The Parallel DSP Group: MPI... Page 1

AN INTEGRATED KHOROS AND MPI SYSTEM FOR THE
DEVELOPMENT OF PORTABLE PARALLEL DSP APPLICATIONS

Nathan Doss and Thom McMahon

Parallel Digital Signal Processing Group
NSF Engineering Research Center
Mississippi State University
Mississippi State, Mississippi 39762
{doss,thom}@erc.msstate.edu

ABSTRACT MPI (Message-Passing Interface) [13] is a standard for
message passing introduced by the MPI Forum (a
collection of researchers from industry, academia, and
national laboratories) in April 1994. MPI has its roots in
many previous message passing systems and therefore
provides most of the features found in those message
passing systems such as point-to-point and collective

MPI (Message-Passing Interface), a message passi erations. Two of the most important and relatively

system, is an evolving standard for parallel computing.T€W aspects of MP1 are its support for libraries and

Khoros is an integrated software environment for DSP!Nter-group communication. These two features are
ery important for the development of parallel dataflow

The goal of this work is to describe and demonstrate &/€"Y IMPC : . :
software design that exploits Khoros and MPI paralle/@PPlications. Using MPI, parallel libraries can be
libraries for the deployment of parallel DSP. The Witten independently of one another and independent
resulting system enables parallel DSP using the KhoroST the architecture, then used together in a single
system for development and the MPI system forapplication. Inter-group communication allows groups
performance portability. The new system provides Mp)-Of processors that have been logically separated during

based toolboxes containing data parallel modules anthe process of task subdivision to communicate with one

utilizes MPI as a means of communication betweer@n0ther.

modules. We also explore extensions to the Khorosl_
polymorphic data model that include the notion of data
distribution. This is an important concept for building

data distribution independent parallel libraries and of
particular interest in this paper, data distribution
independent DSP libraries..

This paper reports on design issues involved in
combining two public-domain paradigms to create a
parallel software environment for DSP programming.

he goal of this project was to integrate Khoros and
MPICH[6,9], a model implementation of MPI
developed jointly by Argonne National Laboratory and
Mississippi State University, merging the development
features of Khoros with the portability and functionality
of MPI in order to provide a platform for the
development of portable parallel DSP applications.
1. INTRODUCTION This provides application engineers with a powerful and
familiar environment for developing and prototyping

Khoros [17,25] is a powerful system, providing a visual Parallel DSP applications with little input required from
programming environment and a wide range ofthe application engineer in order to make the application
development tools for the development of DSpparallel. Parallel libraries and inter-group
applications. Cantata [33], the visual programmingCommunication supported by MPI allow us to achieve
environment, provides a dataflow model for bu||d|ng these forms of parallellsm within the Khoros and MPI
applications from collections of modules organized intoSystem:

toolboxes. The application engineer builds a block-

diagram representation of the application using icons * data parallel modules MPI is used to build a
that represent the various modules, visually linking the ~ Khoros toolbox of data parallel operations and
icons together in order to specify the communication algorithms.

flow of the design. Khoros provides several toolboxes

containing hundreds of modules for algorithms ¢ parallel flow between modules Inter-group
pertaining to 2D/3D plotting, data manipulation, communication and other MPI communication
scientific visualization, geometry, matrix operations, techniques provide a model for parallel flow of data
image processing, as well as others. For example, the between modules. Additionally, this
matrix toolbox contains modules that perform various ~ communication can be initiated through an abstract

matrix operations such as matrix addition and LU “polymorphic” data layer that hides issues such as
decomposition. data distributions and format.

MS State DSP Conference Fall'95

The Parallel DSP Group: MPI... Page 2

(Tt Tl

Figure 1. Screen Snapshot of the Craftsman Interface

Figure 2. Screen Snapshot of the Composer Interface

MS State DSP Conference Fall'95

The Parallel DSP Group: MPI... Page 3

 task parallelism Through Khoros, a graph of one-dimensional vectors.
independent operations is built. Using MPI’s
support for library development, data parallel tasksThe manual set for Khoros [17] provides detailed
with no data interdependencies can executdnformationon Khoros. Additional information on
concurrently. Khoros can be found at the Khoral Research, Inc. site on
the World Wide Web [18].
An important aspect to developing this system is
determining the correct abstractions to use for dat&®.2.1. Development Environment
representation. The choice of abstraction greatly affects
the efficiency of both the data parallel modules and theAs noted previously, the Khoros development
inter-module communication. The data abstraction isenvironment provides support for many different aspects
also a very important factor in determining how dataof program development. The two main tools that
parallel libraries will be structured and designed in provide this support are “Craftsman” and “Composer”.
general. Khoros also provides an interactive GUI builder,
“Guise”.
This paper first introduces the reader to both the Khoros
and MPI systems. A description of the integratedCraftsman Khoros operations are organized as a set of
Khoros and MPI system as well as the key design issuetolboxes. Examples include a “matrix” toolbox that
and challenges are reviewed followed by a discussion oprovides matrix operations such as addition,

parallel versions of a two basic DSP operations. multiplication, transposition and a “wavelet” toolbox
that provides operations based on wavelet transforms.
2. BACKGROUND Craftsman (see Figure 1) provides an interface for

constructing new toolboxes and modifying existing

. o) toolboxes (e.g., adding or removing operations from the
This section introduces both Khoros and MPI in sometoolbox).

detail. We do not attempt to cover all aspects of either

system (as that is beyond the scope of this paper) but dgomposer Khoros toolboxes consist of a set of
attempt to detail aspects of each system relevant to thgossibly different kind of objects. These objects may be
work we have done. one of the following types:

2.1. Khoros « kroutine An operation without a graphical
interface usually created with C.
Many DSP applications are developed by combining
and reusing well-understood libraries for basic DSP * xvroutine An operation with a built in graphical
operations. Khoros provides a large set of DSP interface usually created with C.
operations as well as an environment where new
libraries of DSP operations can be built and developed. * pane A graphical user interface that can serve as a
The development environment includes support for ~ wrapper for other Khoros objects.
source code development, manual page development,
copying existing objects, binary and library compilation * script A shell script.
and structuring.
* library A set of functions that implement various

Another important aspect of Khoros is its visual operations possibly used by kroutines and
environment (called Cantata) for combining DSP xvroutines.
operations into “workspaces”. Khoros workspaces
resemble dataflow graph structures and can be thouglitomposer (see Figure 2) provides an interface for
of as visual programs that can be “run”. modifying an object and it's associated resources (i.e.,

man pages, C source files, etc.).
Khoros also provides a general purpose data abstraction
that provides a device-independent method for2.1.2. Cantata
accessing data (these services are called the “data
management services” in Khoros) using differentFigure 3 shows a very simple workspace from Cantata.
models. The most general of the models supported byzach of the boxes represents an operation on the data.
Khoros is the polymorphic data model which allows Lines entering the left edge of a box represent input to
applications to access the data in an application specifithe operation (data is communicated through shared
way. For example, a matrix multiplication operation files or shared memory). Lines exiting the right edge of
might access two-dimensional data as a matrix while & box represent the output of the operation. If the small
scalar multiplication operation might access the data agvindow icon in a box is clicked with the mouse, a

