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ABSTRACT

This paper reports on design issues involved in
combining two public-domain paradigms to create a
parallel software environment for DSP programming.
MPI (Message-Passing Interface), a message passing
system, is an evolving standard for parallel computing.
Khoros is an integrated software environment for DSP.
The goal of this work is to describe and demonstrate a
software design that exploits Khoros and MPI parallel
libraries for the deployment of parallel DSP. The
resulting system enables parallel DSP using the Khoros
system for development and the MPI system for
performance portability. The new system provides MPI-
based toolboxes containing data parallel modules and
utilizes MPI as a means of communication between
modules. We also explore extensions to the Khoros
polymorphic data model that include the notion of data
distribution. This is an important concept for building
data distribution independent parallel libraries and of
particular interest in this paper, data distribution
independent DSP libraries..

1. INTRODUCTION

Khoros [17,25] is a powerful system, providing a visual
programming environment and a wide range of
development tools for the development of DSP
applications. Cantata [33], the visual programming
environment, provides a dataflow model for building
applications from collections of modules organized into
toolboxes. The application engineer builds a block-
diagram representation of the application using icons
that represent the various modules, visually linking the
icons together in order to specify the communication
flow of the design. Khoros provides several toolboxes
containing hundreds of modules for algorithms
pertaining to 2D/3D plotting, data manipulation,
scientific visualization, geometry, matrix operations,
image processing, as well as others. For example, the
matrix toolbox contains modules that perform various
matrix operations such as matrix addition and LU
decomposition.

MPI (Message-Passing Interface) [13] is a standard f
message passing introduced by the MPI Forum
collection of researchers from industry, academia, a
national laboratories) in April 1994. MPI has its roots i
many previous message passing systems and there
provides most of the features found in those messa
passing systems such as point-to-point and collect
operations. Two of the most important and relativel
new aspects of MPI are its support for libraries an
inter-group communication. These two features a
very important for the development of parallel dataflow
applications. Using MPI, parallel libraries can b
written independently of one another and independe
of the architecture, then used together in a sing
application. Inter-group communication allows group
of processors that have been logically separated dur
the process of task subdivision to communicate with o
another.

The goal of this project was to integrate Khoros an
MPICH[6,9] , a model implementat ion of MPI
developed jointly by Argonne National Laboratory an
Mississippi State University, merging the developme
features of Khoros with the portability and functionality
of MPI in order to provide a plat form for the
development of portable parallel DSP application
This provides application engineers with a powerful an
familiar environment for developing and prototyping
parallel DSP applications with little input required from
the application engineer in order to make the applicati
pa ra l le l . Para l le l l i b ra r ies and in te r-g roup
communication supported by MPI allow us to achiev
these forms of parallelism within the Khoros and MP
system:

• data parallel modules MPI is used to build a
Khoros toolbox of data parallel operations an
algorithms.

• parallel flow between modules Inter-group
communication and other MPI communication
techniques provide a model for parallel flow of dat
be tween modu les . Add i t i ona l l y, th i s
communication can be initiated through an abstra
“polymorphic” data layer that hides issues such a
data distributions and format.
MS State DSP Conference Fall’95
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Figure 1. Screen Snapshot of the Craftsman Interface

Figure 2. Screen Snapshot of the Composer Interface
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• task parallelism Through Khoros, a graph of
independent operations is built. Using MPI’s
support for library development, data parallel tasks
with no data interdependencies can execute
concurrently.

An important aspect to developing this system is
determining the correct abstractions to use for data
representation. The choice of abstraction greatly affects
the efficiency of both the data parallel modules and the
inter-module communication. The data abstraction is
also a very important factor in determining how data
parallel libraries will be structured and designed in
general.

This paper first introduces the reader to both the Khoros
and MPI systems. A description of the integrated
Khoros and MPI system as well as the key design issues
and challenges are reviewed followed by a discussion of
parallel versions of a two basic DSP operations.

2. BACKGROUND

This section introduces both Khoros and MPI in some
detail. We do not attempt to cover all aspects of either
system (as that is beyond the scope of this paper) but do
attempt to detail aspects of each system relevant to the
work we have done.

2.1. Khoros

Many DSP applications are developed by combining
and reusing well-understood libraries for basic DSP
operations. Khoros provides a large set of DSP
operations as well as an environment where new
libraries of DSP operations can be built and developed.
The development environment includes support for
source code development, manual page development,
copying existing objects, binary and library compilation
and structuring.

Another important aspect of Khoros is its visual
environment (called Cantata) for combining DSP
operations into “workspaces”. Khoros workspaces
resemble dataflow graph structures and can be thought
of as visual programs that can be “run”.

Khoros also provides a general purpose data abstraction
that provides a device-independent method for
accessing data (these services are called the “data
management services” in Khoros) using different
models. The most general of the models supported by
Khoros is the polymorphic data model which allows
applications to access the data in an application specific
way. For example, a matrix multiplication operation
might access two-dimensional data as a matrix while a
scalar multiplication operation might access the data as

one-dimensional vectors.

The manual set for Khoros [17] provides detaile
informationon Khoros. Additional information on
Khoros can be found at the Khoral Research, Inc. site
the World Wide Web [18].

2.2.1. Development Environment

As noted previously, the Khoros developmen
environment provides support for many different aspec
of program development. The two main tools tha
provide this support are “Craftsman” and “Composer
Khoros also provides an interactive GUI builder
“Guise”.

Craftsman Khoros operations are organized as a set
toolboxes. Examples include a “matrix” toolbox tha
prov ides matr ix operat ions such as addi t ion
multiplication, transposition and a “wavelet” toolbox
that provides operations based on wavelet transform
Craftsman (see Figure 1) provides an interface f
constructing new toolboxes and modifying existin
toolboxes (e.g., adding or removing operations from th
toolbox).

