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ABSTRACT

Laser Induced Breakdown Spectroscopy (LIBS) is a
well-known technique to measure certain atomic and
molecular in various environment. A pulsed laser beam
(532nm) is focused with a lens to the target, which can
be gas, liquid, or solid to induce a micro-plasma in the
focal area. The induced plasma is of very high
temperature (about 10,000K). Any material in the
plasma is excited and it produces strong optical
emission. Spectroscopy analysis of the emission gives
information about the properties of the material present
in the laser induced plasma. The emission signal
collected is embedded with background noise mainly
due to instrumentation.

In this paper, three algorithms based on adaptive line
enhancer, autocorrelation and low pass filter were used
to effectively extract the noise embedded signal, the
SNR improvement has been obtained for three methods.
The eigenanalysis frequency estimation method was
used to determine the minimum number of data samples
required to get a stable frequencies output [1].

1.  INTRODUCTION

Laser Induced Breakdown Spectroscopy (LIBS) is a
laser-based, non-intrusive, and highly sensitive optical
diagnostic technique. Soon after the development of the
ruby laser, it was reported in 1963 that by focusing the
laser beam, the breakdown of air could be caused [2,3].
A very bright spot, which is similar to a discharge spark
between two electrodes, was observed in the focal point
region. Therefore, the laser induced breakdown is
defined as the generation of a practically ionized gas
(plasma) by a laser pulse. The laser induced breakdown
plasma produces a strong optical emission. The

spectroscopy analysis of the emission gives informati
about the properties of the material present in the las
breakdown plasma.

LIBS has several advantages over other convention
methods of atomic emission spectroscopy. The focus
laser beam provides spatial resolution. The poi
measurement permits the study of homogeneity of t
target sample. Solid, liquid and gaseous material can
excited. The laser pulse vaporizes and excites t
sample in one simple step. Elaborate sample preparat
and auxiliary equipment are not needed. Being a
emission method, LIBS provides simultaneou
multielement analysis capabilities when using an optic
multichannel analyzer (OMA). Since the spark can b
generated at a remote location, analysis can
performed in situ in harsh or dangerous environmen
Only optical access to the medium being sampled
required. Early studies concentrated on sparks in sim
gases such as air [4], hydrogen[5], helium[6--9], an
argon[10]. These results showed that when the plas
formed in the laser breakdown spark (< 100 ns), th
electron density is greater than the electrode spark.
1983 Radziemski et al.[11] reported their research
time-resolved LIBS in aerosols. They used a Q-switch
Nd:YAG laser operating at 1.06 mm to generate the las
induced plasma. Comparing the experimental data w
the calculations, they concluded the plasma acts as i
were in local thermodynamic equilibrium after 1 ms
They a lso per formed two exper iments on a
experimental coal gasification system and obtained re
time spectral information. Because of the advantages
a laser probe, LIBS soon was introduced into th
combustion diagnostics research field. Schmieder[1
applied LIBS to a coaxial air/methane/air diffusion
flame by creating a series of sparks along a radius ju
above the burner. The spark spectrum for each posit
was recorded. From the relative intensities of th
carbon, nitrogen, hydrogen, and oxygen lines, the fu
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air ratio as a function of position was obtained. In 1989
Ottesen et al.[13] developed a system to provide in situ
determinat ion of size, veloci ty and elemental
composition for individual particles in combustion
environments. Laser sparks were produced by single
particle with the use of a Q-switched Nd:YAG laser, and
time-resolved emission spectra were observed. Their
results indicated a high sensitivity of the technique to
mineral matter in coal particles.

The LIBS spectrum usually is very noisy. The noise
comes from many different mechanisms, which include
dark current of the detector, heat noise of the detector
and electric circuit, stray light in the spectrograph, the
continuous radiation of the plasma, and the serious
fluctuation in the emission intensity which is influenced
by the plasma propagation in the form of shock wave.
Sometimes, especially in field test, the influence of the
environment such as site vibration and unexpected light
also induces some noise. Reducing the noise is an
important aspect in the instrumental development. The
recent trend of diagnostic technique ison siteanalysis.
Low noise and quick response are becoming more and
more important.