“pane” is activated that allows the user to modify the

MS State DSP Conference Fall'95

The Parallel DSP Group: MPI... Page 4

Figure 3. An Example Khoros Workspace

Options Help Close

Figure 4. A Pane from a Khoros Application

MS State DSP Conference Fall'95

The Parallel DSP Group: MPI... Page 5

parameters of the operation (see Figure 4). time location in time
2.1.3. Khoros Data Model * map used for compression

One of the goals of Khoros is to provide a framework < value the actual values of the data
upon which independently developed libraries can work
together. Of central importance to this goal is the ability Of primary concern is the “value” component which
to encapsulate the details of data storage, transfer, anzbntains the actual data values. It can be thought of as a
access. As shown in Figure 5, Khoros provides twoseries of volumes in time (width, height, depth,
levels of abstraction. At the lowest level are the “Dataelements, time). For example, data that represents the
Management Services” which manage many of the lontemperature and salinity of the ocean for the month of
level details of data management; including dataJanuary could be represented as:
transport and file format. Above this level are various
data services which provide abstract views of the data. * (x,y,z) three dimensional location in the ocean
The most widely used and most general data service is (corresponds to width, height, depth in the value
the polymorphic data service (also called the segment).
polymorphic data model). The data services provide the
means by which applications can access the data in a time the hour and the day when the data sample
format which is natural to the application. Although was taken.
there are other data services (e.g., geometric data
service) we only discuss the polymorphic data service in ¢ temperature,salinity these are the “elements” of
this paper. the data. A color picture might have three elements
(red, green, blue).
Polymorphic Data Model The polymorphic data
model consists of several attributes: Data can also have other attributes associated with it
(e.g., type - integer, double, float, etc.).
« mask provides validity informatio
Application Programmer’s Interface Khoros

* location location in three dimensional space provides a set of primitive functions for accessing and
Applications
Images Animations Signals Other
| | | |

v v v Y

Polymorphic Data Model

Other Data Models
Value Location Time Mask Map

v v

Data Management Services

File Format Transport Independence
Memory Management (pipes, files, shared memory)

Figure 5. Khoros Design for Supporting Abstract Data Access

MS State DSP Conference Fall'95

The Parallel DSP Group: MPI... Page 6

manipulating data objects. Some of the more importansmall number of orthogonal concepts:
functions include:
* Point-to-Point Communication
« Functions for creating and destroying data objects:

Collective Communication
kpds_open_input_object() - oens a data object for
input » Process Groups

kpds_open_output_object() - opens a data object « Communication Contexts
for output

Virtual Topologies
kpds_close_object() - closes an object
* Profiling
« Functions for setting, copying, and retrieving object
attributes: Although there are over 120 functions in the MPI
interface, we concentrate our discussion on the
kpds_get_attributes() - gets attributes associatedollowing nine functions: MPI_Init, MPI_Finalize,
with a particular object MPI_Comm_rank, MPI_Comm_size, MPI_Bcast,
MPI_Send, MPI_Recv, MPI_Comm_split,
kpds_set_attributes() - sets attributes of a particulaMPl_Comm_dup, and MPI_Intercomm_create.
object
Environment All MPI programs must initialize and
kpds_copy_object() - copies the data and attributeglose the MPI environment. This is accomplished with

of an object to another object the MPI_Init and MPI __Finalize functions. A minimal
MPI program, as shown below, must have these two
 Functions for reading and writing an object: functions.

kpds_put_data() - writes data to an object #include <mpi.h

main (argc, argv)
int argc;
char **argv;

kpds_get_data() - reads data from an object

The Khoros manual set [17] has documentation on the

complete set of API functions. MPI_Init(&argc, &argv);

MPI_Finalize();
2.2. MPI }

MPI (Message-Passing Interface) is a standard for high-)) i

performance portable message passing that supports &% Multiple instances of the previous code may get
explicit MIMD message passing model. One of the keylnstantlatgd during a parallel execution, functions for
goals of MPI is support for safe message passingl€termining the number of instances of the program
libraries, something missing in most of the messagdSize or number of processes) and a position (rank in
passing systems that existed prior to MPI. collection of instances) are necessary.

The rest of this section introduces the MPI interface and #include <mpi.h

gives a gentle introduction to writing programs with main (argc, argv)

MPI. Emphasis is also placed on writing libraries with int argc;

MPI. The discussion uses the C bindings for MPIl char **argv;

functions, although Fortran bindings for each function {

are set forth in the MPI standard. For a complete MPI_Init(&argc, &argv);

description of the MPI standard, the MPI standard MPI_Comm_size(MPI_COMM_WORLD,

document contains a full description of the MPI &size);
interface. Additional information on MPI can be found MPI_Comm_rank(MPI_COMM_WORLD,
at the MPI World Wide Web page [10]. &rank);
MPI_Finalize();
2.2.1. Basic MPI }

Although MPI is a fairly large specification in terms of
the number of functions in the API, it supports a fairly

MS State DSP Conference Fall'95

The Parallel DSP Group: MPI... Page 7

As can be seen from this simple code, the first argumena different communication context. MPI_Comm_split
to both the size and rank functions is splitsor divides the group of a communicator as well as
MPI_COMM_WORLD. MPI_COMM_WORLD is providing a new context. In the above example, the
known as a communicator and contains informationoutput communicator from MPI_Comm_split will
about all processes in the current MPI programconsist of all odd processes if the process’ rank is odd or
execution. It is initialized by the MPI_Init call. all even processes if the process’ rank is even.

Communicators Communicators may contain various Until now, we have only mentioned one type of
types of information, but the two most important communicator. The communicators we have seen are
elements of a communicator are a process group and @lled “intercommunicates”; communication only
communication context. Process groups andoccurs within one group. MPI also supports
communication contexts serve two very importantcommunication between two distinct groups through
functions in MPI: “intercommunicator.” In contrast to an
intracommunicator, intercommunicators consist of two
e Scope Groups scope an MPI operation by limiting disjoint groups and are constructed from two
the processing elements that participate in anintracommunicators with MPI_Intercomm_create.
operation. This is important, for example, in
collective operations where one may not want thePoint to Point MPI provides two basic functions for
group of all processes to participate in the sending and receiving messages. MPI_Recv receives
operation. In this case, a communicator other tharmessages that are sent by MPI_Send.
MPI_COMM_WORLD would be used. #include <mpi.h>
» Safety Communication contexts provide separate
message spaces or message contexts to; ...
applications. This is especially important when n 9*')
. : X : . char **argv;
independently written libraries are used together in {
the same program.

main (argc, argv)

int rank, size, tag=1, count=1;
int message;

Initially, MPI_COMM_WORLD is the only defined MP]_Status status:

communicator. Two important operations that can be
used to construct new communicators are