Composer Khoros toolboxes consist of a set o
possibly different kind of objects. These objects may b
one of the following types:

• kroutine An operation without a graphical
interface usually created with C.

• xvroutine An operation with a built in graphical
interface usually created with C.

• pane A graphical user interface that can serve as
wrapper for other Khoros objects.

• script  A shell script.

• library A set of functions that implement various
operat ions possibly used by krout ines an
xvroutines.

Composer (see Figure 2) provides an interface f
modifying an object and it’s associated resources (i.
man pages, C source files, etc.).

2.1.2. Cantata

Figure 3 shows a very simple workspace from Canta
Each of the boxes represents an operation on the da
Lines entering the left edge of a box represent input
the operation (data is communicated through shar
files or shared memory). Lines exiting the right edge o
a box represent the output of the operation. If the sm
window icon in a box is clicked with the mouse, a
“pane” is activated that allows the user to modify th
MS State DSP Conference Fall’95
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Figure 3. An Example Khoros Workspace

Figure 4. A Pane from a Khoros Application
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parameters of the operation (see Figure 4).

2.1.3. Khoros Data Model

One of the goals of Khoros is to provide a framework
upon which independently developed libraries can work
together. Of central importance to this goal is the ability
to encapsulate the details of data storage, transfer, and
access. As shown in Figure 5, Khoros provides two
levels of abstraction. At the lowest level are the “Data
Management Services” which manage many of the low
level details of data management; including data
transport and file format. Above this level are various
data services which provide abstract views of the data.
The most widely used and most general data service is
the polymorphic data service (also cal led the
polymorphic data model). The data services provide the
means by which applications can access the data in a
format which is natural to the application. Although
there are other data services (e.g., geometric data
service) we only discuss the polymorphic data service in
this paper.

Polymorphic Data Model The polymorphic data
model consists of several attributes:

• mask   provides validity informatio

• location   location in three dimensional space

• time  location in time

• map   used for compression

• value  the actual values of the data

Of primary concern is the “value” component which
contains the actual data values. It can be thought of a
series of volumes in time (width, height, depth
elements, time). For example, data that represents
temperature and salinity of the ocean for the month
January could be represented as:

• (x,y,z) three dimensional location in the ocea
(corresponds to width, height, depth in the valu
segment).

• time the hour and the day when the data samp
was taken.

• temperature,salinity these are the “elements” of
the data. A color picture might have three elemen
(red, green, blue).

Data can also have other attributes associated with
(e.g., type - integer, double, float, etc.).

Application Programmer’s Interface Khoros
provides a set of primitive functions for accessing an
MS State DSP Conference Fall’95

Figure 5. Khoros Design for Supporting Abstract Data Access
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manipulating data objects. Some of the more important
functions include:

• Functions for creating and destroying data objects:

kpds_open_input_object() - oens a data object for
input

kpds_open_output_object() - opens a data object
for output

kpds_close_object() - closes an object

• Functions for setting, copying, and retrieving object
attributes:

kpds_get_attributes() - gets attributes associated
with a particular object

kpds_set_attributes() - sets attributes of a particular
object

kpds_copy_object() - copies the data and attributes
of an object to another object

• Functions for reading and writing an object:

kpds_put_data() - writes data to an object

kpds_get_data() - reads data from an object

The Khoros manual set [17] has documentation on the
complete set of API functions.

2.2. MPI

MPI (Message-Passing Interface) is a standard for high-
performance portable message passing that supports an
explicit MIMD message passing model. One of the key
goals of MPI is support for safe message passing
libraries, something missing in most of the message
passing systems that existed prior to MPI.

The rest of this section introduces the MPI interface and
gives a gentle introduction to writing programs with
MPI. Emphasis is also placed on writing libraries with
MPI. The discussion uses the C bindings for MPI
functions, although Fortran bindings for each function
are set forth in the MPI standard. For a complete
description of the MPI standard, the MPI standard
document contains a full description of the MPI
interface. Additional information on MPI can be found
at the MPI World Wide Web page [10].

2.2.1. Basic MPI

Although MPI is a fairly large specification in terms of
the number of functions in the API, it supports a fairly

small number of orthogonal concepts:

• Point-to-Point Communication

• Collective Communication

• Process Groups

• Communication Contexts

• Virtual Topologies

• Profiling

Although there are over 120 functions in the MP
interface, we concentrate our discussion on th
following nine functions: MPI_Init, MPI_Finalize,
MPI_Comm_rank, MPI_Comm_size, MPI_Bcast
MPI_Send, MPI_Recv, MPI_Comm_sp l i t ,
MPI_Comm_dup, and MPI_Intercomm_create.

Environment All MPI programs must initialize and
close the MPI environment. This is accomplished wit
the MPI_Init and MPI __Finalize functions. A minimal
MPI program, as shown below, must have these tw
functions.

As multiple instances of the previous code may g
instantiated during a parallel execution, functions fo
determining the number of instances of the progra
(size or number of processes) and a position (rank
collection of instances) are necessary.

#include <mpi.h
main (argc, argv)
int argc;
char **argv;
{

MPI_Init(&argc, &argv);
MPI_Finalize();

}

#include <mpi.h
main (argc, argv)
int argc;
char **argv;
{

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD,

&size);
MPI_Comm_rank(MPI_COMM_WORLD,

&rank);
MPI_Finalize();

}

MS State DSP Conference Fall’95
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As can be seen from this simple code, the first argument
to bo th the s ize and rank func t ions is
MPI_COMM_WORLD. MPI_COMM_WORLD is
known as a communicator and contains information
about all processes in the current MPI program
execution. It is initialized by the MPI_Init call.

