
several frames and labeling a phone often requires
examination of the spectral behavior of the course of the
phone’s frames, it is more efficient to segment first. Still,
some systems label each frame independently before
segmentation despite the higher computational load
involved. Usually, Continuous Speech Recognition
attempts a coarse segmentation first and then refines the
boundary placements during the labeling phase. The
initial segmentation goes beyond the syllable division
described above to smaller units such as fricatives, stops
and vowels. These units can then be more readily
located with robust and simple tests involving bandpass
energies, zero-crossing rates, and durations. Dynamic
programming is used to overcome errors by aligning
phonetic labels with estimated boundaries.

Even though continuous speech recognition systems use
formants for labeling, a coarse segmentation can be
obtained using more reliable features. In this case, the
spectrum is typically divided into four regions. Some of
these regions roughly correspond to formant ranges.
However, errors such as missed formants are avoided by
using broad energy measures in each frequency range.
For example, there will typically be a voice range of
about 80 to 250 Hz, a low range of about 300-1000 Hz,
a middle range of 700-2500 Hz, and a high range of
above 2500 Hz.

Some continuous speech recognition systems also use a
a four category initial segmentation for vowels, silences,
fricatives and dips. Silence can then be determined by
segments longer than a minimum duration whose energy
above 300 Hz falls below some threshold that is
normally set about 3 dB above the background noise
level. A vowel would include voiced segments longer
than some durat ion wi th more energy at high
frequencies than low frequencies. After a silence, a
frame could be checked for brief energy burst in the
high range. If this burst were greater than a certain time
frame, this would fall into the fricative category. If it
were less than that range, it could be a stop burst or a
stop aspiration. A dip would then be an energy drop of
more than about 60% relative to adjacent energy peaks.
Nasals are easily identified by mid-range dips. Dip
detectors usually smooth the energy parameters over a
few frames before segmentation is attempted.

3. HIDDEN MARKOV MODELS

Hidden Markov models are widely used as speech inp
unit models in speech recognition and util ize
stochastic model of speech production while offerin
performance comparable to time warping in sever
applications at a fraction of the computational cos
Training performed on a large speech databa
determines HMM parameters. The method of HMM
incorporates a system that exists in a finite number
varying states to model speech generation. Each vary
state can produce a finite number of outputs. In wo
generation, the system moves from one state to anot
while each state creates an output until the entire word
produced. Figure 2 illustrates this process. In the figu
states are represented by circles, and arrow repres
transitions between states. The transitions between
states and the outputs of each state are random wh
allows the model to handle subtle variations in timin
and pronunciation.

Each word is represented by a model of this kind. Th
only item a speech recognizer has to work with are th
outputs. The primary job of the recognizer is to decid
which model produced the desired output. The mod
itself is not visible to the recognizer. It is inferred from
the available data hence the wordhiddenin the name
hidden Markov model.

In transitions between states, the assumption is ma
that they happen at discrete times and that ea
transition from state qi to state qj has a probability
dependent only on state qi. In Figure 2, respective
probabilities are written by the arrow that represents t
transition. An NxN matrixA containing N states where
ai=P{transition from qi to qj} is shown below:.

It should be noted that the probabilities of the outgoin
transitions from any state sum to 1; therefore, each ro
of A must sum to 1. By making the transit ions
nondeterministic, the model can handle deletions
repetitions of states, which is a highly desirabl
capability. The system also has more than one start

A

0.3 0.5 0.1 0 0.1

0.2 0.4 0.4 0 0

0 0.1 0.3 0.5 0.1

0 0.1 0.1 0.5 0.3

0.2 0 0 0.2 0.6

=
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Figure 2. HMM State Diagram.
state. p(1) represents the initial state probabilities, whe
pi(1)=P{initial state qi}.