2. EXPERIMENTAL APPARATUS AND
DATA COLLECTION

2.1. A.experimental apparatus

The LIBS experimental apparatus consisted of four
main equipments: laser, signal receiver, spectral
analyzer, and sample generator. Figure 1 shows the
diagram of the laboratory LIBS system. The heart of the
system was a Q-switched Nd:YAG laser (Continuum
surelite II). The laser output was at 1064 nm or at 532
nm after frequency doubling. The pulse width was 10
ns with a maximum repetition rate of 10 Hz. The
maximum output energy was 700 mJ at 1064 nm or 300
mJ at 532 nm. In most of the experiments, the 532 nm
beam at energy levels from 100 to 200 mJ was used.
The laser beam was delivered by a series of right angle
turning-prisms to a table in an adjacent laboratory. A 20
cm focal length lens was used to focus the laser beam to
the sample area to form the induced plasma. The LIBS
signal was collected perpendicular to the laser beam. A
lens of 15 cm focal length and 7.5 cm in diameter was
used to collect the LIBS signal. The signal was coupled
to the optical fiber through another lens of 5 cm focal
length. An optical fiber coupler on the other end of the
fiber was used to couple the signal to the spectrograph.
The spectrograph was a 0.5 m HR460 with a 2400 line/
mm grating. An EG&G Princeton Applied Research
Corporation (PARC) diode array detector with a 1024
pixel was mounted on the exit of the spectrograph. The
detector was controlled by an EG&G PARC 1427
Multichannel Detector Controller. A spectral region of

about 20 nm was covered simultaneously with th
configuration. A high voltage pulse generator was us
to control the time delay and gate width of the detecto
The LIBS signal was recorded and stored in a PC.

2.2. Data collection

As an initial study of applying DSP technique to LIBS
spectra, a set of 30 spectra of element Cr at the spec
region around 360 nm was recorded. The samp
solution was 2 ppm Cr in a 1% HCl solution. It was
pumped through a tubing pump into a nebulizer t
generate dry aerosol. The aerosol blows out through
tube of 0.5 inch in diameter. The laser beam wa
focused 3mm about the tube. The diode array detec
was gated at 10ms delay and 5 ms width. The detec
exposure time was 30 ms, and the sample time was 5
ms. Considering the software set up time, this samp
time allowed to record one spectrum through two las
shots. Since the intensity fluctuation was very seriou
for about one third of the 30 spectra, it’s difficult to
distinguish the three Cr spectral lines from noise, fo
about another one third of the 30 spectra, the three
line were clear, and for another one third, the three
line were ambiguous. This set of 30 spectra were used
a test data for digital signal processing.

3. III.  ALGORITHMS

3.1.  ALE algorithm

Filtering has been with us for a long time. Long tim
ago, man has attempted to remove the more visible
the impurities in his water by filtering, and one

Fig. 1.  Diagram of LIBS system
MS State DSP Conference Fall’95
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dictionary gives a first meaning for the none filter as ”a
contrivance for freeing liquids from suspended
impurities, especially by passing them through strata of
sand, charcoal, etc.”

Modern usage of the world filter often involves more
abstract entities than fluids with suspended impurities.
There is usually however the notion of something
passing a barrier: one speaks of news filtering out of the
war zone, or sunlight filtering through the trees.
Sometimes the barrier is interposed by man for the
purpose of sorting out something that is desired from
something else with which it is contaminated. One
example is of course provided by water purification; the
use of an ultraviolet filter on a camera provides another
example. When the entities involved are signals, such as
electrical voltages, the barrier--in the form perhaps of an
electric network--becomes a filter in the sense of signal
processing.

Filters were originally seen as circuits or systems with
frequency selective behavior. The series or parallel
tuned circuit is one of the most fundamental such
circuits in electrical engineering, and as a ”wave trap”
was a crucial ingredient in early crystal sets. More
sophisticated versions of this same idea are seen in the
IF strip of most radio receivers; here, tuned circuits,
coupled by transformers and amplifiers, are used to
shape a passband of frequencies which are amplified,
and a stopband where attenuation occurs.

The usual method of estimating a signal corrupted by
additive noise is to pass the composite signal through a
filter that tends to suppress the noise while leaving the
signal relatively unchanged. The design of such filters is
the domain of optimal filtering, which originated with
the pioneering work of Wiener and was extended and
enhanced by the work of Kalman, Bucy, and others [14-
18].