Communicators Communicators may contain various
types of information, but the two most important
elements of a communicator are a process group and a
communica t ion contex t . Process groups and
communication contexts serve two very important
functions in MPI:

• Scope Groups scope an MPI operation by limiting
the processing elements that participate in an
operation. This is important, for example, in
collective operations where one may not want the
group of al l processes to part icipate in the
operation. In this case, a communicator other than
MPI_COMM_WORLD would be used.

• Safety Communication contexts provide separate
message spaces or message con tex ts to
applications. This is especially important when
independently written libraries are used together in
the same program.

Initially, MPI_COMM_WORLD is the only defined
communicator. Two important operations that can be
used to cons t ruc t new commun ica to rs are
MPI_Comm_dup and MPI_Comm_split.

The output communicator from MPI_Comm_dup
contains the same group as the input communicator but

a different communication context. MPI_Comm_split
splits or divides the group of a communicator as well as
providing a new context. In the above example, the
output communicator from MPI_Comm_split will
consist of all odd processes if the process’ rank is odd or
all even processes if the process’ rank is even.

Until now, we have only mentioned one type of
communicator. The communicators we have seen are
called “intercommunicates”; communication only
occurs wi th in one group. MPI a lso suppor ts
communication between two distinct groups through
“ in te rcommun ica to r.” In con t ras t to an
intracommunicator, intercommunicators consist of two
dis jo int groups and are constructed from two
intracommunicators with MPI_Intercomm_create.

Point to Point MPI provides two basic functions for
sending and receiving messages. MPI_Recv receives
messages that are sent by MPI_Send.

In this program, process 0 sends a message to process 1.
The message consists of one integer (count=1
type=MPI_INT is sent from message). A communicator
must be specified for all communication operations (in
this case MPI_COMM_WORLD is used) as well as a
tag. Tags provide another level of selectivity; the tag of
the send must match the tag of the receive.

MPI provides several variations on basic send and
receive operations. Send and receive operations may be

#include <mpi.h>

main (argc, argv)
int argc;
char **argv;
{

int      rank, size;
MPI_Comm dup_comm, split_comm;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD,

&size);
MPI_Comm_rank(MPI_COMM_WORLD,

&rank);

MPI_Comm_dup(MPI_COMM_WORLD,
&dup_comm);

MPI_Comm_split(MPI_COMM_WORLD,
rank%2, 0, &split_comm);

MPI_Finalize();
}

#include <mpi.h>

main (argc, argv)
int argc;
char **argv;
{

int rank, size, tag=1, count=1;
int message;
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD,

&size);
MPI_Comm_rank(MPI_COMM_WORLD,

&rank);

message = rank;
if (rank == 0)

MPI_Send(&message, count, MPI_INT,
tag, MPI_COMM_WORLD);

else if (rank == 1)
MPI_Recv(&message, count, MPI_INT,

tag, MPI_COMM_WORLD,
&status);

MPI_Finalize();
}
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non-blocking. There are also different send modes that
provide different protocols for sending (e.g., a
synchronous send that does not complete until the
receive operation on the destination process has begun).

MPI provides several variations on basic send and
receive operations. Send and receive operations may be
non-blocking. There are also different send modes that
provide different protocols for sending (e.g., a
synchronous send that does not complete until the
receive operation on the destination process has begun).

Collective Collective operations work on a group of
processes (specified in a communicator). Most MPI
collective operations can be categorized according to the
data motion of the operation:

• One to all One process, the “root”, contributes
data that is sent to all others. An example of this is
the broadcast operation MPI_Bcast.

• All to one All processes contribute data that is sent
to only one of them. An example is a gather
operation where a vector is distributed among a
group of processes. After the gather, the “root”
contains the whole vector.

• All to all All processes contribute data, all
processes receive data. An example would be an
allgather operation that can be thought of as a all-
to-one gather followed by an one-to-all broadcast.

The following program illustrates the broadcast
operation.

After the broadcast operat ion al l processes
MPI_COMM_WORLD contain 999 in message. On
important aspect of MPI collective operations is that a
processes in the communicator group (in this examp
the communicator was MPI_COMM_WORLD) mus
call the collective operation.

2.2.2. Writing Parallel Libraries with MPI

MPI features for library safety provide an environmen
where application programmers can expect reliab

#include <mpi.h>
main (argc, argv)
int argc;
char **argv;
{

int rank, size;
int message;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD,

&size);
MPI_Comm_rank(MPI_COMM_WORLD,

&rank);

if (rank == 0)
message = 999;

MPI_Bcast(&message, count, MPI_INT, 1,
MPI_COMM_WORLD);

MPI_Finalize();
}

MS State DSP Conference Fall’95

Figure 6. Example communicator construction and structure for task parallel applications.

Task-Parallel Calls:
w = f1(x; G1) ||  z = f2(y; G2)

MPI_COMM_WORLD

Message Structure

split

•
• •

••
• •

••
•

• • •
••
• •

••
•

x w=f1(x)

G1 G2

y z=f2(y)

comm_G1 comm_G2

Disjoint Communicators
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Figure 7. Example communicator construction and structure for dataflow application.

Dataflow parallel calls:
w = f1(x; G1),    z = f2(w,y; G2)

MPI_COMM_WORLD

Message Structure

split

•
• •

••
• •

••
•

•
• •

••
• •

••
•

x w=f1(x)

G1 G2

z=f2(w,y)

intercomm_G1+G2

Disjoint Communicators

intercomm_create
intercomm_G1+G2

Bi-partite graph structure
message-passing behavior without sacr i fic ing
performance. The use of separate communication
contexts (i.e., distinct communicators) by different
libraries (or different library invocations) insulates
communication internal to the library execution from
external communication. This allows the invocation of
the library even if there are pending communications,
and avoids the need to synchronize each entry into and
exit from library code. A treatment of writing libraries
with MPI is available in [30].

