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ABSTRACT spectroscopy analysis of the emission gives information
about the properties of the material present in the laser

Laser Induced Breakdown Spectroscopy (LIBS) is abréakdown plasma.

well-known technique to measure certain atomic an
molecular in various environment. A pulsed laser bea
(532nm) is focused with a lens to the target, which ca
be gas, liquid, or solid to induce a micro-plasma in the
focal area. The induced plasma is of very high
temperature (about 10,000K). Any material in the
plasma is excited and it produces strong optica
emission. Spectroscopy analysis of the emission give
information about the properties of the material presen

IBS has several advantages over other conventional

ethods of atomic emission spectroscopy. The focused
aser beam provides spatial resolution. The point
measurement permits the study of homogeneity of the
target sample. Solid, liquid and gaseous material can be
iexcited. The laser pulse vaporizes and excites the
sample in one simple step. Elaborate sample preparation
and auxiliary equipment are not needed. Being an

in the laser induced plasma. The emission signafMission method, LIBS provides simultaneous

collected is embedded with background noise mainlymultielement analysis capabilities when using an optical
due to instrumentation. g 3ﬁuluchannel analyzer (OMA). Since the spark can be

generated at a remote location, analysis can be

In this paper, three algorithms based on adaptive lind?€7formed in situ in harsh or dangerous environments.
enhancer, autocorrelation and low pass filter were useNlY optical access to the medium being sampled is
to effectively extract the noise embedded signal, thd €duired. Early studies concentrated on sparks in simple
SNR improvement has been obtained for three methodd@Ses such as air [4], hydrogen[S], helium[6--9], and

The eigenanalysis frequency estimation method Wai)rgon[m]. These results showed that when the plasma

used to determine the minimum number of data Sampleelgg]t(ra(()jnigéﬂgisiissegjrberaet?:?r?;\/nntﬁFe)aerlléé:roldoeosgsa)fkthlen
required to get a stable frequencies output [1]. ; ; . '
d g g put [1] 1983 Radziemski et al.[11] reported their research of

time-resolved LIBS in aerosols. They used a Q-switched
1. INTRODUCTION Nd:YAG laser operating at 1.06 mm to generate the laser
induced plasma. Comparing the experimental data with
Laser Induced Breakdown Spectroscopy (LIBS) is athe ca_lculations, they conclu_ded th_e_ pl_asma acts as if it
laser-based, non-intrusive, and highly sensitive opticalvere in local thermodynamic equilibrium after 1 ms.
diagnostic technique. Soon after the development of thd hey also performed two experiments on an
ruby laser, it was reported in 1963 that by focusing theexperimental coal gasification system and obtained real-
laser beam, the breakdown of air could be caused [2,3fime spectral information. Because of the advantages of
A very bright spot, which is similar to a discharge spark@ laser probe, LIBS soon was introduced into the
between two electrodes, was observed in the focal poirgombustion diagnostics research field. Schmieder[12]
region. Therefore, the laser induced breakdown isapplied LIBS to a coaxial air/methane/air diffusion
defined as the generation of a practically ionized gadlame by creating a series of sparks along a radius just
(plasma) by a laser pulse. The laser induced breakdowabove the burner. The spark spectrum for each position

plasma produces a strong optical emission. Thevas recorded. From the relative intensities of the
carbon, nitrogen, hydrogen, and oxygen lines, the fuel/
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air ratio as a function of position was obtained. In 1989about 20 nm was covered simultaneously with this
Ottesen et al.[13] developed a system to provide in siticonfiguration. A high voltage pulse generator was used
determination of size, velocity and elemental to control the time delay and gate width of the detector.
composition for individual particles in combustion The LIBS signal was recorded and stored in a PC.
environments. Laser sparks were produced by single
particle with the use of a Q-switched Nd:YAG laser, ar
time-resolved emission spectra were observed. Th
results indicated a high sensitivity of the technique
mineral matter in coal particles.

The LIBS spectrum usually is very noisy. The nois
comes from many different mechanisms, which incluc
dark current of the detector, heat noise of the detec L e
and electric circuit, stray light in the spectrograph, tt [
continuous radiation of the plasma, and the serio chcal!
fluctuation in the emission intensity which is influence Ay )
by the plasma propagation in the form of shock wav ] s
Sometimes, especially in field test, the influence of tt R e Y
environment such as site vibration and unexpected li¢ ————
also induces some noise. Reducing the noise is s )
important aspect in the instrumental development. T [ Lk, i camem, [ St o

recent trend of diagnostic techniqueois siteanalysis. I — L -
Low noise and quick response are becoming more ¢ ! -
more important.