For a finite set of M possible outputs {zi}, each state qi
has an M vector bi (bij =P{output zj | state=qi}. The
outputs of all the states can then be represented by
NxM matrix B whose ith row vector is biT. Also, each
row of B has to sum to 1 since the output probabilitie
for each state must sum to 1.

This model also assumes a finite number of discre
outputs; therefore, in a continuous signal, e.g. a spee
signal, a method has to be discovered that sele
reasonable prototype outputs for {zi}. Rabineret al.

(1983) solved this issue through the use of vect
quantization. Vector quantization automatically resul
in a desirable clustering where each cluster is associa
with an output zi . Rabineret al. also found that
recognition performance with a left-to-right model, a
shown in Figure 3, was far superior to that of less
constrained forms. In a left-to-right model, an earlie
state cannot be returned to because there is a sin
starting and a single ending state.

With the probabilities, a discrete-time, discrete-sta
Markov process exists. At any time t, the probability o
entering qj from qi is equal to the probablity of having
been in qi at time (t-1), times the probablity of
transition. To find the over-all probability of being in qj,
we sum these products over all possible previo
MS State DSP Conference
re

the

s

te
ch

cts

or
ts
ted

s
-
r
gle

te
f

us

states:

pi(t) represents the ith element of the vector p(t). Th
probabilities of all the states at time t can be shown b

Similarly,

Thus, the model of any word is the set of paramete
M={N,p(1),A,B}. To train a recognizer, a library of
models must be constructed. For each word, we have
find the number of states, the transition matrix A, th
initial-state probability p(1), and the output probability
B. At recognition time, the system is given a sequen
of observed outputs O where the unknown is identifie
as that word whose model has the highest probability
forming the observed outputs. For each model Mi, th
system determines P{O,Mi}, the probability that Mi

gave rise to O, and the unknown is identified as th
word j for which P{O|Mj} is the maximum.

Phone models that are HMMs schooled on phonetical
balanced sentences allow for the word pronunciations
a conversat ion to become move dist inct. Eac
conversation is time-aligned through a hierarchica
grammar speech recognition algorithm that utilize
corresponding conversation, word, and phone mode
During this process, a word is characterized by i
beginning time and duration. After all words have bee
characterized, they are combined to reproduce t
original conversion. This produces a time-aligne
record. Instead of using two single-channel signals
combined-channel signal has proven to be more efficie
in time and error prevention in this time-alignmen
process. Because empty portions transpire in a sig
when a conversation is analyzed, the frequency of erro
occurs more in the single-channel signal. Using th
combined-channel s ignals to al ign the ent i r
conversation requires an effective way of manipulatin
the simultaneous speech. For example, when two peo
are engaged in a conversation, words for the fir

pi t( ) aij pi t 1–( )
i 1=

N

∑=

p t( ) Ap t 1–( ) A
t 1–

p 1( )= =

p zk at time t{ } bik pi t( )
i 1=

N

∑=

b=
T

k p t( )

b
T

k A
t 1–

p 1( )=
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Figure 3. Left-to-Right HMM.

Parenthesis Equation:
y n( ) x n( ) αx n 1–( )–=

α preemphasis factor–→

Energy Equation:

energy
1
N
---- x

2
n( ) 1

N
---- x n( )2∑[ ]–∑ 

 =

begin             end

Figure 4. Energy level of the digit “nine”.
speaker or the second speaker are aligned, but not
both. The recognizer has to decide which of the tw
paths will align the best and selects that path. On
drawback to this approach is that only data from on
speaker is realized during simultaneous speech, b
simultaneous speech is normally very brief whenever
occurs. This method does not prove to be extremely a
in enabling the alignment procedure to deciphe
simultaneous speech.

4. ARTIFICIAL NEURAL NETWORKS

One of the new, emerging fields in computing
technology as it applies to speech recognition is in t
area of artificial neural networks. Artificial Neural
Networks is the youngest and least well understood
the recognition technologies.