Figure 6 il lustrates a possible way to structure
communicators for a task paral lel appl icat ion.
MPI_COMM_WORLD is fi r s t sp l i t (us ing
MPI_Comm_split) into two distinct communicators,
comm_G1 and comm_G2. Two separate tasks are
invoked upon the two communicators. Figure 7 further
shows how dataflow communication might occur
between two process groups using intercommunicators.
MPI __COMM_WORLD is fi r s t sp l i t us ing
MPI_Comm_split, then joined in an intercommunicator
relationship using MPI_Intercomm_create. The data is
first passed through function f1 in the left side of the
intercommunicator. The result is then passed to the right
group and passed through function f2.

2.2.3. MPICH Implementation of MPI

MPICH [6,9] is a freely available implementation of
MPI jointly developed at Argonne National Laboratory
and Mississippi State University. It currently supports a
wide range of platforms from supercomputers (e.g.,

Cray YMP, C90), parallel computers (e.g., IBM SP2
Intel Paragon), to networks of workstations. MPICH ca
be retrieved from: ftp://ftp.erc.msstate.edu/pub/mp
mpich/.

3. KHOROS AND MPI INTEGRATED
ENVIRONMENT

The design of an integrated MPI and Khoro
development environment for portable parallel DS
applications consisted of the following:

• An investigation of the Khoros 2 system as
applies to DSP programming in order to recogniz
the areas that can be effectively and efficientl
parallelized through integration with MPI.

• Definition of a “runtime” startup mechanism tha
Cantata can use with various parallel hardware.

• Extension of the Khoros data representation syste
to include support for data distribution.

• Design of a communication layer between parall
modules using the inter-group communicatio
support provided my MPI.

• Investigation of approaches to optimizing Khoro
execution for high-performance computing b
compiling Cantata workspaces.
MS State DSP Conference Fall’95
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These issues are covered in detail in the following
sections.

3.1. Parallel Process Startup

Process startup is not currently defined by the MPI
standard, leaving these decisions to be made by the
various implementors of MPI. For the MPICH
implementation, process startup for one of the
communication devices used in this project, known as
the p4 device, requires the existence of a special file as
well as special command line arguments to the
programs. This file contains information about the
programs to run and the machines those programs are to
be run on, while the command line arguments identify
the location of this file. Each MPI program when it calls
MPI_Init, accesses the low-level p4 device code, which
coordinates global initialization of all processes, such as
assignment of unique process numbers. Since MPI
programs that rely on the p4 device will not run
correctly if these setup files are not created, it was
necessary to bypass the Cantata process startup
mechanism and create our own. Also, Cantata runs all
modules on the same machine; MPI allows us to use all
of the resources available, which is highly desirable.

Internally in the Cantata code, functions were added to
take care of part of the MPI setup. These functions, in
short, examine all the internal data structures used to
house information about the workspace and modules
within the workspace, identifying the ones associated
with the parallel toolbox. From each of these identified
data structures, these functions extract information
about how many processes to use for each module as
well as what connections to other parallel modules exist;
the combined information is then written to a file. This
plan seemed easy at first, but navigating the Khoros data
structures proved to be a laborious and time-consuming
task.

Once the file is created, a script called kmpirun
transforms it into the special file used by the p4 device,
starts up the parallel module programs, and starts up a
master program called kmpihost. The kmpihost
program, along with a special KMPI_Init function, was
used to create the communicators required for safe
communication between and within parallel modules.
Each parallel module has a communicator called
KMPI_COMM_WORLD, as we l l as
intercommunicators with which the module can
communicate with its connecting modules.

Shown in Figure 4 is a pane for a parallel module, with a
slider bar the user can manipulate to specify the number
of processors on which to run the module. One of the
deficiencies of the current p4 device is the inability to
pass different command line arguments to different
programs, which inhibited progress of the original
project plans. For this and other reasons relating to

difficulties in mastering Khoros programming, the us
of the p4 device was abandoned temporarily in favor
a much simpler device so that development of th
parallel toolboxes could begin. Unfortunately
simplicity came at the cost of much of the portability
provided by the p4 device.

Currently, the MPI-2 Forum is working on adding
additional features to the MPI standard, including som
support for dynamic process startup, which shou
greatly simplify the Khoros process startup problem
Proposed MPI_Spawn and MPI_Spawn_multipl
functions allow dynamic creation of MPI processes
while the MPI_Connect and MPI_Accept function
allow two separate sets of MPI programs to engage
communication. These additional features would enab
the kmpirun script to be bypassed, and all proce
startup could take place within Cantata. For examp
the kmpihost program could be integrated into Canta
with the additional task of starting up all of the paralle
modu les w i th MPI_Spawn or, more l i ke ly,
MPI_Spawn_multiple. The separate modules cou
connect to each other using MPI_Connect an
MPI_Accept, which will create intercommunicators
between them, relieving Cantata of this task. The
MPI-2 additions are still being debated, and it may be
while before implementations exist.

3.2. Extension of the Polymorphic Data Model for
Distributed Data

One of the challenging problems of parallel librar
development is effectively managing data distributio
The polymorphic data model provided by Khoro
(Ptolemy[23] has a similar approach) provides
framework for application domain independen
interpretation of data. In this section, we introduc
extensions to the polymorphic data model that provide
data distribution independent interpretation of data. Th
is important since data distribution and how it is handle
in a parallel program or library can be one of the mo
important aspects of performance[2,7].

3.2.1. Data Distribution Fundamentals

The extensions we propose later in this section revol
around two fundamental concerns about how data
actually distributed among processors.

