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ABSTRACT

Synthesis based on physical modeling has recently
become a topic of discussion among musicians looking
for more a more expressive output. It has also become a
topic among developers because of recent leaps in DSP
technology. The main problem with physical modeling
is the amount of computation required to produce
output. This project explores what is necessary to
produce an accurate representation of a stringed
instrument - in this case, the violin, and how to produce
real time output from this seemingly complex system.

Live data will be captured and analyzed to verify the
fidelity of the model. A synthesis engine with a GUI
front end will be used to demonstrate control over the
physical model and real time audio.

1. INTRODUCTION

Physical Models of musical instruments can overcome
some of the limitations of today’s commercially
available synthesizers. By designing a virtual model of a
physical system, one has control over any aspect of that
system. In the case of a musical instrument, one can
control the parameters of the instrument itself, as well as
control how that instrument is played. Modern
synthesizers are limited primarily by the static sample of
the instrument residing in memory. Any control over
how this instrument is played or the physical
characteristics of the instrument must be emulated. Of
course, nothing comes for free. The trade-off for more
low level control is higher mathematical complexity.
The scope of this project is to analyze the mathematical
characteristics of a violin, develop a physical model
based on the wave equation, produce software that will
run in real time, and compare this to that of a real
instrument.

There are particular features of every instrument which
causes it to produce its own characteristic sound. In
order to capture those qualities in the physical model,
we must first understand both quantitatively and
qualitatively. This understanding can then be translated
into a software model.

It is necessary to analyze the effects of the vario
components of the system. What effect does the brid
have? The resonating cavity? The bow? Once we ha
isolated the effects of each component, we can mod
each individually, gradually increasing the complexit
of our software. We must also explore the effects o
performance techniques over these components. We w
then have a set of functional blocks and controllers f
the effect of the element on the system. This, in effec
allows the player of the virtual instrument to have th
same expressive control as the player of the real violi

Determining the effects of each component involve
solving the wave equation for the given conditions. Th
simplest case involves a string stretched between t
rigid supports. Including the bridge in the system
involves modeling a non-rigid support. Including th
resonant body of the violin in the model involves
knowing how it behaves as well. The results of th
mathematical model can be directly compared to da
from a real instrument.

Though the mathematics of the system can be describ
using the partial differential equations of the wav
equation, the system of functional blocks and contr
inputs lends itself to tools available from digital signa
processing. A digital waveguide based on the wa
equation solution will be developed using filters, dela
lines, and amplifiers. Using these simple components
will be possible to work in real time. It will be necessar
to use this method in the implementation of th
synthesis software. On the other hand, the initial testi
does not require real time output, but mathematic
accuracy. The theory will be primarily developed usin
the numerical solution to the wave equation.

The ultimate objective for the outcome of this effort wil
be a synthesis engine with an interface that allows re
time access to key parameters of the physical syste
The key parameters are those determined to
associated with real performance techniques such
bow pressure, bow location, and fingering technique.
order to show that these objectives can be accomplish
we are demonstrating a selected subset of possi
models. This subset includes the essential compone
of a violin model including the string and bridge for a
MS State DSP Conference Fall’95
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plucked stimulus.

2. EXPERIMENTAL DESIGN

I. Real Violins

What distinguishes a note on a particular instrument
from the same note on another instrument? The answer
to this question can, hopefully, be determined from the
analysis of the “real” data. By this we mean, the real
data is data which uniquely determines the physical
parameters of an instrument. We will consider the
harmonic content to be a unique signature of an
instrument and thus, the real data associated with that
physical system. Because of the transient nature of the
plucked string, the harmonic content will be analyzed as
a function of time in order to get an accurate picture of
the behavior of the string.

The real data for this project is the recorded output taken
from an electric violin’s piezoelectric transducer. The
data was recorded directly from the violin into a
Panasonic SV-3700 DAT using a sampling frequency of
48kHz. The output of this instrument will be used as the
model for a plucked string supported by one rigid
support (the nut) and one non-rigid support (the bridge).
Because the model instrument has no resonating body,
the data recorded from it neglects any effect of this
component.