Fig. 1. Diagram of LIBS system
2. EXPERIMENTAL APPARATUS AND

DATA COLLECTION

2.2. Data collection
2.1. A.experimental apparatus

As an initial study of applying DSP technique to LIBS
The LIBS experimental apparatus consisted of fourspectra, a set of 30 spectra of element Cr at the spectral
main equipments: laser, signal receiver, spectraregion around 360 nm was recorded. The sample
analyzer, and sample generator. Figure 1 shows theolution was 2 ppm Cr in a 1% HCI solution. It was
diagram of the laboratory LIBS system. The heart of thepumped through a tubing pump into a nebulizer to
system was a Q-switched Nd:YAG laser (Continuumgenerate dry aerosol. The aerosol blows out through a
surelite 11). The laser output was at 1064 nm or at 532tube of 0.5 inch in diameter. The laser beam was
nm after frequency doubling. The pulse width was 10focused 3mm about the tube. The diode array detector
ns with a maximum repetition rate of 10 Hz. The was gated at 10ms delay and 5 ms width. The detector
maximum output energy was 700 mJ at 1064 nm or 30@xposure time was 30 ms, and the sample time was 500
mJ at 532 nm. In most of the experiments, the 532 nnms. Considering the software set up time, this sample
beam at energy levels from 100 to 200 mJ was usedtime allowed to record one spectrum through two laser
The laser beam was delivered by a series of right anglehots. Since the intensity fluctuation was very serious,
turning-prisms to a table in an adjacent laboratory. A 20for about one third of the 30 spectra, it's difficult to
cm focal length lens was used to focus the laser beam tdistinguish the three Cr spectral lines from noise, for
the sample area to form the induced plasma. The LIBSibout another one third of the 30 spectra, the three Cr
signal was collected perpendicular to the laser beam. Aine were clear, and for another one third, the three Cr
lens of 15 cm focal length and 7.5 cm in diameter wasline were ambiguous. This set of 30 spectra were used as
used to collect the LIBS signal. The signal was coupleda test data for digital signal processing.
to the optical fiber through another lens of 5 cm focal
length. An optical fiber coupler on the other end of the 3. Ill. ALGORITHMS
fiber was used to couple the signal to the spectrograph.
The spectrograph was a 0.5 m HR460 with a 2400 line/ )
mm grating. An EG&G Princeton Applied Research 3-1. ALE algorithm
Corporation (PARC) diode array detector with a 1024
pixel was mounted on the exit of the spectrograph. The-iltering has been with us for a long time. Long time
detector was controlled by an EG&G PARC 1427 ago, man has attempted to remove the more visible of
Multichannel Detector Controller. A spectral region of the impurities in his water by filtering, and one
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dictionary gives a first meaning for the none filter as "a filtering and subtraction are controlled by an appropriate
contrivance for freeing liquids from suspended adaptive process, noise reduction can in many cases be
impurities, especially by passing them through strata ofaccomplished with little risk of distorting the signal or
sand, charcoal, etc.” increasing the output noise level. In circumstances
where adaptive noise canceling is applicable, we can
Modern usage of the world filter often involves more often achieve a degree of noise rejection that would be
abstract entities than fluids with suspended impuritiesdifficult or impossible to achieve by direct filtering.
There is usually however the notion of something
passing a barrier: one speaks of news filtering out of theSome of the earliest work in adaptive interference
war zone, or sunlight filtering through the trees. canceling was performed by Howells and Applebaum
Sometimes the barrier is interposed by man for theand their colleagues at the General Electric Company
purpose of sorting out something that is desired frombetween 1957 and 1960. They designed and built a
something else with which it is contaminated. Onesystem for antenna sidelobe canceling using a reference
example is of course provided by water purification; theinput derived from an auxiliary antenna and a simple
use of an ultraviolet filter on a camera provides anotheitwo-weight adaptive filter [19].
example. When the entities involved are signals, such as
electrical voltages, the barrier--in the form perhaps of anAt the time of this early work, only a handful of people
electric network--becomes a filter in the sense of signalvere interested in adaptive systems, and the
processing. development of the multiweight adaptive filter just
beginning. In 1959, Widrow and Hoff at Stanford
Filters were originally seen as circuits or systems withUniversity were devising the Least-Mean-Square (LMS)
frequency selective behavior. The series or parallehdaptive algorithm and the pattern recognition scheme
tuned circuit is one of the most fundamental suchknown as Adaline (for "adaptive linear threshold logic
circuits in electrical engineering, and as a "wave trap”element”) [20, 21]. Aizermann and his colleagues were
was a crucial ingredient in early crystal sets. Moreconstructing an automatic gradient searching machine
sophisticated versions of this same idea are seen in tH22]. In Great Britain, D. Gabor and his associates were
IF strip of most radio receivers; here, tuned circuits,developing adaptive filters [23]. Each of these efforts
coupled by transformers and amplifiers, are used tavas proceeding independently.
shape a passband of frequencies which are amplified,
and a stopband where attenuation occurs. In the early and middle 1960s, work on adaptive systems
intensified Hundreds of papers on adaptation, adaptive
The usual method of estimating a signal corrupted bycontrols, adaptive filtering, and adaptive signal
additive noise is to pass the composite signal through @rocessing appeared in the literature. An important
filter that tends to suppress the noise while leaving thecommercial application of adaptive filtering in digital
signal relatively unchanged. The design of such filters icommunications grew from the work during this period
the domain of optimal filtering, which originated with of Lucky at the Bell Laboratories [24, 25].
the pioneering work of Wiener and was extended and
enhanced by the work of Kalman, Bucy, and others [14-n 1965 an adaptive noise-canceling system was built at
18]. Stanford University. Its purpose was to cancel the 60-
hertz interference at the output of an
Filters used for the foregoing purpose can be fixed orelectrocardiographic amplifier and recorder.
adaptive. The design of fixed filters must be based on
prior knowledge of both the signal and the noise, butSince 1965 adaptive noise canceling has been
adaptive filters have the ability to adjust their own successfully applied to a number of additional problems,
parameters automatically, and their design requires littlencluding other aspects of electrocardiography, the
or no prior knowledge of signal or noise characteristics.elimination of periodic interference in general [26], and
the elimination of echoes on long-distance telephone
Noise cancelling is a variation of optimal filtering that is transmission lines [27, 28].
highly advantages in many applications. It uses an
auxiliary or reference input derived from one or more Adaptive Line Enhancement (ALE) is a development of
sensors located at points in the noise field where thehe adaptive noise cancellation method. In this
signal is weak or undetectable. This input is filtered andapplication, the adaptive algorithm is directed towards
subtracted from a primary input containing both signalthe problem of enhancing one or more narrowband
and noise. As a result, the primary noise is attenuated osignals of unknown and possibly drifting amplitudes and
eliminated by cancellation. frequencies which are embedded in narrowband noise.
The ALE system is depicted in Figure 2.
Sometimes subtracting the noise from a received signal
would seem dangerous. If done improperly it could This system, which was introduced by Widrow et al
result in an increase in output noise power. If the[29], uses the measured signal at the desired response
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and a delayed version of itself as input. Suppose théelemetry, sonar, radar and other signal processing