The ANN is based on the idea tha t comple
“computing” operations can be implemented by th
massive integration of computing components. Ea
component performs an elementary computation.
these components, memories are stored, computati
are performed, and relations formed through patterns
activity of these components.

The ANN contribution to HMMs and the Viterbi search
is mainly to serve as an alternative computing structu
for carrying out the necessary mathematical operatio
The development of more compact and efficien
hardware for real-time implementation is a ke
advantage. The ANN method also enhances futu
computing tasks by incorporating context or by learnin
which features are most effective. “Back-end” ANN
can be used to refine the recognition scores and aid
the improvement of performance.

ANN solutions can eventually add massively paralle
computing and alternative methods for adaptation to t
techniques that speech researchers use. ANNs can a
MS State DSP Conference
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and learn which is extremely useful in processing an
recognizing speech. ANNs also tend to be more robu
and fault tolerant.

5. ALGORITHMS

5.1. Class Structure

A key component in the development of the algorithm
is the circular class structure for real time endpoin
detections. Virtual functions using the C++ language a
used to develop a set of standard calls for opening file
reading parameters and detecting endpoints. This cl
has sub-classes that are implementations of the differ
algorithms to be compared. A diagram of the clas
structure is shown in the figure below. These virtua
functions will allow the user to switch between
algorithms without recompiling the code. A circula
buffer allows for real-time processing.

5.2. Simple Energy

The first endpoint detection algorithm tested is th
simple energy calculation. This code is a real-tim
implementation of the ISIP energy based algorithm.
Fall’95



The Speech Processing Group  Page 90

s.
a

he
ate
re

ess
ith
ce

   Signal_Detector    Protected

Signal_Detector_Base *

Public

 Load              Print           Process         Misc.

Public
        Print

        Load

Process

Misc.

  Signal_Detector_Base

  Signal_Detector_00

Public

 Load              Print           Process         Misc.

  Private

Algorithm Specific Functions

 Signal_Detector_01

Private

Get_Imp_Name
        COFN

Figure 5. Class Structure Flow Chart.

 begin                    end

Figure 6. Energy level of the digit “six”.

Parenthesis Equation:
y n( ) x n( ) αx n 1–( )–=

α preemphasis factor–→

[ ] x n( ) ] x m 1–( )[ ]sgn–[ ]w n m–( )sgn
N
∑

sgn 1= x n( ) pzcthresh≥

sgn 1–= x n( ) nzcthresh≤

w n( ) 1
2N( )

------------= 0 n N 1–≤ ≤

w n( ) 0= otherwise

Zero-Crossing Rate:
5.3. Energy and Zero Crossings

The next algorithm developed is using zero crossing
The zero crossing rate is generally considered to be
crude measure of the frequency content of speech. T
average zero crossing rate is a good frequency estim
on narrowband signals. However, speech signals a
MS State DSP Conference
broadband signals. Thus, the zero crossing rate is l
accurate. Also, zero crossing rate is not as accurate w
a low signal to noise ratio. Since noise and interferen
will corrupt the signal, it is first smoothed to eliminate
multiple zero crossings.
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    i = m

E(i) < ITL
  ?

E(i) > ITU
?

 i = i + 1

m = i + 1

 n1 = i

     i = m
?

n1 = n1 - 1

   DONE

 m = 1

m = m + 1

ETL: Lower Energy Threshold
ETU:  Upper Energy Threshold
n1, n2: Endpoints

Figure *. Flowchart for Algorithms.