This raw data is necessary to determine the harmonic
content versus time of the physical system. It would be
appropriate, but beyond the scope of this project, to
dev ise a method of d i rec t ly determin ing the
displacement, velocity, and acceleration of the various
components of the system. However, for our purposes;
we shall have to be satisfied with the output of the above
piezoelectric transducer. It is known that a piezoelectric
transducer such as that found in professional musical
equipment does not produce output directly related to
either force or displacement, but rather a combination of
the two.

Furthermore, to determine the effects of the bridge, the
resonating cavity must be divorced from the system.
This is conveniently the case with the electr ic
instruments as they have no resonating cavity. Thus the
real data, which we have, will be considered the
signature of a plucked string with one rigid and one non-
rigid endpoint. The real data will be referred to by the
power spectral density (PSD) versus time. By this we
mean, the power spectral density averaged over a
window that is 4096 samples in length. Each sample is
spaced 1/48000 seconds apart which is one of the
standard sampling frequencies for digital audio. We
chose the windows of 4096 samples to be overlapped by
half a window width in order to maintain continuity.

II. Why Power Spectral Density?

Why is the PSD versus time significant? For a syste
comprised of a thin flexible string with fixed endpoints
the only frequencies that can be supported are
fundamental whose wavelength is twice the length
the string and all of its harmonics. This is because t
endpoints, being fixed, determine that the waveform
pass through zero at said endpoints. Thus, the solut
for the motion of the string can incorporate only thos
frequencies which are an integral multiple of th
fundamental. For instance, if there was a waveform o
the string whose frequency was not an integral multip
of the fundamental then the amplitude of the wavefor
at the endpoints would not be zero--for all time--an
thus would not be a solution.

The fundamental frequency of the above thin flexibl
string with fixed endpoints is a function, only; of the
string length, the string tension, and the string ma
density. Given a power spectral density for a gener
system comprised of a thin flexible string with fixed
endpoints and known tension and mass density (he
after referred to as the “general system”), we shou
therefore be able to uniquely determine the length of t
string. Or given any two of the three independen
variables, we can uniquely determine the third. Sinc
string length, tension, and mass density are eas
determined by physical measurements, we can read
determine the PSD. Therefore, any deviations in th
PSD will be due to the degree to which (ignoring strin
inhomogenities) the endpoints do not remain fixed.

The degree to which the endpoints of the above syst
move are uniquely determined by the physica
parameters (i.e. mass, stiffness, damping, and mome
arms) of the specific instrument where the motion of th
string is the forcing function. Thus in a system which i
general with the exception that one endpoint moves (i
the bridge), the PSD should uniquely reflect the physic
parameters of that endpoint.

III. The method of collection

In order to investigate the phenomena associated w
the general system and the effects of movable endpoin
we need to record data indicative of the displacemen
velocities, and accelerations of said endpoint. But, w
were limited to the data obtained from the forces applie
to the piezoelectric devices at each foot of the bridge
the electric violin.

These measurements due to the forces applied by
string are indicative of the forces which would hav
been applied to the resonating cavity had there been o
But, these measurements were made on an instrum
with no resonating cavity and therefore the effects d
to the bridge were isolated from the body of th
instrument. Therefore the PSD of the recorde
MS State DSP Conference Fall’95
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waveforms (frequency domain output) divided by PSD
of the general system (frequency domain forcing
function) will be the system transfer function (ignoring
the contamination by the piezoelectric devices) of the
bridge.

IV. The limitations of the data found

As stated earlier, piezoelectric devices do not produce
an output relational to either force or displacement, but
instead, a combination of the two. This is our primary
concern as to how our result may differ from the real
data. We are limited to this however, because any device
capable of measuring such exact data is well above our
means.

The problem stemming from the piezoelectric problem
is that we are attempting to find the transfer function for
the bridge isolated from the instrument. However, what
we have is the transfer function of two cascaded
systems. One system is the bridge and the other system
is the piezoelectric device. In order to determine the
transfer function of the bridge, we would have to know
the transfer function of the piezoelectric device.
Unfortunately, measurement of the transfer function of
the piezoelectric device is outside the scope of this
project. In fact, determination of the transfer function of
piezoelectric device would require the destruction of the
violin.