signal d(n) consists of two components: a narrowbandystems. Correlation has several desirable properties,

component that has long-range correlations such as iacluding

sine wave, and a broadband component which will tend

to have short--range correlations [30]. 1. The ability to detect a desired signal in the
presence of noise or other signals.

The principle is that the delay should decorrelate the

noise while leaving the narrowband components 2. The ability to recognize specific patterns within

correlated. When functioning in a ideal way, the analog or digital signals.

adaptive filter output is an enhanced version of the

sinusoidal components. It is the filter output y(n) which 3. The ability to measure time delays through

is the required output. various media, such as materials, the human body,
RF paths, electronic circuits, etc.

Figure 2 illustrates a block diagram of the adaptive line

enhancer, where a delayed version of the input signal i&\s these properties indicate, correlation is essentially a

used as an input to the adaptive filter whose coefficienteomparison process. In fact, we use correlation daily

are adapted to best fit the portion of the input signalwhen we compare sounds, imagines, or other sensations

which is uncorrelated with the noise, i.e. the noise-freerelative to other sounds, imagines, or sensations stored

signal portion of the input, by minimizing the mean in our brain. The key function of the human comparison

squared error. The filter output is an enhanced version gbrocess is to measure mentally the degree of similarity

the input. between two or more parameters. Generally, this sort of
comparison is capable of discriminating extraneous
The computational Algorithm for the ALE is [31] forms of information and noise from a given seneum.

The comparison can be made in real time, or we can
mentally store the data until some later time.