0.1. Public Domain Code (Bruce Lowerre):

The public domain code was written by Bruce Lowerr
of Carnegie Mellon University. His C++ based
endpointer has evolved from his twenty year
experience workig with live input speech signals. Th
algorithm runs in real time and uses RMS energy an
zero crossing calculations to achieve the endpointin
Because the exact start and end of live input is unkow
the algorithm implements a circular buffer. The circula
buffer along with the heart of the program, th
endpointer, are both implemented  as class structures
The circular buffer has to be large enough to hold th
maximum utterance length. The buffer along with th
real-time endpointer allows the starting silence befo
the first utterance to be thrown away. As the start of th
utterance is detected in real time, the utterance
buffered until the end is found. Four additional shor
are allocated along with the buffer length in order t
make room for the start and end markers. The circu
buffer routine assumes that only one module is writin
to the buffer and only one module is reading from th
buffer.  The four data pointers keep track of where da
samples are to be written and read.

e
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d
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The read pointer points to the next sample to be read and
the write pointer points to the next sample to be written.
Neither is allowed to over run the other.  Two special
pointers, keeper and eod, ae used by the writitng module
to mark the start and end of the utterance. In theory, the
endpointer will run in real-time.  The utterance is read
and buffered while the end of the utterance is found in
less than real time.

The endpointer class structure determines the start and
end of an utterance. It is written to run in real-time with
the live input signal.  In doing so, the endpointer has to
guess to the possible start and end of an utterance. Since
these guesses can be incorrect, the endpinter may realize
that it has made a mistake. In this cas, special frame
labels, EP_RESET and EP_NOTEND, are used to
correct a false start and a false end.  Frame labels guide
the operat ion of the endpointer. RMS energy
calculations and zero crossing counts are used to
processs each frame. After the start of the signal is
found, the search for the end begins and continues until
the parameter, maxipause (end of utterance silence) is
exceeded. For non-real time, the search may end for the
previous condition or until the end of file is reached. For
either case, the EP_ENDOFUTT label is returned , and
the last possible guess to the end of the utteracne
(EP_MAYBEEND frame) is taken as the end time.
When read ing a da ta fi l e , i f ever the las t
EP_MAYBEEND labe l was cance l led by a
EP_NOTEND label, then the endpointer returns “end of
utterance not found”. Last, there must be sufficient start
silence in order for the endpointer to start processing.
This is so the first few frames maybe used to calculate
the background noise level.

When either threshold is exceeded for six consecutive
frames, the start of utterance is declared.  From there,
anytime either the energy or the zero crossing count
goes below its threshold, that particular frame is labelled
as a possible end (EP_MAYBEEND).  However, if at
anytime after the guess either threshold was exceeded,
the las t EP_MAYBEEND was cance l led
(EP_NOTENDreturned). The parameter, maxipause,
defines the maximum amount of time a speaker could
pause before the endpointer stopped processing and
returned the endpoints. This holds true also for silence
found at the end of a speech file.

Bruce Lowerre wrote his endpointer to detect one
utterance at a time. The code is maximized for single
channel, 8K Hz data. His data files consist of 8 bit, 8K
Hz a-law data; 8 bit, 8K Hz mu-law data; and 16 bit
linear data which are byte swapped. He indicates that
.raw files renamed with a .16l extension would not be
byte swapped. Rather than rename the .raw files in the
project database, the swap procedure for .raw files was
commented out.

The algorithm was not integrated into the class structure

with the other alorithms. Instead, the Lowerre code was
ran separately with its corresponding parameters set
equal to those in the parameter list of the class structure.
Because of the nature of the Lowerre code, maxipause
was the only parameter equated. In order to compare the
Lowerre code with the others, his algorithm was forced
to detect multiple utterances. In doing so, maxipause
was equivalent to the minimum utterance separation
parameter in the parameter file. Recall that when the
silence count after the end of an utterance exceeds
maxipause, “end of utterance” is declared. The same
holds true here. Within a multiple utterance file, when
the minumum utterance separation is greater than
maxipause, and the silence count exceeds maxipause,
the endpointer declares “end of utterance” and writesthe
endpoints. Before any modifications, the endpointer’s
processing flag would be set to FALSE and processing
would cease. However, for multiple detection, the flag is
set to TRUE and processing continues in the same
manner the first utterance was detected. One can
visualize the multiple utterance file being separated into
blocks of single utterances. The Lowerre code performs
it natural functions on each block.