V. The analysis techniques

Basically, the real data was used in this project to
analyze the data we produced using the digital-
waveguide model and the numerical solution model.
The characteristics of the produced data were compar
with those of the real data and the parameters of our
model were changed accordingly.

The analysis of the data was done strictly in Matla
Matlab provides an easy to use interface, and
minimum amount of programming was required t
produce very meaningful output. The following cod
segments and commands are Matlab commands.

The comparison of the data was done by plotting the
attenuation of the power-spectral density with frequenc
and time. A fast-Fourier transform of the real was take
by windowing a position of the data.

S = fft(w(1:a))

Here w is the data file and a is the size of the window
Then the power-spectral density was calculated by us

R = 20log(S * conj(S)) / a

This data was then normalized in order to give a clear
picture of the attenuation characteristics. This allows
MS State DSP Conference Fall’95

Figure 1: Harmonic spectrum of plucked violin string as function of time
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to see the decay of the harmonics in relation to the
fundamental, as opposed to the decay of all partials.

The subsequent calculations involved moving a window
by a pre-defined position the size of the window and
repeating the above calculations for these new windows.
This would, essentially, result in overlapping the present
window to a certain extent of the previous window
enabling us to obtain a better attenuation plot. Initially, a
rectangular window was used, but was later replaced by
a hamming window to obtain a better plot.

VI. The results of the analysis of the data

Plots were produced for the various types of strings of
the guitar and violin and the corresponding data
produced by the digital-waveguide model and the data
produced by the numerical solution model.

The determination of the transfer function for the real
system will not be attempted. What will be undertaken
as analysis is to determine, in a qualitative manner, how
closely the transfer function of some “other” system (i.e.
the modelled system), whose parameters we have under
control, can be made to match that of the real system. If
for the same input with our model, we can cause the
same output as the real system; we have effectively
duplicated the transfer function of the real system.
Unfortunately, we do not have the luxury to make
extensive measurements of real system parameters. We
therefore have to take trial and error approach to
determining the parameters of our model.

Analysis of the displacement of the A string stimulate
by a pluck shows that the section of string attached
the bridge approximates a rectangular waveform,
shown in figure 2. The point of pluck determines th
symmetry of the waveform. If the pluck is near th
bridge, the waveform has an extended posit iv
(assuming the pluck, away from the body of th
instrument, is in the positive direction) portion followed
by a narrow negative portion with areas under ea
waveform being equal so that there is no DC offset. O
the other hand if the pluck is in the center of the strin
the positive and negative portions of the waveform a
symmetric.

The rectangular displacement waveform gives rise
rectangular force waveform. This waveform is filtere
by the bridge and subsequently applied to the body
the instrument. The upper plate of an acoust
instrument undergoes displacements due to the appl
forces and the veloc i t ies associated wi th th
displacements are coupled to the air and thus radiat
For our real system, which is electric, the force
transmit ted through the br idge are appl ied t
piezoelectric devices. These devices are rigidly attach
to the body of the instrument which is also rigid
Therefore, the velocity of the feet of the bridge is zer
This in effect isolates the bridge from the body of th
instrument which is essential for modeling the string
bridge combination.

The combined effects of viscous damping and loss
through the bridge result in a power spectral density th
MS State DSP Conference Fall’95

Figure 2: Waveshape of a plucked string near one endpoint including losses
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is a function of time. The initial rectangular waveform
described above is r ich in harmonics. As t ime
progresses, the amount of each harmonic decreases as a
func t ion o f inc reas ing f requency such tha t
approximately one second after pluck only the
fundamental remains.

The initial energy loss of the string is not sustainable. If
the initial losses were due to viscous damping, the string
would be completely damped before one second.
Therefore, the initial “losses” imposed on the string are
due to the excitation of resonate modes of the bridge and
are not real losses. In effect, the bridge drives the string
as well.