L
y( n) - Z fm(n)x(n— m) (1) The mental correlation process works well where the
m=0 decision making process is not limited by time
constraints. However, in electronic systems we do not
x(n) = d(n-A4) (2)  usually have the luxury of performing correlation at our
leisure. Correlation must be performed in real time,
n) = agn)-yn) 3) requiring the use of electronic circuits that compatible
with the system in question.

fm(n +1) = fm(n) +2ue(n)x(n—m (4) The formula for autocorrelation algorithm is as below:

A direct implementation of the algorithm requires a l'——l
prior knowledge of delay factor D, which is also known y(p) = |= Z x(n)x(n+ K) (5)
as the decorrelation parameter, the adaptation parametér L

m, and the filter length L. k=0

Adaptive Line Enhancer is a method of optimal filtering In our case, the principle for autocorrelation is not
that can be applied whenever a suitable reference inpulomplicated. In frequency domain, the signal response
is available. The principal advantage of the method aréor LIBS spectrum is narrow banded, but the distribution
its adaptive capability, its low output noise, and its low for noise spectrum is wide banded. The autocorrelation
signal distortion. The adaptive capability allows the algorithm can decorrelate the noise signal and leave the
processing of inputs whose properties are unknown angrue signal unchanged (or just changed a little bit, due to
in some cases nonstationary. It leads to a stable systeghe spectrum bandwidth expansion). There is one
that automatically turns itself off when no improvement parameter in this algorithm should be selected, the
in the signal-to-noise ratio can be achieved. The outputorrelation factor L, if L is too large, that will lead to
noise and signal distortion are generally lower than thalvide bandwidth of true signal; if L is too small, we can
achievable with conventional optimal filter not achieve desired Signal to Noise Ratio (SNR)

configurations [32] [33]. improvement. So parameter L should be carefully
chosen both to improve the SNR and not to deform the
3.2. B. Autocorrelation algorithm true signal.

Correlation technique is used widely in
communications, instrumentations, computers,
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3.3. C. FIR linear phase low pass filter algorithm For antisymmetry condition,
h(n) =-h(M - 1 - n) (8)
Spectra
Input The choice of a symmetric or antisymmetric unit sample
i . response depends on the application. An antisymmetric
Filtering noise in FIR filter is not suitable as a lowpass filter because
time domain H(0)=0. Consequently, we would not use the

antisymmetric condition in the design of a lowpass
linear-phase FIR filter. On the other hand, the symmetry
condition yields a linear phase FIR filter with a nonzero

Remove backgroun response at w=0. So, the symmetry condition lends itself
noise in frequency do- to low pass filter. The frequency response of an FIR
main filter having a unit sample response h(n) that satisfies

the symmetry condition may be expressed as

Debiasing and _j‘*’('\/l—z_l)
Thresholding H(w) = H (w)e (8)
|
I Spectra where
output
H (w) =

Fig. 3. Low pass filter algorithm
M-=3)

2

Fig. 3 shows the flow chart of FIR linear phase low pass M-1n _

filter algorithm. hD 5> O 2 z h(n) cosw(M —1) 9)
n=

0
By observing data, we note that the spectrum signal in
time axis (corresponding to each channel) is low
frequency signal, and noise is random and high
frequency signal compared to spectrum signal. So, we
may design a low pass filter to pass spectrum signal and M-1 0
attenuate noise in the time axis for each channel. Therdd (W) = 2 z h(n) COSW—— ~ Ny (10)
is one more thing needed to be taken into account, and n=0 2
that is spectrum amplitude distortion problem. The
spectrum amplitude in time axis represents spectrum for M of even
density in different time, and this is a parameter that is
not tolerant of distortion. Based on above observations, ™M-1
we choose a linear phase low pass filter to process th@©(w) = —wD—E
spectrum signal in time axis. 2

for M of odd

M
5-1

(11)

An FIR filter of length M has a frequency response If we specify the frequency response at M/2 points in

M—1 w, aboveH,(w) equation constitutes dM/2e linear
—jwk —jwk equation for determining the coefficients {h(n)} of an
H(w) = z b.e 198 = z h(n)e . (6) linear phase FIR filter. Although the valueswfcan be
k=0 k=0 chosen arbitrarily, it is usually desirable to select equally
spaced points in frequency, in the range 0< w<p. Then
how to choose the values ¢f,(w) is the key of
designing linear phase filter, and it depends on the
design specification. IH,(w) change abruptly from the

M-1

In symmetry condition and antisymmetry condition, a
FIR filter has linear phase.