MPI_Comm_dup and MPI_Comm_split. MPI_Init(&argc, &argv);

MPI_Comm_size(MP|_COMM_WORLD,

&size);
#include <mpi.h> MPI_Comm_rank(MPI_COMM_WORLD,
&rank);

main (argc, argv)

int argc; message = rank;

char **argv; if (rank == 0)

{ MPI_Send(&message, count, MPI_INT,
int rank, size; tag, MPI_COMM_WORLD);
MPI_Comm dup_comm, split_comm; else if (rank == 1)

MPI_Recv(&message, count, MPI_INT,
MPI_Init(&argc, &argv); tag, MPI_COMM_WORLD,
MPI_Comm_size(MPI_COMM_WORLD, &status);
&size);
MPI_Comm_rank(MPI_COMM_WORLD, MPI_Finalize();
&rank); }

MPI_Comm_dup(MPI_COMM_WORLD,
&dup_comm);

MPI_Comm_splittMPI_COMM_WORLD,
rank%?2, 0, &split_comm);

In this program, process 0 sends a message to process 1.
The message consists of one integer (count=1
type=MPI_INT is sent from message). A communicator
MPI_Finalize() must be specified for all communication operations (in

- ' this case MPI_COMM_WORLD is used) as well as a
} tag. Tags provide another level of selectivity; the tag of
the send must match the tag of the receive.

The output communicator from MPI_Comm_dup MPI provides several variations on basic send and
contains the same group as the input communicator buteceive operations. Send and receive operations may be

MS State DSP Conference Fall'95

The Parallel DSP Group: MPI... Page 8

non-blocking. There are also different send modes that .
provide different protocols for sending (e.g., a #include <mpi.h>
synchronous send that does not complete until the main (argc, argv)
receive operation on the destination process has begun).Int argc;

char **argv;
MPI provides several variations on basic send and {]
receive operations. Send and receive operations may be int rank, size;

non-blocking. There are also different send modes that Int message;
provide different protocols for sending (e.g., a _
synchronous send that does not complete until the MPI_lInit(&argc, &argv);
receive operation on the destination process has begun). MPI_Comm_S|ze(|§ILP_I_C):OMM_WORLD,
size);
Collective Collective operations work on a group of MPI_Comm_rank(MPI_COMM_WORLD,
processes (specified in a communicator). Most MPI &rank);
collective operations can be categorized according to the _
data motion of the operation: if (rank == 0)
message = 999;
« One to all One process, the “root”, contributes MPI_Bcast(&message, count, MPL_INT, 1,
data that is sent to all others. An example of this is MPI_COMM_WORLD);

the broadcast operation MP|_Bcast.
MPI_Finalize();
« Alltoone All processes contribute data that is sent }
to only one of them. An example is a gather
operation where a vector is distributed among a
group of processes. After the gather, the “root” After the broadcast operation all processes in

contains the whole vector. MPI_COMM_WORLD contain 999 in message. One
important aspect of MPI collective operations is that all
< All to all All processes contribute data, all processes in the communicator group (in this example,

processes receive data. An example would be athe communicator was MPI_COMM_WORLD) must
allgather operation that can be thought of as a all-call the collective operation.
to-one gather followed by an one-to-all broadcast.
2.2.2. Writing Parallel Libraries with MPI
The following program illustrates the broadcast
operation. MPI features for library safety provide an environment
where application programmers can expect reliable

Task-Parallel Calls:
w="fl(x; GLl) || z="f2(y; G2)

——"—=————-o—_—==—" \MPI_COMM_WORLD

‘X T w=f1(x) ‘y T z=f2(y) ‘Split

——a——w — o — o Disjoint Communicators
G1 G2

comm_G1 comm_G2

Message Structure

Figure 6. Example communicator construction and structure for task parallel applications.

MS State DSP Conference Fall'95

The Parallel DSP Group: MPI... Page 9

Dataflow parallel calls:
w = fl(x; G1), z=f2(w,y; G2) Message Structure

-———=—=___+*=—" MPI_COMM_WORLD

split
X w=Ff1(x) z=f2(w,y)

-— ./561 * %‘;2 Disjoint Communicators

¢ intercomm_create

intercomm_G1+G2 intercomm_G1+G2

Bi-partite graph structure

Figure 7. Example communicator construction and structure for dataflow application.

message-passing behavior without sacrificingCray YMP, C90), parallel computers (e.g., IBM SP2,
performance. The use of separate communicatiorntel Paragon), to networks of workstations. MPICH can
contexts (i.e., distinct communicators) by different be retrieved from: ftp://ftp.erc.msstate.edu/pub/mpi/
libraries (or different library invocations) insulates mpich/.

communication internal to the library execution from

external communication. This allows the invocation of 3. KHOROS AND MPI INTEGRATED

the library even if there are pending communications, ENVIRONMENT

and avoids the need to synchronize each entry into and

exit from library code. A treatment of writing libraries ¢ design of an integrated MPI and Khoros

with MP1 is available in [30]. development environment for portable parallel DSP

. . : applications consisted of the following:
Figure 6 illustrates a possible way to structure

communicators for a task parallel application.
MPI_COMM_WORLD is first split (using
MPI_Comm_split) into two distinct communicators,
comm_G1 and comm_G2. Two separate tasks are
invoked upon the two communicators. Figure 7 further
shows how dataflow communication might occur
between two process groups using intercommunicators.
MPI _ COMM_WORLD is first split using
MPI_Comm_split, then joined in an intercommunicator
relationship using MPI_Intercomm_create. The data is
first passed through function f1 in the left side of the
intercommunicator. The result is then passed to the right ,
group and passed through function f2.

An investigation of the Khoros 2 system as it
applies to DSP programming in order to recognize
the areas that can be effectively and efficiently
parallelized through integration with MPI.

Definition of a “runtime” startup mechanism that
Cantata can use with various parallel hardware.

Extension of the Khoros data representation system
to include support for data distribution.

Design of a communication layer between parallel
modules using the inter-group communication
. support provided my MPI.

2.2.3. MPICH Implementation of MPI pportp y
* Investigation of approaches to optimizing Khoros
execution for high-performance computing by
compiling Cantata workspaces.