Presented in figure 1 is the plot of the power spectral
density of the A string of an electric violin excited by a
plucked stimulus. These plots show starting at the rear
the initial spectral content of the forces applied at the
feet of the bridge. As we move forward, we see that the
fundamental progressively dominates. An important
quality of a “good” violin is the duration of the “voice”
or the degree to which the fundamental remains.

A str ing with fixed endpoints exhibits no time
dependence with its power spectral density. This means
that all the harmonics decrease with the same time
dependence such that the mix remains constant. This
also means that the rectangular waveform is maintained
as time progresses. This would not be described as a
pleasing sound quality.

3. COMPARISON OF REAL DATA WITH
THE SIMULATION AND DIGITAL

WAVEGUIDE

3.1. Simulation

The motion of a thin flexible string held under tension
between fixed endpoints is described by a hyperbolic
second order partial differential equation in one space
dimension. The equation is given below for the
undamped case.

If viscous damping is included the equation contains a
term proportional to velocity. If either endpoint moves

as a function of the forces generated by the motion
the string then the equation becomes more complex a
may contain additional space dimensions.

In any investigation where we do not know the origin o
the phenomena of interest nor the depth of the effects
the phenomena due to various motions of the string a
its endpoints, it seems appropriate to begin with th
lowest order of complexity and increase complexit
only when necessary.

Since we do not have the luxury of extensive testing
real parameters, we have to employ a trial and err
method of determining which physical paramete
determine the sound of the plucked violin string and
what degree these or other parameters determine
quality of the sound. This is an impossible task but w
have, none-the-less, undertaken it.

In order to maximize the possibility of a successful tria
and error methodology, we opted to develop a “hig
fidelity” model of the string/endpoint physical system
The advantage to this method is that physical paramet
such as mass, length, tension, stiffness as well as
spacial dimensions are employed directly in the mod
Furthermore, these physical data are those most likely
be found in the literature. Conversely, finding th
coefficients of some filter determined by earlie
investigators to best model the bridge effects wa
considered to be much less likely.

The basis of this “high fidelity” model is the finite
difference numerical method where-in the above wa
equation is modeled by difference equations whic
relate the position of the nodes of the string at tim
(n+1)k and (m+1)h to the position of the nodes at nk an
mh where nk is the current time step and mh is th
current space step. Given initial conditions in time an
space, the algorithm advances the position of the stri
to the desired time and space.

The explicit difference equation implied to advance th
string motion for the conditions of viscous damping an
rigid endpoints is given at the bottom of the page.

If other effects such as string stiffness or end poi
mot ion are to be inc luded, the equat ions ge
considerably more complex and may involve addition
space dimensions. It was determined at the onset t
should such complexity be required that it would the
place the “high fidelity” model outside the scope of th
project.

C
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Equation 1: DE for string motion and viscous losses
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The initial level of complexity attempted was the model
of a thin (vanishing diameter), flexible (zero stiffness),
and heterogeneous string with rigid endpoints. This
model, when plucked, generated a sound best described
as a harmonic generator. The sound was not considered
to be characteristic of the plucked violin string. The
sound was not particularly pleasant either.

Thus additional complexity was required. Observation
of the harmonic content versus time of the real data
showed that the spectral components dissipated at a rate
proportional to their frequency. Furthermore, the time
constant was not single valued. The string energy
decreased sharply after pluck but sustained for a period
considerably longer than could be supported by the
initial time constant. It appeared that the energy was
being transferred to some other system from which the
string could retrieve it later. The most likely adjoint
system for energy storage and subsequent retrieval was
the bridge. It was now apparent that the bridge must be
modeled.

A search of the relevant l i terature turned up a
mechanical model of the violin bridge. A “high fidelity”
model of the bridge would be relatively complex. The
bridge evidenced two degrees of freedom; it had a
component of motion parallel to the string motion and a
component normal to the string motion. These two
motions were, unfortunately, coupled. A decision was
made to decouple the motions such that a solution could
be obtained without resorting to the complexity required
of a system of simultaneous equations.