For symmetry condition, passband, wherd,(wy) = 1, to the stopband, where
H,(w,) = 0, it will lead to large sidelobes in the
h(n) =h(M -1 -n) (7) stopband. Instead of having an abrupt change, if we
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specify an intermediate value fét.(w) in the transition  Clearly, moving average system is a linear phase FIR

region, the resulting frequency response hadilter with impulse response
significantly smaller sidelobes in the stopband. The only
disadvantage is that the width of the transition region is 1
increased. However, the benefits usually outweigh theh(n) = M+ 1 (15)
one disadvantage. Further reduction in the stopband
sidelobes can be obtained by allowing for one or more
additional frequency specifications in the transition Its linear phase characteristic is very important because
band. In effect, the transition band is widened further toit prevents background noise from distortion.
achieve additional reduction in the stopband sidelobes.

After removing background noise, debias the DC
The question that we have not addressed is concernesbmponent, and threshold negative value.
with the values of the specifications in the transition
band. This problem has been considered in the technic@ 4. D. Eigenanalysis frequency estimation
literature by Rabiner, et al. (1970) [34]. In this paper the
optimum values of the specification in the transition
region are tabulated for a large variety of filter lengths.
The values given are optimum in the sense that the
result in minimizing the largest sidelobe in the stopband.
These tables are available in Appendix C of the’
textbook.

The spectral frequency estimation is processed in three
ftep. Fig. 4 is the flow chart of this processing

Spectra
input

We choose M=15, BW=1, and T1=0.43378296 from S
Table C.1 in textbook [35], and the corresponding linear pectra
phase FIR filter has the band width of 2p/15, the average
transition region width of 2p/15, and the maximum
sidelobe of -42.30932283 dB. H(v= {1, 0.43378296,

0, 0,0, 0, 0, 0}. Run matlab command

Inverse
b =fir2 (n, f, m) (12) FET

where b is the vector of FIR coefficients h(n), n is the

length of the FIR filter, f is the vector of frequency Eigenanalysis
points, and m vector is the amplitude values of frequenc
frequency points, or H(y. we get est(i]ma1ti0>r/1

h(n) = {0.0003, 0.0012, 0.0059, 0.0198, l Frequencies
0.0471,0.0835,0.1159, 0.1289, 0.1159, 0.0835, output

0.0471, 0.0198, 0.0059, 0.0012, 0.0003}. (13) Fig. 4. Eigenanalysis frequency estimation

Then, we use a ¢ program to implement this FIR filter,

and process spectrum data in the time axis for eaclRecent exiting technique is to average 30-50 single

channel. spectrum to get a quality spectrum. The purpose of this
processing is to find out how the average number affect

In fig. 9, we note that high frequency noise rides on athe estimation result. The 30 test spectra is averaged at

low frequency background noise in frequency domainthe number one through thirty, and every different

If the background noise is removed, it is clearly that theaveraged spectrum is further processed.

signal to noise ratio will be increased. we design a

moving average low pass filter to remove the The spectrum is taken by the spectragraph, and it's a

background noise. The moving average filter is definedsignal of frequency domain. In order to perform

by the difference equation eigenanalysis frequency estimation, the spectra signal
needs to be back to time domain, and so inverse FFT
algorithm is applied.

M
_ 1
y(n) = M+1 Z x(n—K (14) The Fourier transform is the mathematical foundation
n=0
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for relating a time or space signal to its frequency The signal matrix will have the eigendecomposition
domain representation.

P+1
To perform inverse Fourier transform, a complex _ "
number is required. The test spectra are real data serie§p - Z Aiviv, (18)
It is set as a real component of the complex number and i=1
the imaginary component of the complex number is set
to zero. Thus the eigenvectorsy,1, ....Vp + 1 sSpan the noise

Then subroutine of Eigenanalysis frequency estimatior?u_bspace 9f Rall with the identical elgehvaluqu. The
is called to perform frequency estimation. The following Principal eigenvectors ¥/..Vy span the signal subspace
is the brief description of eigenanalysis frequencyof both R,and $,, with eigenvalues ofjl+ ...y + ry,.
estimation [36] [37].