MPICH [6,9] is a freely available implementation of

MPI jointly developed at Argonne National Laboratory
and Mississippi State University. It currently supports a
wide range of platforms from supercomputers (e.g.,

MS State DSP Conference Fall'95

The Parallel DSP Group: MPI... Page 10

These issues are covered in detail in the followingdifficulties in mastering Khoros programming, the use

sections. of the p4 device was abandoned temporarily in favor of
a much simpler device so that development of the
3.1. Parallel Process Startup parallel toolboxes could begin. Unfortunately,

simplicity came at the cost of much of the portability
Process startup is not currently defined by the MPIprovided by the p4 device.
standard, leaving these decisions to be made by the
various implementors of MPI. For the MPICH Currently, the MPI-2 Forum is working on adding
implementation, process startup for one of theadditional features to the MPI standard, including some
communication devices used in this project, known assupport for dynamic process startup, which should
the p4 device, requires the existence of a special file agreatly simplify the Khoros process startup problem.
well as special command line arguments to theProposed MPI_Spawn and MPI_Spawn_multiple
programs. This file contains information about the functions allow dynamic creation of MPI processes,
programs to run and the machines those programs are tghile the MPI_Connect and MPI_Accept functions
be run on, while the command line arguments identifyallow two separate sets of MPI programs to engage in
the location of this file. Each MPI program when it calls communication. These additional features would enable
MPI_Init, accesses the low-level p4 device code, whichthe kmpirun script to be bypassed, and all process
coordinates global initialization of all processes, such astartup could take place within Cantata. For example,
assignment of unique process numbers. Since MPihe kmpihost program could be integrated into Cantata,
programs that rely on the p4 device will not run with the additional task of starting up all of the parallel
correctly if these setup files are not created, it wasmodules with MPI_Spawn or, more likely,
necessary to bypass the Cantata process startugPl_Spawn_multiple. The separate modules could
mechanism and create our own. Also, Cantata runs atonnect to each other using MPI_Connect and
modules on the same machine; MPI allows us to use alMPI1_Accept, which will create intercommunicators
of the resources available, which is highly desirable. between them, relieving Cantata of this task. These
MPI-2 additions are still being debated, and it may be a
Internally in the Cantata code, functions were added tovhile before implementations exist.
take care of part of the MPI setup. These functions, in
short, examine all the internal data structures used t8.2. Extension of the Polymorphic Data Model for
house information about the workspace and modules Distributed Data
within the workspace, identifying the ones associated
with the parallel toolbox. From each of these identified One of the challenging problems of parallel library
data structures, these functions extract informationdevelopment is effectively managing data distribution.
about how many processes to use for each module aBhe polymorphic data model provided by Khoros
well as what connections to other parallel modules exist{Ptolemy[23] has a similar approach) provides a
the combined information is then written to a file. This framework for application domain independent
plan seemed easy at first, but navigating the Khoros datmterpretation of data. In this section, we introduce
structures proved to be a laborious and time-consumingxtensions to the polymorphic data model that provide a
task. data distribution independent interpretation of data. This
is important since data distribution and how it is handled
Once the file is created, a script called kmpirunin a parallel program or library can be one of the most
transforms it into the special file used by the p4 device,important aspects of performance[2,7].
starts up the parallel module programs, and starts up a
master program called kmpihost. The kmpihost3.2.1. Data Distribution Fundamentals
program, along with a special KMPI_Init function, was
used to create the communicators required for saf@he extensions we propose later in this section revolve
communication between and within parallel modules.around two fundamental concerns about how data is
Each parallel module has a communicator calledactually distributed among processors.

KMPI_COMM_WORLD, as well as
intercommunicators with which the module can Virtual process topologies Processes can be thought
communicate with its connecting modules. of as having a topology or structured layout. Virtual

topologies provide a convenient naming mechanism for
Shown in Figure 4 is a pane for a parallel module, with aprocess groups as well as providing a more natural way
slider bar the user can manipulate to specify the numbefor some applications to logically represent the
of processors on which to run the module. One of thecommunication pattern of the processes. Although we
deficiencies of the current p4 device is the inability to do not use MPI topologies directly in our proposed
pass different command line arguments to differentextensions, we do note that MPI provides support for
programs, which inhibited progress of the original two types of virtual topologies: cartesian and graph. In
project plans. For this and other reasons relating taur work, we limit our discussion to cartesian topologies

MS State DSP Conference Fall'95

The Parallel DSP Group: MPI... Page 11

with a maximum dimension of five as this maps to the Each of these dimensions is used to specify how data is
five dimensional polymorphic data model. to be distributed in the corresponding dimension of the
value segment. The default distribution of each
Distribution types Data may be distributed dimension is the all distribution. This implies that in the
differently along each dimension of the data. How thedefault case, data is replicated in each dimension on
data is actually distributed is dependent on the size oach process (i.e., all processes get all the data).
the data (N) in a dimension and the number of
processes in a dimension (P). There are three basi¬her aspect of a distribution is the block size. Thus,
types of distributions that we consider: another segment of the polymorphic data model is the is
the block segment for specifying the block size of linear
¢ linear Data is distributed linearly among and cyclic distributions. For all distributions, the block
processes. Each process receives N=P data itensize is ignored.
with process p receiving data elements [[p * (N/P);
o (P+2)*(N/P)-1)]. * block size of width distribution,

e cyclic Data is scattered cyclicly among the < block size of height distribution,
processes. Each process receives N=P data items
with process p receiving elements p+ p, 2P + p, * block size of depth distribution,

* block size of time distribution,
 all This is not a “true” distribution since data is
replicated on each process, but in many cases this is ¢ block size of element distribution.
exactly what is desired by an application to increase
performance (traditional tradeoff between time and3.2.3. Virtual Topology in the Polymorphic Data
space). Model

An important generalization of the linear and cyclic Corresponding closely to the distribution segment is the
distributions is to consider each element to be a “block”topology segment used to specify the process topology.
of data elements with a particular block size. This is anThe topology segment contains information about the
important generalization since the linear and cyclicnumber of processes in each dimension:

distributions can be thought of as specialized cases of

the block linear and block cyclic distributions. For < process topology width,

example, the linear distribution can be thought of as a

block linear distribution with the block size setto 1 and process topology height,

the cyclic distribution can be thought of as a block

cyclic with block size set to 1. * process topology depth,

We extend the polymorphic data model by specifying ¢ number of processes in time dimension,
the distribution type in each dimension as well as the
virtual process topology. * number of processes in element dimension.

3.2.2. Data Distribution in the Polymorphic Data By default, all dimensions are set to one except for the
Model topology width which is initially set to the number of
processes in the data parallel program. Combining the
In order to specify the distribution of data in the value topology and distribution information provides all that is
segment of the polymorphic data model, we propose th@ecessary to actually distribute the data.
addition of a distribution segment to the polymorphic
data model that parallels the structure of the value3.2.4. Access to Global and Local Information
segment. The distribution segment has five dimensions:
So far, we've seen three new segments that are needed to

« width distribution fully specify data distribution over a set of processes. An
addition problem is that one may want either a “global”
* height distribution, or a “local” view of the data. For example, the process
may want to know the total size of a vector as well as the
* depth distribution, length of the sub-vector that is available locally. A
process may also want to know both the number of
« time distribution, processes in a virtual topology dimension as well as the
process’ rank in that dimension. These problems are
 element distribution. solved by having both a local and global handle to each