Virtual process topologies Processes can be though
of as having a topology or structured layout. Virtua
topologies provide a convenient naming mechanism f
process groups as well as providing a more natural w
for some applications to logically represent th
communication pattern of the processes. Although w
do not use MPI topologies directly in our propose
extensions, we do note that MPI provides support f
two types of virtual topologies: cartesian and graph.
our work, we limit our discussion to cartesian topologie
MS State DSP Conference Fall’95
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with a maximum dimension of five as this maps to the
five dimensional polymorphic data model.

Distribution types Data may be distributed
differently along each dimension of the data. How the
data is actually distributed is dependent on the size of
the data (N ) in a dimension and the number of
processes in a dimension (P ). There are three basic
types of distributions that we consider:

• linear Data is distributed linearly among
processes. Each process receives N=P data items
with process p receiving data elements [[p * (N/P );
..., ((p + 1) * (N/P ) - 1)].

• cyclic Data is scattered cyclicly among the
processes. Each process receives N=P data items
with process p receiving elements [p, P + p, 2P + p,
...].

• all This is not a “true” distribution since data is
replicated on each process, but in many cases this is
exactly what is desired by an application to increase
performance (traditional tradeoff between time and
space).

An important generalization of the linear and cyclic
distributions is to consider each element to be a “block”
of data elements with a particular block size. This is an
important generalization since the linear and cyclic
distributions can be thought of as specialized cases of
the block linear and block cyclic distributions. For
example, the linear distribution can be thought of as a
block linear distribution with the block size set to 1 and
the cyclic distribution can be thought of as a block
cyclic with block size set to 1.

We extend the polymorphic data model by specifying
the distribution type in each dimension as well as the
virtual process topology.

3.2.2. Data Distribution in the Polymorphic Data
Model

In order to specify the distribution of data in the value
segment of the polymorphic data model, we propose the
addition of a distribution segment to the polymorphic
data model that parallels the structure of the value
segment. The distribution segment has five dimensions:

• width distribution

• height distribution,

• depth distribution,

• time distribution,

• element distribution.

Each of these dimensions is used to specify how data
to be distributed in the corresponding dimension of th
value segment. The default distribution of eac
dimension is the all distribution. This implies that in th
default case, data is replicated in each dimension
each process (i.e., all processes get all the data).

Another aspect of a distribution is the block size. Thu
another segment of the polymorphic data model is the
the block segment for specifying the block size of linea
and cyclic distributions. For all distributions, the bloc
size is ignored.

• block size of width distribution,

• block size of height distribution,

• block size of depth distribution,

• block size of time distribution,

• block size of element distribution.

3.2.3. Virtual Topology in the Polymorphic Data
Model

Corresponding closely to the distribution segment is t
topology segment used to specify the process topolo
The topology segment contains information about th
number of processes in each dimension:

• process topology width,

• process topology height,

• process topology depth,

• number of processes in time dimension,

• number of processes in element dimension.

By default, all dimensions are set to one except for th
topology width which is initially set to the number of
processes in the data parallel program. Combining t
topology and distribution information provides all that i
necessary to actually distribute the data.

3.2.4. Access to Global and Local Information

So far, we’ve seen three new segments that are neede
fully specify data distribution over a set of processes. A
addition problem is that one may want either a “globa
or a “local” view of the data. For example, the proces
may want to know the total size of a vector as well as th
length of the sub-vector that is available locally. A
process may also want to know both the number
processes in a virtual topology dimension as well as t
process’ rank in that dimension. These problems a
solved by having both a local and global handle to ea
MS State DSP Conference Fall’95
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data object.

Initially a global handle is opened using the existin
Khoros open functions, providing access to the glob
view of the data. Since the object is a distributed obje
this handle cannot be used to access the actual data
serves only as a description of the dimensions a
properties of the data. The application programmer th
sets distribution and topology attributes on this “globa
handle. A call is then made to a new Khoros functio
that actually applies these attributes to the data a
creates a new “local” handle. The local handle contai
information about how much data is available locally a
well as information about the location of the process
the virtual topology. The actual syntax for this process
described in Section 3.4.

An important thing to note related to global and loca
views of data is that although the proposed extensions
the polymorphic data model resemble a distribute
shared memory model or the distribution features
High Performance Fortran, we do not propose that t
polymorphic data model maintain memory coherenc
when data is replicated or shared in multiple process
We assume that it is the responsibility of the applicatio
programmer to maintain memory consistency. We d
not believe this to be overly restrictive since it follow
current practice for many distributed memory messa
passing libraries[2]. If memory consistency is no
maintained, we consider the program to be erroneous

3.2.5. Example: Distribution of a 1-D Vector

Assume that we have a 1-D vector of length N = 10 (
MS State DSP Conference
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Figure 8. Distribution of a 1-D Vector on a 2-D
Process Topology
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the value segment, width = 10) with a linear distributio
and a 1-D process topology consisting of P =
processes. In this case it is easy to see each that pro
will receive two elements. Suppose now that we have
2-D 2x2 (width = 2, height = 2) process topology. In thi
case, data will be distributed linearly in the width
dimension and replicated in the height dimension
shown in Figure 8. Data that is of lower dimensionalit
than the process topology is replicated in one or mo
dimensions.

3.3   Parallel Inter-group Communication

MPI does not conta in a model for co l lec t ive
communication between two distinct groups; howev
we believe these type of operations to be very importa
for dataflow computing with message passing
Extensions to MPI that support this type of collectiv
operation provide a natural interface for describing da
movement from one group to another as well as a
interface by which the natural parallelism of group t
group communication can be exploited. The addition
concern of data distribution further complicates th
group to group communication model.

One of the main tradeoffs in data parallel libraries is th
decision whether or not to redistribute data befo
performing an operation on the data. The choice is eith
to use a non-optimal algorithm on the data as it is or
use an optimal algorithm after redistributing the dat
With many dataflow applications, the data is bein
moved so redistribution can occur during transit wit
little additional cost. Figure 9 illustrates the use o
collective data distribution independent communicatio
between data parallel modules. This section introduc
an MPI model for inter-group communication and
briefly discusses algorithms for data distributio
independent inter-group communication.