The eigenvalues of the principal eigenvectors, though,
The basis for the improved performance of theare composed of powers of both signal and noise so
eigenanalysis techniques is the division of thewhite noise does not contribute to the eigenvalue
information in the autocorrelation matrix or the data weighing of the noise-free signal subspace eigenvectors.
matrix into two vector subspaces, one a signal subspace
and the other a noise subspace. The eigendecomposition of the autocorrelation matrix

can be exploited in two ways to generate improved
Functions of the vectors in either the signal or noisespectral estimators, or more correctly, improved
subspaces can be used to create frequency estimatdrequency estimators, Retaining only the information in
that, when plotted, show sharp peaks at the frequencyhe signal subspace eigenvectors, that is, forming a
locations of sinusoidal or other narrowband spectrallower-rank approximation to R effectively enhances
components. These are not true PSD estimators becaugge SNR because of the omission of the contribution of
they do not preserve the measured process power N@jower in the noise subspace components. This is the
can the autocorrelation sequence be recovered byasis of principal component (signal subspace)
Fourier transforming the frequency estimator. Includedfrequency estimators. Noting that the eigenvectors are
in this class of eigenanalysis-based frequency estimatoigrthogonal and that the principal eigenvectors span the
are the Pisarenko harmonic decomposition (PHD) andame subspace of the signal vectors, then the signal
the multiple signal classification (MUSIC) algorithms. yectors are orthogonal to all the vectors in the noise

) ] subspace, including any linear combination
It was known that if the process consists of M real

sinusoidal in additive real white noise, the ACS is p+1
Yy ay =0 (19)
1+Quclk]  (16) k=M

for 1< i< M (or 2M in the case of M real sinusoidal).

_ ) ) o ) ) This property forms the basis of the noise subspace
in which R is the power of the ith sinusoidal ang, is  frequency estimators.

the noise variance.

M .
P, jonfkT  —jomfkT
22 e

i=1

The autocorrelation sequence normally is not known, so
In an analogous manner, the pth-order autocorrelatiotthat the above properties are mostly of theoretical, rather
matrix for the case of M real sinusoidal in white noise than practical, interest. The concepts, however, can be
has the structure extended to the covariance and modified covariance data
matrices that are a part of the exponential estimation
= techniques of the Prony method. It is shown in this
) — [ H T section that the data matrices have eigendecomposition
RP - Z E[Sisi TSs 1+ Qul (17) properties similar to the autocorrela?ion matrix? The
principal eigenvectors of the data matrix predominantly
span the signal subspace and the singular values of these
principal eigenvectors tend to be larger than the noise

: : ; : . subspace singular values. Thus the the singular values
Discussions from this point will concentrate on the X ; :
complex case; the real case is generally a simpl determined by a SVD of the data matrix are the basis for

. . . he separation of the eigenvectors into a mostly signal
fgtze'\r/]lsmn of the complex case with a change in rank '\/Ttsubspace and a mostly noise subspace.

The signal matrix gin this case will have rank 2M.
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The Prony method was introduced as a technique for thghe related M X M matrix B'BCC is positive definite

estimation of the parameter of a damped exponentiahecause both B and C have full rank M. If li for 1 i
model that approximates a given data sequence. Centrgf designates the eigenvectors, then

to the method is the solutionf T, in which Tp is the

order p data matrix of the covariance method of linear H oH T
prediction (C"B"BC) wi=liwi (25)

for 1< i<M. Premultiply the above Eq by matrix'Cto

x[p+1]  x[1] yield
T, = ' (20)
P (cHBHBCcc) wi=li cHwi (26)
X[N] X[N-p Define the vector
The modified Prony method, a variation of the Prony Vi = cH wi (27)

method for undamped sinusoidal modeling, involves the

modified covariance data matrix ) T
and with proper substitution it leads to the result

Tp
Tp* ] (2 O)

TpHTp Vi = li vV, (28)

(21) forl i M. The M nonzero eigenvalues of pthe p x

p matrix T,HT, are there identical to the eigenvalues of
the discussion which follows will focus on matrix Tp, the matrix B'BCCH: The remaining p-M eigenvalues of
but the conclusions will also be valid for the modified T,HT, are zero because AT, is of rank M. The