The energy and zero crossing thresholds were kept
constant. They were raised, however, to prevent the
code from detecting interword blips. Since the program
needed to generate an endpoint file with the starting and
ending times of each utterance, the beginning times
were equated to the first EP_NOTENDs of each block.
The begin time for the very first utterance was equatedto
the start frame of the signal. The ending times were
equated to the last EP_MAYBEENDs of each block.

6. The Database

The training database for the algorithms was recorded in
the ISIP Demo Room under typical office environment
conditions (no special care was taken to keep the noise
level of the ambient environment low). The data was
recorded as two-channel 16 kHz data and stored as 16
bit integers. Two sets of microphones and pre-amps
were used in the recording of the data as described in
Table 1.

The corpus is composed of three male and three female
speakers with unique voice characteristics. Table2
depicts the recording set each speaker used. The use of
different recording sets is of importance because one
piece of equipment does not have the same set of
characteristics such as gain or resolution as the other
similar piece of equipment.

Each word spoken in the database was carefully chosen.
To fully test the enpoint detection software, words that
end on differned sounds, pitches, or frequencies were
selected.
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Utterance Type

1 Isolated Digits

2 Teens

3 Multi-syllable
Digit Strings

4 Long Digit
Strings

5 Phrases

6 Sentences

7 Spontaneous
Speech

Table3. Utterance Type.

● Isolated digits spoken are as follows:

“ze ro ” , “one” , “ two” , “ th ree” , “ fou r ” ,
“five”,“six”,“seven”,“eight”,“nine”, and "oh"”.

● Teens spoken are as follows:

“thirteen”, “fourteen”, “fifteen”, “sixteen”, “seventeen”,
“eighteen”, and “nineteen”.

● Multi-syllabi digit strings spoken are as follows:

“twenty-seven”, “forty-four”, “sixty-five”, “seventy-
seven”, and “ninety-nine”.

● Long digit strings spoken are as follows:

“one million two hundred and thirty-six”, “three hundred
thousand one hundred and eighty-eight”, and “thirteen
million four hundred thousand three hundred and sixty-
one”.

● Phrases spoken are as follows:

“flexibility in a job applicant is important”,“the 1996
edition of the Far Side calendar”, “the ghost relinquished
her multitude of tricks”, “high definition television”, and
“Webster’s tenth annual unabridged dictionary”.

● Sentences spoken are as follows:

“We hold these truths to be self-evident, that all men are
created equal, “that among these rights are life, liberty,
.

Table 1. Recording Equipment Sets.

Table 2. Use of Recording Sets.

The filename convention for the data storage is a
follows:

spk_f01/spk_f01_05.raw

“f01” denotes female speaker number 1;

“05” denotes utterance number 5;

“.raw” denotes the binary speech data.

Table 3 contains the information that was spoken in ea
respective utterance type.

.

SET (1) (2)

microphone Audio Technica
AT9100

unidirectional
dynamic

Radio Shack
33-2001A

omnidirectional
dynamic

pre-amp Teac Cassette
Tape Deck

Radio Shack
15-961

Video/Audio
Mixer

.

Speaker Gender Recording Set

spk_f01 female AT9100

spk_f02 female RS 33-2001A

spk_f03 female RS 33-2001A

spk_m01 male AT9100

spk_m02 male AT9100

spk_m03 male RS 33-2001A
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and the pursuit of happiness”, and “it is the right of
people to alter or to abolish it, and to institute new
government, laying its foundation on such principles
and organizing its powers”.

● Spontaneous speech spoken was a reply to the
statement:

“Please tell me what you like and dislike about your
courses/ job th is semester.” Each ut terance is
approximately five sentences long.

Each speaker spoke the same utterances, but he or she
was allowed to pick the order. The total training
database consisted of 42 different files.