Filters used for the foregoing purpose can be fixed or
adaptive. The design of fixed filters must be based on
prior knowledge of both the signal and the noise, but
adaptive filters have the ability to adjust their own
parameters automatically, and their design requires little
or no prior knowledge of signal or noise characteristics.

Noise cancelling is a variation of optimal filtering that is
highly advantages in many applications. It uses an
auxiliary or reference input derived from one or more
sensors located at points in the noise field where the
signal is weak or undetectable. This input is filtered and
subtracted from a primary input containing both signal
and noise. As a result, the primary noise is attenuated or
eliminated by cancellation.

Sometimes subtracting the noise from a received signal
would seem dangerous. If done improperly it could
result in an increase in output noise power. If the

filtering and subtraction are controlled by an appropria
adaptive process, noise reduction can in many cases
accomplished with little risk of distorting the signal o
increasing the output noise level. In circumstance
where adaptive noise canceling is applicable, we c
often achieve a degree of noise rejection that would
difficult or impossible to achieve by direct filtering.

Some of the earliest work in adaptive interferenc
canceling was performed by Howells and Applebau
and their colleagues at the General Electric Compa
between 1957 and 1960. They designed and buil
system for antenna sidelobe canceling using a referen
input derived from an auxiliary antenna and a simp
two-weight adaptive filter [19].

At the time of this early work, only a handful of people
were in terested in adapt ive systems, and th
development of the multiweight adaptive filter jus
beginning. In 1959, Widrow and Hoff at Stanford
University were devising the Least-Mean-Square (LMS
adaptive algorithm and the pattern recognition schem
known as Adaline (for ”adaptive linear threshold logi
element”) [20, 21]. Aizermann and his colleagues we
constructing an automatic gradient searching machi
[22]. In Great Britain, D. Gabor and his associates we
developing adaptive filters [23]. Each of these effor
was proceeding independently.

In the early and middle 1960s, work on adaptive system
intensified Hundreds of papers on adaptation, adapt
controls, adaptive filtering, and adaptive signa
processing appeared in the literature. An importa
commercial application of adaptive filtering in digita
communications grew from the work during this perio
of Lucky at the Bell Laboratories [24, 25].

In 1965 an adaptive noise-canceling system was built
Stanford University. Its purpose was to cancel the 6
her tz in te r fe rence a t the ou tpu t o f an
electrocardiographic amplifier and recorder.

Since 1965 adapt ive noise cancel ing has be
successfully applied to a number of additional problem
including other aspects of electrocardiography, th
elimination of periodic interference in general [26], an
the elimination of echoes on long-distance telepho
transmission lines [27, 28].

Adaptive Line Enhancement (ALE) is a development o
the adaptive noise cancellation method. In th
application, the adaptive algorithm is directed toward
the problem of enhancing one or more narrowban
signals of unknown and possibly drifting amplitudes an
frequencies which are embedded in narrowband noi
The ALE system is depicted in Figure 2.

This system, which was introduced by Widrow et a
[29], uses the measured signal at the desired respo
MS State DSP Conference Fall’95
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and a delayed version of itself as input. Suppose the
signal d(n) consists of two components: a narrowband
component that has long-range correlations such as a
sine wave, and a broadband component which will tend
to have short--range correlations [30].

The principle is that the delay should decorrelate the
noise while leaving the narrowband components
correlated. When functioning in a ideal way, the
adaptive filter output is an enhanced version of the
sinusoidal components. It is the filter output y(n) which
is the required output.

Figure 2 illustrates a block diagram of the adaptive line
enhancer, where a delayed version of the input signal is
used as an input to the adaptive filter whose coefficients
are adapted to best fit the portion of the input signal
which is uncorrelated with the noise, i.e. the noise-free
signal portion of the input, by minimizing the mean
squared error. The filter output is an enhanced version of
the input.

The computational Algorithm for the ALE is [31]

(1)

(2)

(3)

(4)

A direct implementation of the algorithm requires a
prior knowledge of delay factor D, which is also known
as the decorrelation parameter, the adaptation parameter
m, and the filter length L.

Adaptive Line Enhancer is a method of optimal filtering
that can be applied whenever a suitable reference input
is available. The principal advantage of the method are
its adaptive capability, its low output noise, and its low
signal distortion. The adaptive capability allows the
processing of inputs whose properties are unknown and
in some cases nonstationary. It leads to a stable system
that automatically turns itself off when no improvement
in the signal-to-noise ratio can be achieved. The output
noise and signal distortion are generally lower than that
ach ievab le w i th conven t iona l op t ima l fi l t e r
configurations [32] [33].