The new model including the decoupled bridge motions
supported the assumption that the bridge was the sink/
source for the string energy that we were looking for.
However, there were serious technical problems with the
simplified bridge motion. These problems created
instabilities which caused the solution for the string not
to converge unless additional damping, more than was
desired, was applied to the system.Though the sound
generated was clearly that of a plucked string; it was the
sound of a severely damped string.

The next step would be to rework the algorithm into a
system of simultaneous equations involving two space
dimensions. This is, due to the considerable complexity
involved, outside the scope of this effort.

String Model

Let us image a glass tube of arbitrary shape. Further,
us imagine a thin flexible string of mass density g pe
cm running through the tube. The string is spoole
between two reels such that a tension T dynes
maintained. If this tube is not bent too sharply -which
to say the radius of curvature is large compared to t
deviation of the tube from a straight line-the tension wi
be everywhere equal to T dynes (see figure 3).

The force against any inside portion of the tube wall
given by the relationship:

Given that the string is moving through the tube the
will be a centrifugal force acting outward and therefor
against the forces due to the string tension. This force
equal to the velocity squared times the mass of t
portion of string under investigation divided by the
radius of curvature. The net inward force is now:

Since we can, in our imagination, run the string at an
velocity we choose. Let us run the string at a velocity 

We notice that at velocity c, there are no forces actin
against the tube walls! This means that if you brea
away the tube from around the string (you can do this
your imaginat ion) the waveshape wi l l remain
unchanged!

The equivalent situation is when the string is stationa
but the waveform moves along the string with velocity
independent of its shape.

The point of the above illustration is that the strin
shape remains unchanged as it travels along the stri

ε

∆T φT
T∆s
R

----------= =

∆s
R
------ 

  T ευ2–( )

c
T
ε
---=
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Thus the general solution for the traveling wave must 
of the form F(x-ct) where c is the veloci ty of
propagation and the product ct represents a shifti
along the x axis. Notice that shifting the wave in x doe
not change its shape just as shifting a time function
time (as Electrical Engineers are fond of doing) does n
change its shape.

Its seems that we have only half of the answer; we mu
account for motion of the string in both directions
Therefore the general solution must be of the form

All the form of the general solution means is that wher
ever you see x you will see ct tagging along. We mig
refer to this property as (again borrowing from
Electrical Engineering) “space invariance” in order t
leverage off the term “time invariance” where-in th
dependent variable t and its associated delay are alw
seen as pairs.

Now that we have this simple and elegant gener
solution, we wonder how we might find a specific
solution given certain initial or boundary conditions. I
seems logical to again tap the rich stores of Electric
Engineering theory and remember that any arbitra
wave shape can be synthesized as a superposition
harmonically related sinusoids. Thus, we can use t
Fourier series as a synthesis tool by determining t
spectral content of the initial string shape and realizin
that shape will not change over our space variable
(assuming we have no losses and ideal bounda
conditions), we can reflect the traveling waves at ea
endpoint and sum to obtain string displacement U as
function of time.

Again we are faced with the problem that though w
have a simple and elegant solution, we can not use
The above solution assumes no losses and ide
boundary conditions. We do not enjoy either of thes
conditions. Our problem includes viscous losses due
the string motion through the air, mechanical losses
the bridge and nut, and non-ideal boundary conditio
as the bridge and (to a lesser degree) the nut move.

U F x ct–( )=
MS State DSP Conference
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Unfortunately, to find our next solution, we must leav
the comforting confines of electrical engineering theor
and enter the nether regions inhabited by mechani
engineers. We require our next solution in terms o
forces, masses, lengths, moments and their relativ
velocity and acceleration. Since we have to deal with t
uncooperative air, bridge and nut we will have to wor
in their mechanical domain.

Wave Equation

Let us derive the wave equation. We shall again borro
from Morse (reference Vibration and Sound). We have
thin flexible string held between two end points unde
tension T dynes. We shall concern ourselves, howev
with only a differential section ds of this string. This
section of the string shall be displaced from the initial o
unperturbed position as shown in figure 4.