MS State DSP Conference Fall'95

The Parallel DSP Group: MPI... Page 12

data object. the value segment, width = 10) with a linear distribution
and a 1-D process topology consisting of P = 5
Initially a global handle is opened using the existing processes. In this case it is easy to see each that process
Khoros open functions, providing access to the globawill receive two elements. Suppose now that we have a
view of the data. Since the object is a distributed object2-D 2x2 (width = 2, height = 2) process topology. In this
this handle cannot be used to access the actual data.case, data will be distributed linearly in the width
serves only as a description of the dimensions andimension and replicated in the height dimension as
properties of the data. The application programmer theishown in Figure 8. Data that is of lower dimensionality
sets distribution and topology attributes on this “global” than the process topology is replicated in one or more
handle. A call is then made to a new Khoros functiondimensions.
that actually applies these attributes to the data an
creates a new “local” handle. The local handle contains3.3 Parallel Inter-group Communication
information about how much data is available locally as
well as information about the location of the process inMPI| does not contain a model for collective
the virtual topology. The actual syntax for this process iscommunication between two distinct groups; however
described in Section 3.4. we believe these type of operations to be very important
for dataflow computing with message passing.
An important thing to note related to global and local Extensions to MPI that support this type of collective
views of data is that although the proposed extensions toperation provide a natural interface for describing data
the polymorphic data model resemble a distributedmovement from one group to another as well as an
shared memory model or the distribution features ofinterface by which the natural parallelism of group to
High Performance Fortran, we do not propose that thegroup communication can be exploited. The additional
polymorphic data model maintain memory coherencyconcern of data distribution further complicates the
when data is replicated or shared in multiple processesgroup to group communication model.
We assume that it is the responsibility of the application
programmer to maintain memory consistency. We dcOne of the main tradeoffs in data parallel libraries is the
not believe this to be overly restrictive since it follows decision whether or not to redistribute data before
current practice for many distributed memory messag¢performing an operation on the data. The choice is either
passing libraries[2]. If memory consistency is not to use a non-optimal algorithm on the data as it is or to
maintained, we consider the program to be erroneous. use an optimal algorithm after redistributing the data.
With many dataflow applications, the data is being
3.2.5. Example: Distribution of a 1-D Vector moved so redistribution can occur during transit with
little additional cost. Figure 9 illustrates the use of
Assume that we have a 1-D vector of length N = 10 (incollective data distribution independent communication
between data parallel modules. This section introduces
an MPI model for inter-group communication and
briefly discusses algorithms for data distribution
0/1]2|3]4|5]6]7|8]9 independent inter-group communication.

YY . 3.3.1. A Model for MPI Collective Inter-Group

Operations
Proces /0,0 Procgess O, 1

In [29], we propose a set of intercommunicator
collective communication extensions to MPI for
4 5 d 71819 consideration in MPI-2. Figure 10 illustrates one of the
calls that we have proposed: intercommunicator
/ \ allgather. An intercommunicator allgather can be
thought of as a gather operation on one side of the
Process 1.0 | Proceks 1.1 intercommunicator followed by a broadcast to all
’ ' processes on the other side. Communication patterns
such as this one are very useful for describing inter-
group collective operations at an abstract level without
0]1[2)3]4 >[6]7]8]9 concern for how many processes are in each group. We
will use this MPI-based terminology when describing
the types of inter-group collective operations needed for
implementing inter-group distribution independent
communication.

0]1|2

Figure 8. Distribution of a 1-D Vector on a 2-D
Process Topology

MS State DSP Conference Fall'95

The Parallel DSP Group: MPI... Page 13

Process Process

\

Group A Group B
\ Data J
Lincarly | Redistribution _ Cyeicly
Distribte . . g Distribte
Matrix / In Transit Matrix

Figure 9. Data Distribution Independent Inter-Group Communication

INTER-COMMUNICATOR ALLGATHER

LLIT]

Figure 10. Inter-Group Collective Allgather Operation

MS State DSP Conference Fall'95

The Parallel DSP Group: MPI... Page 14

3.3.2 Data distribution Independent Inter-Group previously and will not be repeated here. Targeting
Communication simplicity as well as backwards compatibility with

existing applications, the new API for distributed

Determining the best algorithm for inter-group polymorphic data types is kept as close to the original as

communication can be quite complex especially wherpossible. Only one new function is added, which will be

considering hardware issues (e.g., the bandwidth mighoptional within an application, and a number of

be much lower between the two groups than withinattributes are combined with the existing set in order to

either of the groups - a group of paragon processes in allow the programmer to flexibly specify data

group communicating over 10Mb/s ether net to a grougdistribution.

of SP1 processes). Adding to the complexity of

analyzing these types of operations are the virtua3.4.1. Opening Input Objects

topology and data distribution aspects we have

introduced. The actual function for opening input objects,
kpds_open_input_object, is kept the same, but the

A naive approach to this problem is to use concurrenisemantics are changed depending on the input argument

gathers in consecutive dimensions until all the dateto the function. Normally, the argument is the name of a

resides in a single process. This data is then transmittefile, but we can allow this to be something similar to

to one process in the remote group. The remote grou“mpi=2", which will accomplish two goals. The “mpi”

performs concurrent scatters in each of its dimensionsnotifies kpds_open_input_object that the object is not

For linearly distributed data, simple MPI_Gather andjust a normal file, but resides in the memory space of

MPI_Scatter operations can be used. For othesome other group of processes (from here on referred to

distributions, the MPI_Gatherv and MPI_Scatterv as the input group) and needs to be received from them

operations can be used to reorder the data into a lineeusing MPI point to point or collective communication

distribution. This approach works and is O(logP) (with calls. The “2” gives the application number of the input

a potentially large constant). Each gather (and scatter) igroup, and specifies which intercommunicator to use for

O(logP) with P equal to the number of processes in thecommunication with the input group. The

current dimension. Distributing data from a 10x10 kpds_open_input_object routine returns the “global”

process topology to a 2x4x4 process topology ishandle to the distributed object, representing the global

20(log10) + O(log2) + 20(log4). Although this does view of the data object.

work it does not exploit any parallelism in the

connection between the two groups and potentially use3.4.2. New Attributes

a large amount of temporary storage space for the gathe

and scatter operations. However, environments wherln order to access the data, the kpds_set_attribute

the inter-group connection is relatively slow (comparedfunction will be used to define the values of additional

to the speed of the intra-group connections) and the datattributes. These additional attributes, along with their

set is small, this approach may be among the fastest. default values and a short description of their function,
are listed in Figure 3.4.2. With these attributes it is

Other algorithms that take advantage of concurrency irpossible to both define a virtual topology as well as how

the network are possible. For example, it is possiblethe data will be distributed over that topology. For

through a recursive approach, for each process in thexample, the following code segment would define a

sending group to determine the set of remote processe2x3x4 topology, and distribute a 100x100x100 cube

to whom the process should send data as well as thblock linear over the width, block cyclic over the height,

particular data needed by each remote process. Oncand “all” over the remaining dimensions.