3.2. B.  Autocorrelation algorithm

Cor re la t ion techn ique is used wide ly in
communications, instrumentations, computers,

telemetry, sonar, radar and other signal processi
systems. Correlation has several desirable properti
including

1. The ability to detect a desired signal in th
presence of noise or other signals.

2. The ability to recognize specific patterns withi
analog or digital signals.

3. The ability to measure time delays throug
various media, such as materials, the human bo
RF paths, electronic circuits, etc.

As these properties indicate, correlation is essentially
comparison process. In fact, we use correlation da
when we compare sounds, imagines, or other sensati
relative to other sounds, imagines, or sensations sto
in our brain. The key function of the human compariso
process is to measure mentally the degree of similar
between two or more parameters. Generally, this sort
comparison is capable of discriminating extraneou
forms of information and noise from a given seneum
The comparison can be made in real time, or we c
mentally store the data until some later time.

The mental correlation process works well where th
decision making process is not l imited by time
constraints. However, in electronic systems we do n
usually have the luxury of performing correlation at ou
leisure. Correlation must be performed in real time
requiring the use of electronic circuits that compatib
with the system in question.

The formula for autocorrelation algorithm is as below:

(5)

In our case, the principle for autocorrelation is no
complicated. In frequency domain, the signal respon
for LIBS spectrum is narrow banded, but the distributio
for noise spectrum is wide banded. The autocorrelati
algorithm can decorrelate the noise signal and leave
true signal unchanged (or just changed a little bit, due
the spectrum bandwidth expansion). There is on
parameter in this algorithm should be selected, th
correlation factor L, if L is too large, that will lead to
wide bandwidth of true signal; if L is too small, we can
not achieve desired Signal to Noise Ratio (SNR
improvement. So parameter L should be careful
chosen both to improve the SNR and not to deform t
true signal.

y n( ) f m n( )x n m–( )
m 0=

L

∑=

x n( ) d n ∆–( )=

n) d n( ) y n( )–=

f m n 1+( ) f m n( ) 2µe n( )x n m–( )+=

y n( ) 1
L
--- x n( )x n k+( )

k 0=

L 1–

∑=
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3.3. C.  FIR linear phase low pass filter algorithm.

Fig. 3 shows the flow chart of FIR linear phase low pass
filter algorithm.

By observing data, we note that the spectrum signal in
time axis (corresponding to each channel) is low
frequency signal, and noise is random and high
frequency signal compared to spectrum signal. So, we
may design a low pass filter to pass spectrum signal and
attenuate noise in the time axis for each channel. There
is one more thing needed to be taken into account, and
that is spectrum amplitude distortion problem. The
spectrum amplitude in time axis represents spectrum
density in different time, and this is a parameter that is
not tolerant of distortion. Based on above observations,
we choose a linear phase low pass filter to process the
spectrum signal in time axis.

An FIR filter of length M has a frequency response

(6)

In symmetry condition and antisymmetry condition, a
FIR filter has linear phase.

For symmetry condition,

h(n) = h(M - 1 - n) (7)

For antisymmetry condition,

h(n) = -h(M - 1 - n), (8)

The choice of a symmetric or antisymmetric unit samp
response depends on the application. An antisymme
FIR filter is not suitable as a lowpass filter becaus
H(0)=0 . Consequent ly, we would not use the
antisymmetric condition in the design of a lowpas
linear-phase FIR filter. On the other hand, the symme
condition yields a linear phase FIR filter with a nonzer
response at w=0. So, the symmetry condition lends its
to low pass filter. The frequency response of an FI
filter having a unit sample response h(n) that satisfi
the symmetry condition may be expressed as

(8)

where

(9)

for M of odd

(10)

for M of even

(11)

If we specify the frequency response at M/2 points
w, aboveHr(w) equation constitutes dM/2e linear
equation for determining the coefficients {h(n)} of an
linear phase FIR filter. Although the values ofw can be
chosen arbitrarily, it is usually desirable to select equa
spaced points in frequency, in the range 0< w<p. Th
how to choose the values ofHr(w) is the key of
designing linear phase filter, and it depends on th
design specification. IfHr(w) change abruptly from the
passband, whereHr(wk) = 1, to the stopband, where
Hr(wk) = 0, it will lead to large sidelobes in the
stopband. Instead of having an abrupt change, if w