The force perpendicular to the x axis is given by

Since the s are small (this is a restatement of th
necessary condition that the radius of curvature is lar
compared to the deviation of the string about the x axis
we can employ the approximation:

Therefore, our force directing the string back to the
axis is given by

where

giving us

We now have for the expression of force:

We can advance our derivation further if we rememb
that:

T α2sin T α1sin–

α

αsin αtan=

T α2tan α1tan–( )

αtan U∂
x∂

-------=

α2tan α1tan–
Ux dx+∂

x∂
-------------------

Ux∂
x∂

---------–=

T
Ux dx+∂

x∂
-------------------

Ux∂
x∂

---------–
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Now we have as our expression for force:

Since we have chosen a differential element and have
applied a finite force to it, we must determine and apply
an opposite force or wave bye to our differential element
as it accelerates off to infinity. For our balancing act we
will invoke the great wizard of Mechanical Land,
Lagrange.

We know both the mass of our element and its velocity;
therefore we can calculate the kinetic energy. We can
safely ignore the potential energy due to localized
overtension since we will assume that the tension is
uniform along the string (actually the speed of
propagation of the longitudinal wave is sufficiently fast
that we can ignore localized overtension). Furthermore,
if the tension is very high -and in our case it is, we can
ignore gravitational forces. Therefore we have for our
opposing force:

where

and

Since we are discussing an element of vanishing length
we can reasonably equate the differecial element ds with
the differencial element dx. Thus we have:

or,

Our opposing forces can now be equated:

or

where

Finite Difference Methods

Now that we have the wave equation in terms of parti
differential equations we can arrive at a unique solutio
reflecting our initial and boundary conditions. First w
must recognize that our equation is of the type calle
hyperbolic. Given the following general equation:

The equation is said to be hyperbolic if

If we recall the definition of the derivative of f(x), we
can begin construction of a numerical algorithm:

For our purposes we will not allow h to approach zero
and thus the reference to finite difference methods. Als
we will employ a “backward” difference along with the
above forward difference. If we expand f(y,x + h) and
f(y,x - h) as Taylor’s series, we can sum the two and
solve for the second partial of f(y,x) with respect to x.
Thus we have

and

When we sum the above we have

f x ds+( ) f x( ) dx
f x( )∂

x∂
--------------+=

Tdx
Ux dx+∂

x∂
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Ux∂
x∂

---------– 
  Tdx

x2

2
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and finally

If we perform the same manipulations on f(y,x) with
regards the independent variable y, we will have our
wave equation in terms of two difference equations: one
in the space dimension y, and the other in the time
dimension t.

Therefore, we have for y

The wave equation is now

Substituting Um for f(y,t) , Um  for f(y,t + k) , and
Um+1 for f(y + h,t) we have

as our implicit difference equation.

Oh! But now you mention it. We forgot about losses; we
have to account for viscous losses due to the string’s
motion in the air.

We now have to derive a difference equation for the first
partial of displacement U with respect to time as the
viscous losses are a function of the string’s velocity.

We will use the same trick as above and we then have

We must now add the new term to the original equation.
We now have

Our difference equation becomes

Where,  and R is the damping coefficient.

Ah! But we still have a problem. We have our initial
conditions and our boundary conditions. We also have
method of advancing to U at n+1 given U at n so you
ask what can be the problem. If you will notice, our
algorithm requires information not just at n but also at n
1.
If we start at n=0, n-1 is undefined. Therefore we mus
start at n=1. But we have no knowledge of the solutio
at n=1. We therefore require an auxiliary equation to
solve for U at n=1 based on knowledge of U at n=0.