5.4. Subject Selection

Of course, such evaluations depend heavily on the
diligence of the subjects. Subjects with the following
characterist ics were selected based ona priori
knowledge of their capabilities:

• American citizens for whom English is their first
and primary language;

• normal speech (no known speech impediments or
other abnormalities);

• college-educated adults (a mixture of under-
graduate students and faculty);

• distinct voice characteristics.

5.5. The Ambient Environment

All attempts were made to provide a normal, office
environment ambient environment for the evaluation.
The room used during the evaluation was a terminal
room with a fair ly low background noise level
(approx. 50 dBA). This room contained a number of
X terminals and small Unix workstations, and was fairly
quiet, but during the period of the collection of the
database, the room was lightly populated, the door to the
room was left open, and hence the room was relatively
noisy.(but did contain several subjects performing the
experiment as well as an occasional group of students
working at the terminals).

5.6. The D/A Audio Interface

The D/A audio interface employed in this project was
the SONY Super Bit Mapping, High Density Linear A/
D D/A Converter 60ES. This D/A audio interface is a

high quality digital audio tape deck.

The individual constructing the database was allowed
adjust gain, but not any other audio parameter,
playing the data.

5.7. Data Collection

To collect the data, the researcher recruited one spea
at a time. Several ISIP tools were employed to reco
and play the data. Once the command to record the d
was issued to the machine, the researcher prompted
speaker to utter the utterances of the desired uttera
type. For example, if the female speaker one was ask
to speak the isolated digits, the information for thos
utterances was stored in the file “spk_f01_01.raw
Once the speaker’s utterances were recorded,
ut terances were checked by playing them an
identifying that all utterances for that respective filetyp
were present. After all seven utterance types for
speaker were recorded and stored in a directory, the d
was converted from two-channel data to single-chann
data using a simple C program to down-sample the da
The data was converted to single-channel because tw
channel data occupies more space on the system and
channel is sufficient to analyze the data.

5.8. Handmarking the Data

Once all data was collected, each data fi le wa
handmarked. Each data file was viewed using the IS
tool plot_signal. Once the utterance was displayed
the screen, the endpoints were marked. To deciph
where to precisely mark the endpoints, a significa
change in energy was a key factor. Also, a recognizab
gap space existed between the utterances which aide
the handmarking of the endpoints. The endpoints f
each file were stored in a file with the extensio
“.endpts”. For example,

spk_f01/spk_f01_05.endpts

“f01” denotes female speaker number 1;

“05” denotes utterance number 5;

“.endpts” denotes the endpoint file.

In the endpt file, the endpoint information was stored a
follows:

0 beg_time = 1.705 secs   end_time = 1.915 secs

1 beg_time = 2.533 secs   end_time = 2.763 secs
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Algorithm Bruce Lowerre Code

Speakers sub del ins  Total

Female01  .284    4  3  7.284

Female02 .231    4  3  7.231

Female03 .151  3  2  5.151

Avg Fem .222  3.67  2.63  6.562
The ‘0’ or the ‘1’ in front of beg_time denotes utterance
number.

Figure 4 displays the signal as viewed with plot_signa
Figure 5 shows the handmarked endpoints using t
ISIP tool plot_endpoints. Plot_endpoints reference
both the .raw file and the .endpts file. In Figure 5
accurate endpoints of each utterance are clearly mark
When handmarked incorrectly, plot_endpoints retur
Figure 6. After the third utterance in Figure 6, an erro
has been detected and is easily seen.

6. EVALUATION

An integral part of any software development i
evaluation and benchmarking. One of the challenges
benchmarking endpoint detection algorithms is th
there are no hard rules for determining the endpoin
Another problem is that the algorithm may not dete
the exact number of utterances that are listed in t
hand-marked database.

To evaluate the algorithms under development, a
objective scoring function was developed. This functio
determines and records the accuracy of the endpoin
One file per speaker was scored during a single pass
the function. The scoring function compared th
handmarked data with the output of the algorithms.