this list has been made, the intercommunicator

collective MPI_Alltoallv can be used to effect the

transfer. The effic_iency of t_his operatior_l is dependent kpds_set_attribute (object,

upon the complexity of the intercommunicator alltoallv KPDS VIRT TOPOL

operation. All-to-all operations on a single group have 2’3,4,0—’0); - '

been studleq e>_<ten5|vely, however little (non_e that we kpds_set_attribute (object,

know of at this time) study has been made of intergroup KPDS DATA DIST,

all-to-all operations. KLINEAR,KCYCLIC,KALL,KALL,KALL);
3.4. API_ for Integrated Khoros and MPI kp,gS_DSSetgaLtglgweg(&béeCt’
Environment 15,5,0,0,0);

The current Khoros polymorphic data model APl is kpds_distribute(object);

fairly simple, allowing the programmer to retrieve,
store, and manipulate data objects with just a few
functions. These functions have already been described

MS State DSP Conference Fall'95

The Parallel DSP Group: MPI... Page 15

Attribute Default Value | Description

KPDS VIRT_TOPOL| n,1,1,1,1 The shape of the virtual topology
(n is the number of processes)

KDPS_DATA DIST KALL, KALL, | The data distribution over the
KALL,KALL, | virtual topology. Value values
KALL are KLINEAR, KALL, and KCYCLIC.

KDPS BLOCK SIZE| 1,1,11,1 The block sizes for distribution along
each dimension. For the “all”
distribution, this value is meaningless.

Figure 11. Additional Attributes for Data Distribution

3.4.3. Distribution of Data data objects, but with a few differences. Since the data
does not previously exist, the kpds_open_output_object
Once the topology and distribution attributes have beeronly returns a handle to a global view of the output data;
set, a new polymorphic data function, kpds_distribute, isthere is obviously no need for coordination with other
used to distribute the data in the correct mannerprocess groups at this point. Also, since output objects
returning a handle to the process’ local view of that datahave no data associated with them, the kpds_distribute
This function behaves differently depending on wherefunction does nothing more than return a local handle
the data resides. If the data is in a file on disk, the rootdescribing the output data space for each process.
processor will read the data from disk and distribute it toHowever, the kpds_close_object is very important, as it
all of the processors in the correct manner. However, ifis the corresponding half of the kpds_open_input_object
the data resides in the memory space of an input groug;all of another process group. When both of these
the data from the input group needs to be sent to théunctions have been called, the intercommunicator
receiving group over the intercommunicator connectingcommunication described earlier takes place.
them. This implies some sort of coordination between
the root nodes of the two intercommunicators in order to 4. COMPILED WORKSPACES
establish the data distribution of the input group and the APPROACH
best way to communicate that data in such a way that it
results in the correct distribution within the receiving c5ntata currently operates in what could be called a
group. This has already been discussed somewhat if,:ch mode. where each box in the workspace
Section 3.3. It is import_ant to note that the Ioca_ll handlerepresents a siingle program that has been compiled for
returned by kpds_distribute can have differentyo same machine architecture that Cantata runs on.
information for each of the processors, since the loca unning a workspace is accomplished internally by
data sizes could be different if the distribution is not an imply starting up a number of programs, one for each
even one. The kpds_distribute function is collective ancﬁwodule. Not only is this gravely inefﬁcieﬁt, but it has
must be called by all processes of a module. the potential to “bog” down the machine. Since each
module in a Cantata workspace represents a single
‘ . Brogram, this also leads to a noticeable amount of
local data in the normal manner using calls t04yerhead because Cantata must navigate the internal
kpds_get_data. Also, the processes can later redefing, 5 stryctures of the module representations within
the topology and distribution attnbuteg Of. the gIoba_I Khoros in order to determine input and output links as
data handle. Then, when the kpds_distribute call igy¢|| 55 user specified arguments for the individual
made, data is redistributed within the process groupyrograms. In addition, there is explicit communication
accord_mg to the new distribution. This is an expensiveyefined between connected modules, accomplished
operation and should not be done often. through shared memory, files, or some other means.
Moreover, many of the modules, such as arithmetic
operations and some other simple filter designs, perform

With the local handle, the processes can access the

Distributed output data objects are fairly similar to input

MS State DSP Conference Fall'95

The Parallel DSP Group: MPI... Page 16

such a small amount of work that the overhead ofbe much better if this process was automated within
executing a complete program is unjustified. AproposCantata.
portability, since each module is pre-compiled, it is
infeasible to run the workspace with Cantata on anyTherefore there are two major reasons for using a
machine other than one of the same architecture orcompiled approach to DSP development:
which the modules were compiled.

« efficiency of execution and reduction in overhead
Consider the example Cantata workspace shown in
Figure 3. Each program represented by a module ¢ improved portability and resource utilization
simply checks correctness of command line arguments,
initializes Khoros, sets up some data structures and callslowever, it would not be correct to support solely the
a library routine to do the actual operation. A bettercompiled workspace approach, since the current
approach would be to combine sets of modules intcapproach is much better for application development.
groups that would be run as a single program, doingrhe user can visually construct applications, debug
enough work to justify the overhead of process startupthem by using the pre-compiled modules, and then
For example, the Sinusoid and FFT modules could beompile the workspaces after reaching a sufficient
combined into a single program, as well as the Low-satisfaction level. Also, compiled workspaces would not
Pass, Multiply, and IFFT modules. Then thesebe suitable for “one-shot” applications, where it would
programs, along with the 2D Plot module programbe pointless to go through the trouble of compilation.
would be written to disk for later compilation and
execution. We will refer to this process as compiling aThe integration of MPI with Khoros also becomes more
workspace. One would not wish to combine the Low- efficient with the use of compiled workspaces because
Pass with either the Sinusoid or FFT modules, since th@f the removal of unnecessary communication. For
user has indicated that these are independent, and thesample, consider again Figure 3. If the Low-Pass and
opportunities for parallelism remain if they are kept Multiply modules are grouped together within the same
separate. The implementation of this involves usingprogram, and both modules have the same data
graph theory to analyze a Cantata workspace in order tdistribution, then the explicit communication link
identify separate pieces. Grouping modules together cahetween them has been transformed into an implicit
also be accomplished manually by writing customcommunication link, and no physical data movement is
programs that call the various Khoros libraries,required. With the previous approach involving
essentially combining many modules into singleintercommunicators to communicate between the
programs. However, Khoros has a rather steep learningeparate programs, even if the two modules were
curve from the programmer’s perspective, and it wouldrunning on the same processors, there is no guarantee

1D FFT—

_ Redistribute \
)
/

Figure 12. lllustration of redistribution algorithm for computing a parallel FFT.

-|—— 144 dT

MS State DSP Conference Fall'95

The Parallel DSP Group: MPI... Page 17

that each processor has the same piece of data, and at the
very least, the data must be copied between process kpds_set_attribute (in_matrix,

address spaces. KPDS_VIRT_TOPOL,
n 11,1, 1)
5. DSP ALGORITHMS IN THE KHOROS kpds_set_attribute (in_matrix,
AND MPI INTEGRATED KPDS_DATA_DIST,
ENVIRONMENT KLINEAR,KALL,KALL,KALL,KALL);

loc_matrix = kpds_distribute (in_matrix);

In this section we consider how to parallelize two DSP
operations (2-D FFT and time-domain convolution)
using the integrated Khoros and MPI system describe
in Section 3.

ach process now accesses a column of local data at a
ime, essentially resulting in a transpose of the matrix.
We can then calculate 1D FFTs on the columns.