The solution for the auxiliary equation must not contain
any terms at n-1. Therefore if we expand f(y,t + k) in a
Taylor series we have

If we remember that

We can make the substitution

We need now only one more piece of information. At
t=0- we should expect the string velocity to be zero. If
we then discard the velocity term in the above equatio
we will have

f y x k+,( ) f y x k–,( )+ 2 f y x,( ) k2

x2

2

∂
∂

f y x,( )+=

x2

2

∂
∂

f y x,( ) f y x k+,( ) 2 f y x,( ) f y x k–,( )+–
k2

-------------------------------------------------------------------------------------=

y2

2

∂
∂

f y t,( ) f y h+ t,( ) 2 f y t,( ) f y h– t,( )+–
h2

----------------------------------------------------------------------------------=

c2 f y h+ t,( ) 2 f y t,( ) f y h– t,( )+–
h2

----------------------------------------------------------------------------------

f y t k+,( ) 2 f y t,( ) f y t k–,( )+–
k2

----------------------------------------------------------------------------------=

c2 U
n
m 1+ 2U

n
m– U

n
m 1–+

h2
--------------------------------------------------------------

Um
n 1+

2Um
n

Um
n 1–

+ +

k2
--------------------------------------------------------------=

t∂
∂

f y t,( ) f y t k+,( ) f y t k–,( )–
2k

--------------------------------------------------------=

c2 U
n
m 1+ 2U

n
m– U

n
m 1–+

h2
--------------------------------------------------------------

Um
n 1+

2Um
n

Um
n 1–

+ +

k2
--------------------------------------------------------------=

R
Um

n 1+
Um

n 1–
+

2k
------------------------------------------

 
 
 

Um
n 1+ 1

2
R
ε
---k+

---------------- Z[ ]=

Z 4 1
k
ε
--ρ2

– 
  Um

n
2

k
ε
--ρ2

Um 1–
n

Um 1+
n

+ 
  Y+ +=

Y
R
ε
---k 2– 

 = Um
n 1–

c
k
ε
--=

y t k+( , ) f y t( , ) k
t∂

∂
f x t( , )

k
2

2
-----

t
2

2

∂

∂
f x t( ,+ +=

t
2

2

∂

∂
f y t( , ) c

2

y
2

2

∂

∂
f y t( , ) R

t∂
∂

f y t( ,–=

y t k+( , ) f y t( , ) k
t∂

∂
f x t( , )

k
2

2
----- c

2

y
2

2

∂

∂
f y t( , ) R

t∂
∂

f y t( , )–+ +=
MS State DSP Conference Fall’95



Physical Modeling Group Page 81

d
e
ly

me
od
a
y
es

n
d
g
er

n
ch
of
e
ng
of

be
red
at
se
ch

es
ses

Z
1– Z

1–
Z

1–

Z
1–

Z
1–

Z
1–

Z
1–

Figure 5: Simple string with rigid endpoints
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It follows then that

Thus we have our auxiliary equation which will
advance our solution to n=1 from which our main
equation will advance the solution to it’s ultimate
destination.

Non-Rigid Endpoints

For the reader who is rabidly hanging on each word, I
apologize. The above bold heading promising
information about moving endpoints was a tease. For
those readers trudging ahead on shear determination,
your ordeal is over. Well! One more paragraph.

Though we made a valiant effort, we never succeeded in
generating an accurate model of the string attached to
the objective movable endpoint -the bridge. Some
success was had with simplified moving endpoints but
they were of no interest as regards the generation of
“violin like” sounds. The effort has, by no means, been
abandoned.

3.2. The Digital Waveguide

The numerical method for computing the motion an
forces of a plucked string is thorough, but lacks th
desired response speed. A simulation containing on
one pluck could take up to an hour to process. The sa
mathematical analysis can be used to derive a meth
for performing the same tasks with much less strain on
CPU. A string can be modeled as two parallel dela
lines. One delay line can be used to carry the wav
travelling in one direction, while the waves which
bounce off of the nut and travel in the opposite directio
can be carried by the other delay line. This is illustrate
in figure 5. The output can be found at any point alon
the string by summing the values of the upper and low
rails at that point.

In the simplest case, a string with two rigid supports ca
be modeled with two delay lines, and inverters at ea
end. The inverters invert the wave as it bounces off
the nut, as would a real wave. The initial value of th
displacement of each node can be calculated knowi
the point of maximum displacement and the amount
that displacement.