covariance data matrix corresponding eigenvectors of the nonzero eigenvalues

The discussion which follows will focus on matrix Tp, are given. Thus any principal eigenvector opHIT,
but the conclusions will also be valid for the modified will be a linear combination of the columns of'C
covariance data matrix. which is composed of signal vectors as shown above. It
can also be shown that any principal eigenvector of
Consider the noiseless complex exponential signallpHT, is a linear combination of the columns of B,
sequence which is also composed of signal vectors. The matrix Tp
will have M nonzero singular values, as these simply the
M square roots of the eigenvalues. The eigenvectors of the
x[n] = Z h.zZ" (22) zero eigenvalues of HT, or T T H are orthogonal to
k% the M signal subspace, or principal, eigenvectors
k=1 associated with the nonzero eigenvalues in the signal
subspace.
in which z, = exp (o  +j 2 tf ]T) and h, = Ax exp ) )
(iF,). Note that damped exponential are permitted adf the data has noise, the properties are not exactly true,
valid signals. Matrix Tp formed from the x[n] will have Ut theyl tend tlo be i’:\ppro?lmately true. Thus, thef M
rank M as long as the selected order p is within thep”_nCIpa singular values of agT matrix composed o
range M p  N-M (for the modified covariance NOISY samples ten_d to be larger than [th smalllest
matrix the rangeisM  p  [N-M]/2). The data matrix Similar values (which were exactly zero in the noiseless

T, can be decomposed as case). The M eigenvectors corresponding to the M
P principal eigenvalues of either AT, or T,T,H have
Tp=BC (23) fewer noise contributions than the noise subspace

eigenvectors corresponding to the p - M smallest

singular values. These statements have some
in which B an (N-p) X M matrix and C, and M X p justifications as a result of the analysis provided earlier.
matrix, are

It has been shown that retention of the signal subspace

Then we get or principal, eigenvectors effectively improves the SNR
for processes consisting of exponential in white noise by
TpHTp =cHBHBC (24) eliminating much of the noise contribution to an
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autocorrelation matrix or a data matrix.

M
1 1 H
Consider the correlation method PSD estimator, theRP - Z )\_kvkvk (36)
minimum variance PSD estimator, and the Yule-Walker k=1

autoregressive PSD estimator, The correlogram and MV

methods reply on the known or estimatedmay be used in lieu of Rand Ry-1 in the above

autocorrelation matrix Rp for the definition of the . ¢ .
spectral estimate equations to create spectral estimators with redu.ced
noise contribution due to the omission of the noise
H subspace eigenvectors.

P f) =Te (f)Re(f 29
CORR( ) () P (H (29) The simple idea of separating eigenvectors into signal
H » 1 a_nd noise §ubspaces based upon an e>_<aminatipn of
PMV( f) =T[e (f)Rp e( )] (30) either the eigenvalues of the autocorrelation matrix or

the singular values of the data matrix does not work well
in practice, especially with short sample records. The
while the autoregressive (AR) method depends on thé\IC order-selection criterion first introduced has been
autocorrelation matrix to obtain the AR parameters extended to handle the subspace separation problem.
Assuming |0 - I1 - ..Ip are the eigenvalues of the sample
autocorrelation matrix Rand assuming m<p, where m

1| _ R—l Qp 31 is the number of sinusoidal signals actually present in
~ p (31) the data, and N data samples, then
A Op
AIC[m] =
where the vectors and matrix have the following (37)
definitions
~ ) o -
rxx[o] r.)(x[p] p_m z )\i
Tp = 32)  (p-m)In —i=mtl | +(m(2p—m))
r.xx[ p] rxx[o] I_l )\i—(p— m)
Li=m+1 |
1
e(f) = (j27fT) (33) The number of sinusoidal in the signal subspace is
€ determined by selecting the minimum value of AIC[m].
ej 2mipT Wax and Kailath[1986] have reported some preliminary
results from use of the criterion of the above equation.
If the orthogonal eigendecomposition of Rp is 4. IV. RESULTS AND DISCUSSION
P H 4.1. Evaluation method
Rp = Z AV Ve (34) ' _ _
K=1 Use mean square signal to noise ratio to evaluate the
system.
in which the eigenvalues are ranked in decreasing N M
magnitude{ _1I, - .., and there are estimated to be M U1 . .ol
pr_inc_ipal components (M . p) t.hen the reduced rank M z Z Signal[i][j] E
principal eigenvector approximation tq &nd Ry SNR = 10|Og% i T\lll El {38)
1 , 12
M OSg Y 2 Noisd i[j]" O
H N
k=1
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where Signal[i][j] stand for signals, Noise[i][j] stand for

noise, i indexes time axis frame, and j indexes chani LIBS Original Spactrum (SEH 5]
number of frequency domain. Fig. 5

4.2. Autocorrelation Scheme

Figure 3 is one set of original data collected by the LIB
system, the 3 central peaks represent three signals, e
spectrum is strongly corrupted by the noise. [