Filtering noise in
time domain

Remove background
noise in frequency do-
main

Debiasing and
Thresholding

Spectra
input

Spectra
output

Fig. 3. Low pass filter algorithm

H w( ) bke
jωk–

k 0=

M 1–

∑ h n( )e jωk–

k 0=

M 1–

∑= =

H ω( ) Hr ω( )e
jω M 1–( )

2
-------------------–

=

Hr ω( ) =

h
M 1–

2
-------------- 

  2 h n( ) ω M 1–( )cos
n 0=

M 3–( )
2

-------------------

∑+

Hr ω( ) 2 h n( ) ω M 1–
2

-------------- n– 
 cos

n 0=

M
2
----- 1–

∑=

Θ ω( ) ω M 1–
2

-------------- 
 –=
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specify an intermediate value forHr(w) in the transition
reg ion, the resul t ing f requency response has
significantly smaller sidelobes in the stopband. The only
disadvantage is that the width of the transition region is
increased. However, the benefits usually outweigh the
one disadvantage. Further reduction in the stopband
sidelobes can be obtained by allowing for one or more
additional frequency specifications in the transition
band. In effect, the transition band is widened further to
achieve additional reduction in the stopband sidelobes.

The question that we have not addressed is concerned
with the values of the specifications in the transition
band. This problem has been considered in the technical
literature by Rabiner, et al. (1970) [34]. In this paper the
optimum values of the specification in the transition
region are tabulated for a large variety of filter lengths.
The values given are optimum in the sense that they
result in minimizing the largest sidelobe in the stopband.
These tables are available in Appendix C of the
textbook.

We choose M=15, BW=1, and T1=0.43378296 from
Table C.1 in textbook [35], and the corresponding linear
phase FIR filter has the band width of 2p/15, the
transition region width of 2p/15, and the maximum
sidelobe of -42.30932283 dB. H(wk) = {1, 0.43378296,
0, 0, 0, 0, 0, 0}. Run matlab command

b = fir2 (n, f, m) (12)

where b is the vector of FIR coefficients h(n), n is the
length of the FIR filter, f is the vector of frequency
points, and m vector is the amplitude values of
frequency points, or H(wk). we get

h(n) = {0.0003, 0.0012, 0.0059, 0.0198,

0.0471, 0.0835, 0.1159, 0.1289, 0.1159, 0.0835,

0.0471, 0.0198, 0.0059, 0.0012, 0.0003}. (13)

Then, we use a c program to implement this FIR filter,
and process spectrum data in the time axis for each
channel.

In fig. 9, we note that high frequency noise rides on a
low frequency background noise in frequency domain.
If the background noise is removed, it is clearly that the
signal to noise ratio will be increased. we design a
moving average low pass fi l ter to remove the
background noise. The moving average filter is defined
by the difference equation

(14)

Clearly, moving average system is a linear phase F
filter with impulse response

(15)

Its linear phase characteristic is very important becau
it prevents background noise from distortion.

After removing background noise, debias the D
component, and threshold negative value.

3.4. D. Eigenanalysis frequency estimation

The spectral frequency estimation is processed in thr
step. Fig. 4 is the flow chart of this processing

.

Recent exiting technique is to average 30-50 sing
spectrum to get a quality spectrum. The purpose of th
processing is to find out how the average number affe
the estimation result. The 30 test spectra is averaged
the number one through thirty, and every differen
averaged spectrum is further processed.

The spectrum is taken by the spectragraph, and it’s
signal of frequency domain. In order to perform
eigenanalysis frequency estimation, the spectra sig
needs to be back to time domain, and so inverse F
algorithm is applied.

The Fourier transform is the mathematical foundatioy n( ) 1
M 1+
-------------- x n k–( )

n 0=

M

∑=

h n( ) 1
M 1+
--------------,=

Spectra
average

Inverse
FFT

Eigenanalysis
frequency
estimation

Spectra
input

Frequencies
output

Fig.  4. Eigenanalysis frequency estimatio
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for relating a time or space signal to its frequency
domain representation.