3.3.1. A Model for MPI Collective Inter-Group
Operations

In [29], we propose a set of intercommunicato
collective communication extensions to MPI fo
consideration in MPI-2. Figure 10 illustrates one of th
calls that we have proposed: intercommunicato
allgather. An intercommunicator allgather can b
thought of as a gather operation on one side of t
intercommunicator followed by a broadcast to a
processes on the other side. Communication patte
such as this one are very useful for describing inte
group collective operations at an abstract level witho
concern for how many processes are in each group.
will use this MPI-based terminology when describin
the types of inter-group collective operations needed f
implementing inter-group distribution independen
communication.
Fall’95
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Figure 9. Data Distribution Independent Inter-Group Communication

Figure 10. Inter-Group Collective Allgather Operation
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kpds_set_attribute (object,
   KPDS_VIRT_TOPOL,
   2,3,4,0,0);
kpds_set_attribute (object,
   KPDS_DATA_DIST,
   KLINEAR,KCYCLIC,KALL,KALL,KALL);
kpds_set_attribute (object,
   KPDS_BLOCK_SIZE,
   15,5,0,0,0);
kpds_distribute(object);
3.3.2 Data distribution Independent Inter-Group
Communication

Determining the best algorithm for inter-group
communication can be quite complex especially whe
considering hardware issues (e.g., the bandwidth mig
be much lower between the two groups than with
either of the groups - a group of paragon processes i
group communicating over 10Mb/s ether net to a grou
of SP1 processes). Adding to the complexity o
analyzing these types of operations are the virtu
topology and data distribution aspects we hav
introduced.

A naive approach to this problem is to use concurre
gathers in consecutive dimensions until all the da
resides in a single process. This data is then transmit
to one process in the remote group. The remote gro
performs concurrent scatters in each of its dimension
For linearly distributed data, simple MPI_Gather an
MPI_Scatter operations can be used. For oth
distributions, the MPI_Gatherv and MPI_Scatter
operations can be used to reorder the data into a lin
distribution. This approach works and is O(logP ) (wit
a potentially large constant). Each gather (and scatter
O(logP ) with P equal to the number of processes in t
current dimension. Distributing data from a 10x1
process topology to a 2x4x4 process topology
2O(log10) + O(log2) + 2O(log4). Although this does
work it does not exploit any parallel ism in the
connection between the two groups and potentially us
a large amount of temporary storage space for the gat
and scatter operations. However, environments whe
the inter-group connection is relatively slow (compare
to the speed of the intra-group connections) and the d
set is small, this approach may be among the fastest.

Other algorithms that take advantage of concurrency
the network are possible. For example, it is possibl
through a recursive approach, for each process in t
sending group to determine the set of remote proces
to whom the process should send data as well as
particular data needed by each remote process. O
this l ist has been made, the intercommunicat
collective MPI_Alltoallv can be used to effect the
transfer. The efficiency of this operation is depende
upon the complexity of the intercommunicator alltoall
operation. All-to-all operations on a single group hav
been studied extensively, however little (none that w
know of at this time) study has been made of intergrou
all-to-all operations.

3.4 . API fo r In tegra ted Khoros and MPI
Environment

The current Khoros polymorphic data model API i
fairly simple, allowing the programmer to retrieve
store, and manipulate data objects with just a fe
functions. These functions have already been describ
MS State DSP Conference
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previously and will not be repeated here. Targetin
simplicity as well as backwards compatibility with
existing applications, the new API for distributed
polymorphic data types is kept as close to the original
possible. Only one new function is added, which will b
optional within an application, and a number o
attributes are combined with the existing set in order
al low the programmer to flexibly specify data
distribution.

3.4.1. Opening Input Objects

The actual function for opening input objects
kpds_open_input_object, is kept the same, but t
semantics are changed depending on the input argum
to the function. Normally, the argument is the name of
file, but we can allow this to be something similar to
“mpi=2”, which will accomplish two goals. The “mpi”
notifies kpds_open_input_object that the object is n
just a normal file, but resides in the memory space
some other group of processes (from here on referred
as the input group) and needs to be received from the
using MPI point to point or collective communication
calls. The “2” gives the application number of the inpu
group, and specifies which intercommunicator to use f
commun ica t ion w i th the inpu t g roup . The
kpds_open_input_object routine returns the “globa
handle to the distributed object, representing the glob
view of the data object.

3.4.2. New Attributes

In order to access the data, the kpds_set_attribu
function will be used to define the values of additiona
attributes. These additional attributes, along with the
default values and a short description of their functio
are listed in Figure 3.4.2. With these attributes it i
possible to both define a virtual topology as well as ho
the data will be distributed over that topology. Fo
example, the following code segment would define
2x3x4 topology, and distribute a 100x100x100 cub
block linear over the width, block cyclic over the heigh
and “all” over the remaining dimensions.
Fall’95
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Attribute Default Value Description

KPDS_VIRT_TOPOL n,1,1,1,1 The shape of the virtual topology
(n is the number of processes)

KDPS_DATA_DIST KALL, KALL, The data distribution over the
KALL,KALL, virtual topology. Value values
KALL are KLINEAR, KALL, and KCYCLIC.

KDPS_BLOCK_SIZE 1,1,1,1,1 The block sizes for distribution along
each dimension. For the “all”
distribution, this value is meaningless.