For error difference between the handmarked data a
the output of the algorithms in the range (-0.05,0.05) n
penalty was assigned. If the difference was betwe
[0.05 ,0.5] or [-0.05,-0.5], a penalty that was linearl
scaled was assigned. If the difference in the two valu
was greater than 0.5 or -0.5, a penalty of 1 was issue
Once all penalties were calculated, they were summ
to a grand total. Penalties were further separated as
whether the penalty was an insertion or a deletion. F
this application, a deletion denotes that an utteran
endpoint was not detected by the algorithm and a
insertion implies that the algorithm detected a
additional endpoint in the file.
MS State DSP Conference
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The important part of evaluation was setting o
parameters for the different speech types. The results
the evaluation are biased by these settings. After a lot
iterations we decided of the parameter settings whi
give us the best performance of all the algorithms.

7. SUMMARY

A major cause of errors in isolated word speech
recognition systems is the inaccurate detection of the
beginning and ends of speech utterances. It is importa
in many applications, such as speech recognition ove
telephone lines, where the SNR is very low, to have a
robust endpoint detection algorithm. Such algorithms
still have application in a wide variety of areas including
speaker dependent speech recognition. Characteristic
of human speech such as low energy fricatives and
plosives at the end of utterances make endpoint
detection difficult.

Many algorithms have been proposed for endpoint
detection. Features such as energy [1-3], zero crossin
rate [1-4], and periodicity [4], have been used. These
algorithms are straightforward to implement when
Fall’95

Male01 .262  6  1  7.262

Male02 .261    5    1 6.261

Male03 .301  10  3  13.30

Avg Male .274    7  1.67  8.944

Table 6. Bruce Lowerre Code Score.
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Algorithm
Simple Energy

Speakers sub del ins  Total

Female01 .17 1 0 1.17

Female02 .18 0 1 1.18

Female03 .22 1 0 1.22

Avg Fem .19 2 1 1.19

Male01 .32 1 0 1.32

Male02 .33 0 1 1.33

Male03 .18 0 0 0.18

Avg Male .28 1 1 0.94

Utt Type

Isolated
Digits

0.11 0 0 0.11

Teens 0.10 2 1 3.10

Multi-
Syl Dig

0.12 0 0 0.12

Long Dig 0.17 1 0 1.17

Short Sen 0.24 0 0 0.24

Long Sen 0.20 0 0 0.20

Spon Spc 0.73 0 0 0.73

Table 4. Energy Score.

Algorithm Energy & Zero Crossing Rate

Speakers sub del ins Total

Female01 .16 1 0 1.16

Female02 .19 0 1 1.19

Female03 .21 1 0 1.21

Avg Fem .19 2 1 1.18

Male01 .31 1 0 1.31

Male02 .34 0 1 1.34

Male03 .18 0 0 0.18

Avg Male .28 1 1 0.94

Utt Type

Isolated
Digits

0.12 0 0 0.12

Teens 0.06 2 1 3.06

Multi-
Syl Dig

0.11 0 0 0.11

Long Dig 0.15 1 0 1.15

Short Sen 0.28 0 0 0.28

Long Sen 0.32 0 0 0.32

Spon Spc 0.71 0 0 0.71

Table 5. Energy and Zero Crossing Score.
compared to the more recently proposed algorithms
based on Hidden Markov Models (HMMs) [5] and
Neural Networks (NNs) [6]. The latter are more robust
and accurate, but are very complex to initialize, and are
usually highly channel dependent. In fact, when using
NNs for speech recognition, a conventional algorithm

performs the initial segmentation of the speech signal
and passes it to the NN for additional processing.

The motivation for developing our algorithm resulted
from the need for such an algorithm in a project
involving the creation of a large Japanese language
MS State DSP Conference Fall’95
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speech database. This database contains digits, isolated
and four-digit sequences, monosyllables, control words,
and several hundred Japanese city names. The data
originally were stored on digital audio tapes, and are
being automatically processed for use in speech
recognition technology development by the endpoint
detection algorithms described here.