In order to remove the noise from the signal, we appliti
autocorrelation algorithm. Figure 4 is the output of th £

algorithm, compared with the original data, some of tt |

random noise has been removed. In this application, !

selected correlation length L=3, because if L is large b

the output spectrum will be broadened, that will lead "

spectrum distortion. In this application, autocorrelatic P e L AR
is a good approach. fra—

4.3. Adaptive Line Enhancer Result of Autocorrelation
Figure 5 is the output of the adaptive line enhancer, \ Fig. 6
select filter length L=30, a value can be selected fromr

wide range. When a is larger than™2,0this algorithm
will not converge, so this is not the desired result. Whe

a is smaller than 18, that will cause slow convergence
and strong spectrum distortion. In this application, w #

choose a=510, the output of ALE will reduce the noise £ |
level but introduce some distortion near the spectrt

lines. Although ALE system can achieve SNIE
improvement in this application, but it is not as desirab F

120

1w

an -

as we expected. ol m l T
4.4. Low Pass Filter Scheme ; r T ' | Nww\wl{ﬂmu M»ﬁ

Result of Adaptive Line Enhancer
n=510"7 L=30
Fig.7
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Fig. 8. Six overlapped original spectra
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The fig. 8 is original overlapped spectra in si:
successive time points and the fig. 9 is th
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Fig. 9. Six overlapped processed spectra

corresponding processed spectra obtained by tim:
domain low pass filtering. From these two figures, we

Page 31

4.5. Eigenanalysis Frequency Estimation
r.
4l
i

o A T T R AT

Fig. 11. 3_D processed spectta

can see that processed signals are much better the

original signals. In processed spectra, we note that the
three peaks in the middle and one peak in the right are
signals, while in the original spectra, some noise peaks
are higher than signal peaks, and you can not distinguish

signal and noise.

L i Yd' ‘| e ." . _i'ﬁ."|Y".-r+f4thwlu!,w14 '1
] Bl |"ﬁ.| bl

I

; i i i J
0 200 4CC BCC 00 10c0 12C0

Fig. 10. 3_D original spectra

Fig. 12 is the plot of one of the prediction frequency
against spectral average number. When the average
number is less than 15, the prediction frequency is
serious fluctuation. When more than 20 spectra are
averaged. the estimation result of the spectra is
converged to a certain value. This result shows that the
signal to noise ratio is improve significantly when more
than 20 spectra are averaged.

5. CONCLUSION AND FUTURE
RESEARCH

Our frequency estimation indicate that an accumulation
of at least 20 single spectra is required to get a quality
spectrum.

The table 1 shows the signal to signal ratio of original
spectra and processed spectra obtained by three
algorithms. The low pass filter algorithm gives the best
result because of spectra characteristic of low frequency,
although it is very simple algorithm.

Fig. 10 is the original spectra plotted in 3_D. Fig. 11 is Spectra SNR (dB)
processed spectra obtained by low pass filter algorithm Original spectra 11.2
Comparing both figures, it is obvious that processed -
spectra are greatly improved in term of signal to nois¢ ALE algorithm 16.7
ratio. Autocorrelation scheme 15.4

Low pass filter scheme 24.3
MS State DSP Conference Fall'95
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Table 1 Phys. Fluids 14, 2708 (1971)

The distortion of spectral line is too serious with the [9] P.de Montgolfier, P. Dumont, Y. Mille and J. Viller-
method of adaptive line enhancer. Although the three™ = = " oo D4 ced Gas Breakdown: épectro-

peaks are enhanced, several small peaks appear around : . o
the bottom of the main peaks. This is not allowed for ?fg?'zg and Chemical Studies”, J. Phys. Chem. 76, 31

spectral analysis. The two parameter of a and L need to

be modified to seek the possibility to reduce this

distortion. [10] R. W. Stevenson, "Spectroscopic Examination of
Carbon Dioxide Laser-Produced Gas Breakdown”,

As we mentioned early, in this research, these PSD  Thesis, Naval Postgraduate School, Monterey, Cali-
methods only apply to a simple sample, which is one  forpjg (1975)

element of Cr with three spectral lines. Next step, a

more complicated sample with more lines may be use? . _ .
to test three DSP methods. 11] Leon J. Radziemski, Thomas R. Loree, David A.
Cremers, and Nelson M. Hoffman, Time-Resolved

We will continue to develop new DSP technique. Laser-Induced Breakdown Spectroscopy of Aero-
sols”, Anal. Chem. 55, 1246 (1983)
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