Figure 11. Additional Attributes for Data Distribution
3.4.3. Distribution of Data

Once the topology and distribution attributes have been
set, a new polymorphic data function, kpds_distribute, is
used to distribute the data in the correct manner,
returning a handle to the process’ local view of that data.
This function behaves differently depending on where
the data resides. If the data is in a file on disk, the root
processor will read the data from disk and distribute it to
all of the processors in the correct manner. However, if
the data resides in the memory space of an input group,
the data from the input group needs to be sent to the
receiving group over the intercommunicator connecting
them. This implies some sort of coordination between
the root nodes of the two intercommunicators in order to
establish the data distribution of the input group and the
best way to communicate that data in such a way that it
results in the correct distribution within the receiving
group. This has already been discussed somewhat in
Section 3.3. It is important to note that the local handle
returned by kpds_distr ibute can have different
information for each of the processors, since the local
data sizes could be different if the distribution is not an
even one. The kpds_distribute function is collective and
must be called by all processes of a module.

With the local handle, the processes can access their
local data in the normal manner using cal ls to
kpds_get_data. Also, the processes can later redefine
the topology and distribution attributes of the global
data handle. Then, when the kpds_distribute call is
made, data is redistributed within the process group
according to the new distribution. This is an expensive
operation and should not be done often.

Distributed output data objects are fairly similar to input

data objects, but with a few differences. Since the da
does not previously exist, the kpds_open_output_obje
only returns a handle to a global view of the output dat
there is obviously no need for coordination with othe
process groups at this point. Also, since output objec
have no data associated with them, the kpds_distrib
function does nothing more than return a local hand
describing the output data space for each proce
However, the kpds_close_object is very important, as
is the corresponding half of the kpds_open_input_obje
call of another process group. When both of thes
functions have been called, the intercommunicat
communication described earlier takes place.

4. COMPILED WORKSPACES
APPROACH

Cantata currently operates in what could be called
batch mode, where each box in the workspac
represents a single program that has been compiled
the same machine architecture that Cantata runs
Running a workspace is accomplished internally b
simply starting up a number of programs, one for ea
module. Not only is this gravely inefficient, but it has
the potential to “bog” down the machine. Since eac
module in a Cantata workspace represents a sin
program, this also leads to a noticeable amount
overhead because Cantata must navigate the inter
data structures of the module representations with
Khoros in order to determine input and output links a
well as user specified arguments for the individua
programs. In addition, there is explicit communicatio
defined between connected modules, accomplish
through shared memory, files, or some other mean
Moreover, many of the modules, such as arithmet
operations and some other simple filter designs, perfo
MS State DSP Conference Fall’95
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such a small amount of work that the overhead of
executing a complete program is unjustified. Apropos
portability, since each module is pre-compiled, it is
infeasible to run the workspace with Cantata on any
machine other than one of the same architecture on
which the modules were compiled.

Consider the example Cantata workspace shown in
Figure 3. Each program represented by a module
simply checks correctness of command line arguments,
initializes Khoros, sets up some data structures and calls
a library routine to do the actual operation. A better
approach would be to combine sets of modules into
groups that would be run as a single program, doing
enough work to justify the overhead of process startup.
For example, the Sinusoid and FFT modules could be
combined into a single program, as well as the Low-
Pass, Mult iply, and IFFT modules. Then these
programs, along with the 2D Plot module program
would be written to disk for later compilation and
execution. We will refer to this process as compiling a
workspace. One would not wish to combine the Low-
Pass with either the Sinusoid or FFT modules, since the
user has indicated that these are independent, and thus
opportunities for parallelism remain if they are kept
separate. The implementation of this involves using
graph theory to analyze a Cantata workspace in order to
identify separate pieces. Grouping modules together can
also be accomplished manually by writing custom
programs that call the various Khoros libraries,
essentially combining many modules into single
programs. However, Khoros has a rather steep learning
curve from the programmer’s perspective, and it would

be much better if this process was automated with
Cantata.

Therefore there are two major reasons for using
compiled approach to DSP development:

• efficiency of execution and reduction in overhead

• improved portability and resource utilization

However, it would not be correct to support solely th
compiled workspace approach, since the curre
approach is much better for application developmen
The user can visually construct applications, debu
them by using the pre-compiled modules, and the
compile the workspaces after reaching a sufficie
satisfaction level. Also, compiled workspaces would n
be suitable for “one-shot” applications, where it woul
be pointless to go through the trouble of compilation.

The integration of MPI with Khoros also becomes mor
efficient with the use of compiled workspaces becau
of the removal of unnecessary communication. F
example, consider again Figure 3. If the Low-Pass a
Multiply modules are grouped together within the sam
program, and both modules have the same da
distribution, then the explicit communication link
between them has been transformed into an implic
communication link, and no physical data movement
required. With the previous approach involving
intercommunicators to communicate between th
separate programs, even if the two modules we
running on the same processors, there is no guaran
MS State DSP Conference Fall’95

Figure 12. Illustration of redistribution algorithm for computing a parallel FFT.
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that each processor has the same piece of data, and at the
very least, the data must be copied between process
address spaces.

5. DSP ALGORITHMS IN THE KHOROS
AND MPI INTEGRATED

ENVIRONMENT

In this section we consider how to parallelize two DSP
operations (2-D FFT and time-domain convolution)
using the integrated Khoros and MPI system described
in Section 3.

5.1. Fast Fourier Transform

This section gives an example of how to perform a 2D
FFT of an input matrix. The algorithm used is a standard
1D FFT of all rows, followed by a 1D FFT of all
columns.

First, we need to open a handle to the input object:

 in_matrix = kpds_open_input_object (“mpi=1”);

For this example, we wish to start out with a two
dimensional processor topology, and with our matrix
distributed only along the height dimension. Therefore
we need to change the de fau l t va lues o f
KPDS_VIRT_TOPOL and KPDS_DATA_DIST:

The kpds_get_attribute retrieves the number of
processes, n. Now, each process must call the
kpds_distribute call for in_matrix:

loc_matrix = kpds_distribute (in_matrix);

to obtain the handle to the local address space.