A comprehensive comparison of the several popular
algorithms will be presented. The primary aim of our
implementation is to provide the user with an
assortment of algorithms from a common software
interface. Our implementation makes extensive use of
object-oriented concepts, data-driven programming
techniques, and a novel virtual class methodology.

We have created a reference database for our project. It
is composed of speech data recorded in a moderately
noisy environment using a 16 kHz sample frequency.
Isolated words, sentences, and paragraphs are used for
the prompting text material. The database contains three
male speakers and three female speakers. Reference
endpoints were created by hand-marking the data using
visual and auditory tools. An objective evaluation
paradigm was developed to support optimization of
each algorithm on the reference database.

The implementation described in this paper is available
as public domain software via anonymous ftp at
isip.msstate.edu. Supporting tools, such as an endpoint
plotter, signal plotter, and signal manipulation programs
are also available.

8. RESULTS

The parameters which effect the performance of
algorithms the most are theminimum utterance
separationand theminimum utterance duration. The
minimum utterance separation is the minimum gap
between speech units we expect the algorithm to
segment. If we are dealing with short sentences the units
of speech are each of the short sentences and the
minimum utterance separation will be about 1 sec.
which is nominal by any speaking standards. The
Minimum utterance duration is the minimum duration
of the speech unit we expect the algorithms to segment
the input speech data into. For example, if we are
dealing with long digit strings the minimum utterance
duration ranges from 1 to 2 secs. depending on the
application. These settings affect the performance of the
algorithms in that , if these parameters are not correctly
set there will be more insertions and deletions than what

the algorithm could optimally perform.

Tables 4, 5 and 6 show the results of the evaluation
the energy algorithm, the zero crossing & energ
algorithm and the public domain code. Some conclusi
results can be seen from these tables. The energy
zero crossing algorithms perform equally well in mos
of the cases. The advantage of using zerocrossings
be seen more clearly when dealing with speech da
with a low SNR like that recorded from a telephone. W
have done our experiments with data having an SNR
the range of 50dB-60dB. This could be the reason w
the performances of the two algorithms was identica
The Zero crossing algorithm does, however, perfor
well when dealing with spontaneous speech.

The performance analysis results of the Bruce Lower
code are misleading. The code was originally written
detect endpoints of a single utterance per file. The co
was changed so as to detect multiple utterances per f
The parameters for the code are hard coded and he
the performance was bad. Though the score f
substitutions was close to that of other algorithms, th
number of deletions and additions was far too high. Th
performance of the algorithms differentiating on the se
of the speakers is identical, though the performance
speech data of females is better than that for ma
speakers.

9. CONCLUSIONS

In this paper, a comparison of three algorithms fo
speech endpoint detect ion has been done. T
performance evaluation shows that the energy and z
crossing algorithm performs marginally better than th

Type of
utterance

Minimum
Utterance
Separation

(secs.)

Minimum
Utterance
Duration
(secs.)

Isolated Digits .20 .06

Teens .40 .10

Multi Syllable
Digits

.30 .10

Long Digit
Strings

1.0 .10

Short Sentences .90 .10

Long Sentences .90 .10

Spontaneous
Speech

3.0 .10
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energy algorithm. The Bruce Lowerre code is not very
suitable for processing of multiple-utterance-per-file
sort of data. The results encourage us to use the energy
and zero crossing algorithm as an automatic word data
trimming tool. In the near future we propose to add new
algorithms to the existing structure of the code which
use features like spectral slope and periodicity. We plan
to evaluate the performance of the algorithms using data
with low SNR , especially telephone data so that the
code can be made the front end of an automatic
telephone data collection system. Tests have to
performed on data from a larger database than the one
we used. The software will be available on public
domain after fine refinements to the algorithms are
made. The supporting software tools like the signal
plotter, the endpoint plotter etc. will also be made
available.
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