A more accurate representation of a violin string can
represented in figure 6. In this case, the nut is conside
to be a rigid support, and the bridge is not. The losses
the bridge can be modeled with a lowpass filter. becau
of the differences in the physical characteristics in ea
string on the violin, each string will have its own
transfer curve. The strings which produce higher pitch
are under more tension, and have less mass. This cau
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Figure 6: Digital waveguide model of string with non-rigid endpoints
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them to be less affected by the bridge. In other words,
for smaller strings with less mass, the bridge appears to
be more rigid.

This was easily shown with the digital waveguide
model. The initial filter to be implemented was a singe
pole FIR:

This filter gave the more massive, lower frequency
strings an abnormally long decay time. The higher
strings appeared normal, however. This was remedied
by implementing a higher order filter to the lower
strings. The filter used for the G and D strings is a two
pole FIR:

While these filters are not true representations of the
process by which the high frequencies are attenuated at
the bridge, it does provide a more accurate picture than a
single transfer function for all four strings. If a solution

to the wave equation model had been derived, th
information could have been directly transferred to th
digital waveguide model, just as the string model wa
derived.

4. EVALUATION

The data produced by the digital waveguide model wa
able to closely approximate these characteristics. An
exact reproduction of the characteristics was not able
be achieved due to the complexity of the filter that
would be necessary to get the exact characteristics. W
were able to produce data from this model which had
high attenuation rates at high frequencies similarly to
the real data. Although the high-frequency componen
of this data were not that rich in harmonics of their
counterparts, the actual sound output by this data close
matched with that of a real violin.

The observation of the plots of the data produced by th
numerical solution model showed that all the
frequencies had the same attenuation rate. This was d
to the fact that we were unable to incorporate the exa
model of a bridge into the model, as a solution of the
behavior of the bridge was too complicated
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2
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1
2
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u n( ) 1
2
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4
---z 2–+ +=
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Figure 7: Harmonic spectrum of digital waveguide model incorporating losses at bridge
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mathematically to determine. The bridge gives rise to
the various attenuation rates of the frequency
components and it’s absence should meant that all the
should be having the same attenuation (or no
attenuation), which is exactly what was observed from
the plot.

5. TCL INTERFACE

Any high fidelity physical model is a complex system.
Even liberal comments do not make the code user
friendly. Thus to promote general access, we have
implemented a point-and-click interface.

When designing the GUI, we had in mind the wide
range of users that might want to use this system. It was
important that anyone could use even those that are not
adept in using Unix tools. Users do not what to have to
try to interpret someone else’s code to be able to achieve
the sound produced by the digital-waveguide. With this
in mind, we began to lay out a design of how we wanted
the interface to interpret our data and present to the user
in a useful manner.

The first step was to present to the user four input
options that they could perform. These included looking
at the figure and a single string of the instrument where
the user is allowed to pluck the string and watch what
the strings does after being plucked. The next option is
to be able to choose a specific note, string, and either
sharp, flat, or natural, which is then either played or
stored in an output file. The note that is heard is
produced from the digital waveguide in real time. The
third and fourth options are to choose a file to play or to
connect to a MIDI interface.

6. SUMMARY

This project successfully completed its task of
developing a real-time demonstration involving physical
modeling. Although the end product, at this point, is not
as complete a model as would be desired, the model
does exhibit the sonic characteristics of a plucked violin
string.

This project showed the importance of approaching the
problem from both the wave equation and digital
waveguide methods. The wave equation method, though
computationally intensive, produces output which is
mathematically accurate. Because Matlab was used,
once the mathematical expression was derived, the
solution could then be directly solved. This provides for
an environment where

The digital waveguide is much better suited for
implementation in a real time system because it consists
of many functional blocks which are very simple.

This provides for an environment where development
the model can be done purely mathematically, and on
the mathematical model is complete, it can be applied
the digital waveguide model for implementation into
live application.

The chief limitation of our project is the failure to
develop a model of the bridge in the wave equatio
model. Though a mathematical model was no
developed, experimentation with the digital waveguid
model showed that sufficient results could be obtaine
from a system of low-order low pass filters.

Further work could be done to develop the bowed strin
model and the model of the resonant cavity. Completio
of this would produce a complete model of the violin.
MS State DSP Conference Fall’95
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