5.1. Fast Fourier Transform At this point, the 2D FFT is complete and data needs to

This section gives an example of how to perform a 2Dbe output perhaps to a file, or another group of MP!

FFT of an input matrix. The algorithm used is a standard? ' 0C€35€S- In order to do this, each process must create
1D EFT of all rows, followed by a 1D FFT of all an output object, copy its results to this new object, then

close the object.
columns.

out_obj = kpds_open_output_object (“mpi=2");
kpds_copy_object (loc_matrix, out_obj);
kpds_close_object (out_obj);

First, we need to open a handle to the input object:

in_matrix = kpds_open_input_object (“mpi=1");
For this example, we wish to start out with a two 5.1. Convolution
dimensional processor topology, and with our matrix
distributed only along the height dimension. Therefore
we need to change the default values of
KPDS_VIRT_TOPOL and KPDS_DATA_DIST:

This section demonstrates on approach to parallelizing
the convolution of a time domain input signal with an
impulse response of a filter. Figure 13 illustrates the
method used. Each process receives only part of the
time domain signal, and all of the impulse response. A

kpds_get_attribute (in_matrix, local convolution is performed on each process,
KPDS_VIRT_TOPOL, followed by a reduction to a root process for the final
&n, &d, &d, &d, &d); result.

kpds_set_attribute (in_matrix, First, we need to open a handle to the input objects:
KPDS_VIRT_TOPOL,
1,n,1,1,1); signal = kpds_open_input_object (“mpi=1");

iresponse = kpds_open_input_object (“mpi=2");
kpds_set_attribute (in_matrix,
KPDS_DATA_DIST, We want a one dimensional processor topology with the
KALL,KLINEAR,KALL,KALL,KALL impulse response replicated on all processes and the
time domain signal distributed linearly. Most of the
default values are correct for the convolution problem,

The kpds_get_attribute retrieves the number Ofgir;]?‘;vl.e only need to set the distribution for the input

processes, n. Now, each process must call thé

kpds_distribute call for in_matrix: kpds_set_attribute (signal,

KPDS_DATA_DIST,

loc_matrix = kpds_distribute (in_matrix); KLINEAR,KALL,KALL,KALL,KALL):

to obtain the handle to the local address space. Now, each process must call the kpds_distribute call for

First we perform multiple 1D FFTs over the rows of our both signal and iresponse:

matrix. Each process uses the kpds_get_data routine
with the loc_matrix handle to access one row of local
data at a time. We then reset the attributes of the global
handle to the matrix in order to specify a width
distribution, and redistribute the data:

loc_signal = kpds_distribute (signal);
loc_iresponse = kpds_distribute (iresponse);

The application can now access the distributed data
through loc_signal and loc_iresponse (through the use

MS State DSP Conference Fall'95

The Parallel DSP Group: MPI... Page 18

+ +| [0022220 | |+ [0002222 | | =[2468642 |

222 2] 222 2]

Figure 13. One approach to parallelizing a convolution operation.

of kpds_get_data), and compute the local convolutionas Jovian Systems (Pegasus Parallel Processing Design

This is then reduced to the root node: Environment)[16] and Axiom Technology, Inc.
(DataFloMP)[1] have developed visual environments
MPI_Reduce (local_output, result, size, for DSP and parallel DSP in particular; however, these
mpi_datatype,0,MPI_SUM systems are proprietary with no general availability to
KMPI_COMM_WORLD); source code. Ptolemy[23] is a freely available system

developed at the University of California, Berkeley,
The root node creates a polymorphic data object for thdocusing on design methodology for digital signal
result it received, and subsequently outputs and closegrocessing and real-time systems. Ptolemy was a viable

the object: alternative to Khoros.
out_obj = kpds_open_output_object (“mpi=3"); One of the main components of this work was designing
kpds_put_data(out_obj, KPDS_VALUE_VECTOR, an interface to Khoros’ polymorphic data model that
(kaddr) result); supported data distributions. Most previous work on
kpds_close_object (out_obj); data distribution independence has concentrated on data

parallel libraries[2,3,27,28,7], is at a lower level of
abstraction than the interface we have presented here,

6. RELATED WORK and are not as general as the Khoros polymorphic
. model.
Prior to MPI, there have been many popular message 7. SUMMARY

passing systems. These include Express[21],
PVM[8,5,4], Chimp[11], Vertex (N-Cube)[20], .]
Zipcode[32], NX (Intel)[22], P4, and others. MPI was OPservations about Khoros:

chosen over any of these as the basis of this work due to . , . S
its increasing popularity and the fact that it's a standard. *© Operations are very fine-grained (flexibility is
Many of the other message passing systems ceased P€Nefit) and thus must be parallelized at a finer
active development (e.g., Zipcode, P4, NX, Chimp) after ~ 9rain that optimal for the message passing
the MPI standard was introduced. Another key reason ~ Paradigm.

for the choice of MPI was our intimate familiarity with

it as it is a large part of our ongoing research. » Khoros has inordinate amounts of overhead. More

work should be done before running workspaces (as

There are quite a few visual environments for DSP other is done in other systems such as Ptolemy).

than Khoros that could have been chosen. Vendors such

MS State DSP Conference Fall’95

The Parallel DSP Group: MPI... Page 19

« The current design of Khoros is not a good fit with REFERENCES
high performance computing.
[1] Axiom Technology, Inc. World Wide Web Page.
* The polymorphic data model provides a strong http://www.axiomtech.com/.
basis for representing parallel data distribution.
_ [2] Purushotham V. Bangalore. The Data-Distribution-
Observations about MPI: Independent Approach to Scalable Parallel Libraries.
Technical report, Mississippi State University _ Dept. of
* Intercommunicator collective operations have beencomputer Science, October 1994. Master’s Thesis.
proposed as a part of the MPI-2 standard. These
type of operations fit naturally with pipeline- [3] Purushotham V. Bangalore, Anthony Skjellum,
structured applications. Chuck Baldwin, and Steven G. Smith. Data-
)]) Distribution-Independent, Concurrent Block LU
* The coarse-grain message passing model is not gactorization. In preparation., January 1994.
good fit with Khoros (as it is currently
implemented). [4] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, S.
_) Otto, and J. Walpole. PVM: Experiences, current Status
+ Dynamic process startup will be a part of MPI-2 and Future Direction. In Supercomputing’93
and should simplify process management. Proceedings, pages 765-6, 1993.

Status of Implementation: [5] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and
V. Sunderam. Visualization and Debugging in a

* Support for MPI program development and processHeterogeneous Environment. IEEE Computer, 26(6):88-
startup is partially integrated into Khoros. 95, June 1993.