To perform inverse Fourier transform, a complex
number is required. The test spectra are real data series.
It is set as a real component of the complex number and
the imaginary component of the complex number is set
to zero.

Then subroutine of Eigenanalysis frequency estimation
is called to perform frequency estimation. The following
is the brief description of eigenanalysis frequency
estimation [36] [37].

The basis for the improved performance of the
eigenanalysis techniques is the division of the
information in the autocorrelation matrix or the data
matrix into two vector subspaces, one a signal subspace
and the other a noise subspace.

Functions of the vectors in either the signal or noise
subspaces can be used to create frequency estimators
that, when plotted, show sharp peaks at the frequency
locations of sinusoidal or other narrowband spectral
components. These are not true PSD estimators because
they do not preserve the measured process power nor
can the autocorrelation sequence be recovered by
Fourier transforming the frequency estimator. Included
in this class of eigenanalysis-based frequency estimators
are the Pisarenko harmonic decomposition (PHD) and
the multiple signal classification (MUSIC) algorithms.

It was known that if the process consists of M real
sinusoidal in additive real white noise, the ACS is

(16)

in which Pi is the power of the ith sinusoidal and rw is
the noise variance.

In an analogous manner, the pth-order autocorrelation
matrix for the case of M real sinusoidal in white noise
has the structure

’ (17)

The signal matrix Sp in this case will have rank 2M.
Discussions from this point will concentrate on the
complex case; the real case is generally a simple
extension of the complex case with a change in rank M
to 2M.

The signal matrix will have the eigendecomposition

(18)

Thus the eigenvectors VM+1, ....VP + 1 span the noise
subspace of Rp, all with the identical eigenvalue rw.. The
principal eigenvectors V1,..VM span the signal subspace
of both Rp and Sp, with eigenvalues of l1 + rw,...lM + rw,.

The eigenvalues of the principal eigenvectors, thoug
are composed of powers of both signal and noise
white noise does not contribute to the eigenvalu
weighing of the noise-free signal subspace eigenvecto

The eigendecomposition of the autocorrelation matr
can be exploited in two ways to generate improve
spectral estimators, or more correctly, improve
frequency estimators, Retaining only the information
the signal subspace eigenvectors, that is, forming
lower-rank approximation to Rp, effectively enhances
the SNR because of the omission of the contribution
power in the noise subspace components. This is t
basis of principal component (signal subspac
frequency estimators. Noting that the eigenvectors a
orthogonal and that the principal eigenvectors span t
same subspace of the signal vectors, then the sig
vectors are orthogonal to all the vectors in the nois
subspace, including any linear combination

(19)

for 1< i< M (or 2M in the case of M real sinusoidal).
This property forms the basis of the noise subspa
frequency estimators.

The autocorrelation sequence normally is not known,
that the above properties are mostly of theoretical, rath
than practical, interest. The concepts, however, can
extended to the covariance and modified covariance d
matrices that are a part of the exponential estimati
techniques of the Prony method. It is shown in th
section that the data matrices have eigendecomposit
properties similar to the autocorrelation matrix. Th
principal eigenvectors of the data matrix predominant
span the signal subspace and the singular values of th
principal eigenvectors tend to be larger than the noi
subspace singular values. Thus the the singular valu
determined by a SVD of the data matrix are the basis f
the separation of the eigenvectors into a mostly sign
subspace and a mostly noise subspace.

Pi

2
----- e

j2π f ikT
e

j2π f ikT–
+[ ] Qwς k[ ]+

i 1=

M

∑

Rp

Pi

2
----- sisi

H
sisi

T
+[ ] QwI+∑=

Sp λi vivi""
i 1=

P 1+

∑=

Si
H

akvk
k M 1+=

p 1+
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The Prony method was introduced as a technique for the
estimation of the parameter of a damped exponential
model that approximates a given data sequence. Central
to the method is the solution TpHTp in which Tp is the
order p data matrix of the covariance method of linear
prediction

(20)

The modified Prony method, a variation of the Prony
method for undamped sinusoidal modeling, involves the
modified covariance data matrix

(21)

the discussion which follows will focus on matrix Tp,
but the conclusions will also be valid for the modified
covariance data matrix

The discussion which follows will focus on matrix Tp,
but the conclusions will also be valid for the modified
covariance data matrix.