First we perform multiple 1D FFTs over the rows of our
matrix. Each process uses the kpds_get_data routine
with the loc_matrix handle to access one row of local
data at a time. We then reset the attributes of the global
handle to the matrix in order to specify a width
distribution, and redistribute the data:

kpds_set_attribute (in_matrix,
KPDS_VIRT_TOPOL,
 n, 1, 1, 1, 1);

kpds_set_attribute (in_matrix,
 KPDS_DATA_DIST,
 KLINEAR,KALL,KALL,KALL,KALL);

loc_matrix = kpds_distribute (in_matrix);

Each process now accesses a column of local data
time, essentially resulting in a transpose of the matri
We can then calculate 1D FFTs on the columns.

At this point, the 2D FFT is complete and data needs
be output perhaps to a file, or another group of MP
processes. In order to do this, each process must cre
an output object, copy its results to this new object, th
close the object.

out_obj = kpds_open_output_object (“mpi=2”);
kpds_copy_object (loc_matrix, out_obj);
kpds_close_object (out_obj);

5.1. Convolution

This section demonstrates on approach to parallelizi
the convolution of a time domain input signal with a
impulse response of a filter. Figure 13 illustrates th
method used. Each process receives only part of t
time domain signal, and all of the impulse response.
local convolution is performed on each proces
followed by a reduction to a root process for the fina
result.

First, we need to open a handle to the input objects:

signal   = kpds_open_input_object (“mpi=1”);
iresponse = kpds_open_input_object (“mpi=2”);

We want a one dimensional processor topology with t
impulse response replicated on all processes and
time domain signal distributed linearly. Most of the
default values are correct for the convolution problem
and we only need to set the distribution for the inpu
signal:

kpds_set_attribute (signal,
 KPDS_DATA_DIST,
 KLINEAR,KALL,KALL,KALL,KALL);

Now, each process must call the kpds_distribute call f
both signal and iresponse:

loc_signal = kpds_distribute (signal);
loc_iresponse = kpds_distribute (iresponse);

The application can now access the distributed da
through loc_signal and loc_iresponse (through the us

kpds_get_attribute (in_matrix,
   KPDS_VIRT_TOPOL,
   &n, &d, &d, &d, &d);

kpds_set_attribute (in_matrix,
   KPDS_VIRT_TOPOL,
   1, n, 1, 1, 1);

kpds_set_attribute (in_matrix,
   KPDS_DATA_DIST,
   KALL,KLINEAR,KALL,KALL,KALL
MS State DSP Conference Fall’95
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Figure 13. One approach to parallelizing a convolution operation.

+ + + =2222000 0222200 0022220 0002222

1

2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1

1 1 1 1

2468642
of kpds_get_data), and compute the local convolution.
This is then reduced to the root node:

MPI_Reduce (local_output, result, size,
mpi_datatype,0,MPI_SUM
KMPI_COMM_WORLD);

The root node creates a polymorphic data object for the
result it received, and subsequently outputs and closes
the object:

out_obj = kpds_open_output_object (“mpi=3”);
kpds_put_data(out_obj, KPDS_VALUE_VECTOR,

 (kaddr) result);
kpds_close_object (out_obj);

6. RELATED WORK

Prior to MPI, there have been many popular message
passing systems. These inc lude Express[21] ,
PVM[8,5,4], Chimp[11], Vertex (N-Cube)[20],
Zipcode[32], NX (Intel)[22], P4, and others. MPI was
chosen over any of these as the basis of this work due to
its increasing popularity and the fact that it’s a standard.
Many of the other message passing systems ceased
active development (e.g., Zipcode, P4, NX, Chimp) after
the MPI standard was introduced. Another key reason
for the choice of MPI was our intimate familiarity with
it as it is a large part of our ongoing research.

There are quite a few visual environments for DSP other
than Khoros that could have been chosen. Vendors such

as Jovian Systems (Pegasus Parallel Processing De
Environment)[16] and Axiom Technology, Inc.
(DataFloMP)[1] have developed visual environmen
for DSP and parallel DSP in particular; however, thes
systems are proprietary with no general availability t
source code. Ptolemy[23] is a freely available syste
developed at the University of California, Berkeley
focusing on design methodology for digital signa
processing and real-time systems. Ptolemy was a via
alternative to Khoros.

One of the main components of this work was designin
an interface to Khoros’ polymorphic data model tha
supported data distributions. Most previous work o
data distribution independence has concentrated on d
parallel libraries[2,3,27,28,7], is at a lower level o
abstraction than the interface we have presented he
and are not as general as the Khoros polymorph
model.

7. SUMMARY

Observations about Khoros:

• Operations are very fine-grained (flexibility is
benefit) and thus must be parallelized at a fine
grain that optimal for the message passin
paradigm.

• Khoros has inordinate amounts of overhead. Mo
work should be done before running workspaces (
is done in other systems such as Ptolemy).
MS State DSP Conference Fall’95
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• The current design of Khoros is not a good fit with
high performance computing.

• The polymorphic data model provides a strong
basis for representing parallel data distribution.

Observations about MPI:

• Intercommunicator collective operations have been
proposed as a part of the MPI-2 standard. These
type of operations fit naturally with pipeline-
structured applications.

• The coarse-grain message passing model is not a
good fi t w i th Khoros (as i t i s cu r ren t l y
implemented).

• Dynamic process startup will be a part of MPI-2
and should simplify process management.

Status of Implementation:

• Support for MPI program development and process
startup is partially integrated into Khoros.

• Setup for intergroup communicators has been
implemented; however this has not been integrated
into the Khoros polymorphic data model.

• A few simple MPI-based parallel DSP operations
have been implemented; however they do not use
the proposed polymorphic data model extensions.
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