* Setup for intergroup communicators has beeng] Patrick Bridges, Nathan Doss, William Gropp,
implemented; however this has not been integrate@dward Karrels, Ewing Lusk, and Anthony Skjellum.
into the Khoros polymorphic data model. Users guide to mpich, a Portable Implementation of

MPI, 1994. MSU/Argonne Joint Documentation.

« A few simple MPI-based parallel DSP operations
have been implemented; however they do not us¢7] E. F. Van de Velde. Data Redistribution and
the proposed polymorphic data model extensions. Concurrency. Parallel Computing, 16, December 1990.

[8] J. Dongarra, A. Geist, R. Manchek, and V.

Sunderam. Integrated PVM Framework Supports
Heterogeneous Network Computing. Computers in
Physics, 7(2):166-75, April 1993.

[9] Nathan Doss, William Gropp, Ewing Lusk, and
Anthony Skjellum. A Model Implementation of MPI.
Technical Report MCS-P393-1193, Mathematics and
Computer Science Division, Argonne National
Laboratory, Argonne, IL 60439, 1994.

[10] Nathan E. Doss. MPI World Wide Web Page.
http://www.erc.msstate.edu/mpi/.

[11] Edinburgh Parallel Computing Centre, University
of Edinburgh. CHIMP Concepts, June 1991.

[12] Paul M. Embree. C Algorithms for Real-Time DSP.
Prentice Hall, Inc., 1995.

[13] Message Passing Interface Forum. MPI: A
Message-Passing Interface Standard. Technical Report
Computer Science Department Technical Report CS-94-
230, University of Tennessee, Knoxville, TN, May 5
1994. To appear in the International Journal of

MS State DSP Conference Fall'95

The Parallel DSP Group: MPI... Page 20

Supercomputing Applications, Volume 8, Number 3/4, Livermore National Laboratory, August 1992. UCRL-
1994. 53689-91 (Rev 1).

[14] Geoffrey C. Fox, Mark A. Johnson, Gregory A. [27] A. Skjellum and C. Baldwin. The Multicomputer
Lyzenga, Steve W. Otto, John K. Salmon, and David W.Toolbox: Scalable Parallel Libraries for Large-Scale
Walker. Solving Problems on Concurrent ProcessorsConcurrent Applications. Technical Report UCRL-JC-
Volume I, General Techniques and Regular Problems109251, Lawrence Livermore National Laboratory,
chapter The Fast Fourier Transform, pages 187-200December 1991.
Prentice Hall, 1988.
[28] Anthony Skjellum. The Multicomputer Toolbox:
[15] William Gropp, Ewing Lusk, and Anthony Current and Future Directions. In Anthony Skjellum and
Skjellum. Using MPI: Portable Parallel Programming Donna S. Reese, editors, Proceedings of the Scalable
with the Message-Passing Interface. MIT Press, 1994Parallel Libraries Conference. IEEE Computer Society
The example programs from the book are available fronmPress, October 1993.
ftp://info.mcs.anl.gov/pub/mpi/using.
[29] Anthony Skjellum, Nathan Doss, and Kishore
[16] Jovian Systems World Wide Web Page. http://Viswanathan. Inter-Communicator Extensions to MPI
www.jovian.com/jovian/. in the MPIX (MPI eXtension) Library, July 1994. To be
submitted to Parallel Computing.
[17] Khoral Research, Inc. Khoros Manual, 1994.
[30] Anthony Skjellum, Nathan E. Doss, and
[18] Khoral Research, Inc. World Wide Web Page. Purushotham V. Bangalore. Writing Libraries in MPI. In
http://www.khoral.com/. Anthony Skjellum and Donna S. Reese, editors,
Proceedings of the Scalable Parallel Libraries
[19] Vipin Kumar, Ananth Grama, Anshul Gupta, and Conference, pages 166-173. IEEE Computer Society
George Karypis. Introduction to Parallel Computing: Press, October 1993.
Design and Analysis of Algorithms, chapter Fast
Fourier Transform, pages 377-406. Benjamin/[31] Anthony Skjellum, Nathan E. Doss, and
Cummings Publishing Company, Inc., 1994. Purushotham V. Bangalore. Writing Libraries in MPI. In
Anthony Skjellum and Donna S. Reese, editors,
[20] nCUBE Corporation. nCUBE 2 Programmers Proceedings of the Scalable Parallel Libraries
Guide, r2.0, December 1990. Conference, pages 166-173. IEEE Computer Society
Press, October 1993.
[21] Parasoft Corporation, Pasadena, CA. Express
User’s Guide, version 3.2.5 edition, 1992. [32] Anthony Skjellum, Steven G. Smith, Nathan E.
Doss, Alvin P. Leung, and Manfred Morari. The Design
[22] Paul Pierce. The NX/2 Operating System. Inand Evolution of Zipcode. Parallel Computing,
Proceedings of the Third Conference on Hypercube20(4):565-596, April 1994.
Concurrent Computers and Applications, pages 384-
390. ACM Press, 1988. [33] Young, Argiro, and Kubica. Cantata: Visual
Programming Environment for the Khoros System.
[23] J. L. Pino, S. Ha, E. A. Lee, and J. T. Buck. Computer Graphics, 29(2):22-24, May 1995.
Software Synthesis for DSP Using Ptolemy. Jounal on
VLSI Signal Processing, 9(1):7-21, January 1995.

[24] John G. Proakis. Digital Signal Processing:
Principles, Algorithms, and Applications. Macmillan, 2
edition, 1992.

[25] Rasure and Kubica. The Khoros Application
Development Environment. In H.I. Christensen and J.L.
Crowley, editors, Experimental Environments for
Computer Vision and Image Processing. World
Scientific, 1994.

[26] A. Skjellum, S. Ashby, P. Brown, M. Dorr, and A.
Hindmarsh. The Multicomputer Toolbox. In G. L.
Struble et al., editors, Laboratory Directed Research and
Development FY91 - LLNL, pages 24-26. Lawrence

MS State DSP Conference Fall'95

	3. KHOROS AND MPI INTEGRATED
	ENVIRONMENT
	4. COMPILED WORKSPACES APPROACH
	5. DSP ALGORITHMS IN THE KHOROS AND MPI INTEGRATED ENVIRONMENT
	6. RELATED WORK
	7. SUMMARY
	REFERENCES
	ABSTRACT
	1.�� INTRODUCTION
	2.�� BACKGROUND
	2.1.�� Khoros
	2.2.�� MPI

	AN INTEGRATED KHOROS AND MPI SYSTEM FOR THE DEVELOPMENT OF PORTABLE PARALLEL DSP APPLICATIONS
	Nathan Doss and Thom McMahon
	Parallel Digital Signal Processing Group
	NSF Engineering Research Center
	Mississippi State University
	Mississippi State, Mississippi 39762
	{doss,thom}@erc.msstate.edu