Consider the noiseless complex exponential signal
sequence

(22)

in which zk = exp ([α k + j 2 π fk]T) and hk = Ak exp
(jFk). Note that damped exponential are permitted as
valid signals. Matrix Tp formed from the x[n] will have
rank M as long as the selected order p is within the
range M p N-M (for the modified covariance
matrix the range is M p [N-M]/2). The data matrix
Tp can be decomposed as

Tp = BC (23)

in which B an (N-p) X M matrix and C, and M X p
matrix, are

Then we get

TpHTp = CH BH BC (24)

The related M X M matrix BHBCCH is positive definite
because both B and C have full rank M. If li for 1
M designates the eigenvectors, then

( CH BH BC) wi = li wi (25)

for 1< i<M. Premultiply the above Eq by matrix CH to
yield

( CH BH BCCH) wi = li CH wi (26)

Define the vector

vi  = CH wi (27)

and with proper substitution it leads to the result

TpHTp  vi  =   li  vi (28)

for 1 i M. The M nonzero eigenvalues of pthe p x
p matrix TpHTp are there identical to the eigenvalues o

the matrix BHBCCH. The remaining p-M eigenvalues of
TpHTp are zero because TpHTp is of rank M. The
corresponding eigenvectors of the nonzero eigenvalu
are given. Thus any principal eigenvector of TpHTp

will be a linear combination of the columns of CH,
which is composed of signal vectors as shown above
can also be shown that any principal eigenvector
TpHTp is a linear combination of the columns of B
which is also composed of signal vectors. The matrix T
will have M nonzero singular values, as these simply th
square roots of the eigenvalues. The eigenvectors of
zero eigenvalues of TpHTp or TpTpH are orthogonal to
the M signal subspace, or principal, eigenvecto
associated with the nonzero eigenvalues in the sign
subspace.

If the data has noise, the properties are not exactly tr
but they tend to be approximately true. Thus, the M
principal singular values of a Tp matrix composed of
noisy samples tend to be larger than thep - M smallest
similar values (which were exactly zero in the noisele
case). The M eigenvectors corresponding to the
principal eigenvalues of either TpHTp or TpTpH have
fewer noise contributions than the noise subspa
eigenvectors corresponding to the p - M smalle
s ingular values. These statements have som
justifications as a result of the analysis provided  earli

It has been shown that retention of the signal subspa
or principal, eigenvectors effectively improves the SN
for processes consisting of exponential in white noise
eliminating much of the noise contribution to an

Tp

x p 1+[ ] ˙ x 1[ ]
˙

x N[ ] ˙̇ ˙ x N p–[ ]

=

Tp

Tp*J
(20)

x n[ ] hkzk
n

k 1=

M

∑=
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autocorrelation matrix or a data matrix.

Consider the correlation method PSD estimator, the
minimum variance PSD estimator, and the Yule-Walker
autoregressive PSD estimator, The correlogram and MV
methods rep ly on the known or es t imated
autocorrelation matrix Rp for the definition of the
spectral estimate

(29)

(30)

while the autoregressive (AR) method depends on the
autocorrelation matrix to obtain the AR parameters

(31)

where the vectors and matrix have the following
definitions

(32)

(33)

If the orthogonal eigendecomposition of Rp is

(34)

in which the eigenvalues are ranked in decreasing
magnitude l1 - l2 - ..lp and there are estimated to be M
principal components (M p) then the reduced rank
principal eigenvector approximation to Rp and Rp-

(35)

(36)

may be used in lieu of Rp and Rp-1 in the above
equations to create spectral estimators with reduc
noise contribution due to the omission of the nois
subspace eigenvectors.

The simple idea of separating eigenvectors into sign
and noise subspaces based upon an examination
either the eigenvalues of the autocorrelation matrix
the singular values of the data matrix does not work we
in practice, especially with short sample records. Th
AIC order-selection criterion first introduced has bee
extended to handle the subspace separation probl
Assuming l0 - l1 - ..lp are the eigenvalues of the samp
autocorrelation matrix Rp and assuming m<p, where m
is the number of sinusoidal signals actually present
the data, and N data samples, then

(37)

The number of sinusoidal in the signal subspace
determined by selecting the minimum value of AIC[m]
Wax and Kailath[1986] have reported some prelimina
results from use of the criterion of the above equation

4. IV.  RESULTS AND DISCUSSION

4.1. Evaluation method

Use mean square signal to noise ratio to evaluate
system.

(38)

PCORR f( ) Te
H

f( )Rpe f( )=

PMV f( ) T e
H

f( )Rp
1–
e f( )[ ]

1–
=

1

ap

Rp
1– QP

OP

=

TP

r xx 0[ ] ˙̇ r xx p[ ]

r xx p[ ] r xx 0[ ]

=

e f( )
1

e
j2πfT( )

e
j2πfpT

=

RP λkvkvk
H

k 1=

P
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RP λkvkvk
H

k 1=

M
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1– 1
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-----vkvk

H

k 1=
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1
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i m 1+=

P

∏
------------------------------------- m 2p m–( )( )+ln

SNR 10

1
NM
--------- S

j 1=

M
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where Signal[i][j] stand for signals, Noise[i][j] stand for
noise, i indexes time axis frame, and j indexes channel
number of frequency domain.

4.2. Autocorrelation Scheme

Figure 3 is one set of original data collected by the LIBS
system, the 3 central peaks represent three signals, this
spectrum is strongly corrupted by the noise.

In order to remove the noise from the signal, we applied
autocorrelation algorithm. Figure 4 is the output of this
algorithm, compared with the original data, some of the
random noise has been removed. In this application, we
selected correlation length L=3, because if L is larger,
the output spectrum will be broadened, that will lead to
spectrum distortion. In this application, autocorrelation
is a good approach.

4.3. Adaptive Line Enhancer

Figure 5 is the output of the adaptive line enhancer, we
select filter length L=30, a value can be selected from a
wide range. When a is larger than 10-5, this algorithm
will not converge, so this is not the desired result. When
a is smaller than 10-9, that will cause slow convergence
and strong spectrum distortion. In this application, we
choose a=510-7, the output of ALE will reduce the noise
level but introduce some distortion near the spectrum
lines. Although ALE system can achieve SNR
improvement in this application, but it is not as desirable
as we expected.

4.4. Low Pass Filter Scheme

The fig. 8 is original overlapped spectra in six
success ive t ime po in ts and the fig . 9 is the

Fig. 8. Six overlapped original spectra

Fig. 5

Fig. 6

Fig.7
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corresponding processed spectra obtained by time
domain low pass filtering. From these two figures, we
can see that processed signals are much better than
original signals. In processed spectra, we note that the
three peaks in the middle and one peak in the right are
signals, while in the original spectra, some noise peaks
are higher than signal peaks, and you can not distinguish
signal and noise.

Fig. 10 is the original spectra plotted in 3_D. Fig. 11 is
processed spectra obtained by low pass filter algorithm.
Comparing both figures, it is obvious that processed
spectra are greatly improved in term of signal to noise
ratio.

4.5. Eigenanalysis Frequency Estimation

Fig. 12 is the plot of one of the prediction frequenc
against spectral average number. When the avera
number is less than 15, the prediction frequency
serious fluctuation. When more than 20 spectra a
averaged. the estimation result of the spectra
converged to a certain value. This result shows that t
signal to noise ratio is improve significantly when mor
than 20 spectra are averaged.

5. CONCLUSION AND FUTURE
RESEARCH

Our frequency estimation indicate that an accumulati
of at least 20 single spectra is required to get a qual
spectrum.

The table 1 shows the signal to signal ratio of origina
spectra and processed spectra obtained by th
algorithms. The low pass filter algorithm gives the be
result because of spectra characteristic of low frequen
although it is very simple algorithm.

Fig. 9. Six overlapped processed spectra

Fig. 10. 3_D original spectra

Spectra SNR (dB)

Original spectra 11.2

ALE algorithm 16.7

Autocorrelation scheme 15.4

Low pass filter scheme 24.3
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                    Table 1

The distortion of spectral line is too serious with the
method of adaptive line enhancer. Although the three
peaks are enhanced, several small peaks appear around
the bottom of the main peaks. This is not allowed for
spectral analysis. The two parameter of a and L need to
be modified to seek the possibility to reduce this
distortion.

As we mentioned early, in this research, these PSD
methods only apply to a simple sample, which is one
element of Cr with three spectral lines. Next step, a
more complicated sample with more lines may be used
to test three DSP methods.

We will continue to develop new DSP technique.
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