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ABSTRACT It is necessary to analyze the effects of the various
components of the system. What effect does the bridge

Synthesis based on physical modeling has recentiave? The resonating cavity? The bow? Once we have

become a topic of discussion among musicians lookingSC!ateéd the effects of each component, we can model
for more a more expressive output. It has also become §ach individually, gradually increasing the complexity
topic among developers because of recent leaps in DSPf OUr software. We must also explore the effects of

technology. The main problem with physical modeling performance techniques_ over these components. We will
is the amount of computation required to producethe” have a set of functional blocks and controllers for

output. This project explores what is necessary toihe effect of the element on the system. This, in effect,

produce an accurate representation of a stringe@!/0Ws the player of the virtual instrument to have the
instrument - in this case, the violin, and how to produceS@Me expressive control as the player of the real violin.

real time output from this seemingly complex system. . :
P gy P y Determining the effects of each component involves

Live data will be captured and analyzed to verify the SCIVing the wave equation for the given conditions. The
fidelity of the model. A synthesis engine with a GUI simplest case involves a string stretched between two
front end will be used to demonstrate control over the'9id supports. Including the bridge in the system

physical model and real time audio. involves modeling a non-rigid support. Including the

resonant body of the violin in the model involves
knowing how it behaves as well. The results of the
1. INTRODUCTION mathematical model can be directly compared to data

from a real instrument.
Physical Models of musical instruments can overcome
some of the limitations of today’s commercially Though the mathematics of the system can be described
available synthesizers. By designing a virtual model of ausing the partial differential equations of the wave
physical system, one has control over any aspect of thagquation, the system of functional blocks and control
system. In the case of a musical instrument, one CaliﬂpUtS lends itself to tools available from dlglta' Signal
control the parameters of the instrument itself, as well agrocessing. A digital waveguide based on the wave
control how that instrument is played. Modern equation solution will be developed using filters, delay
synthesizers are limited primarily by the static sample oflines, and amplifiers. Using these simple components, it
the instrument residing in memory. Any control over will be possible to work in real time. It will be necessary
how this instrument is played or the physical to use this method in the implementation of the
characteristics of the instrument must be emulated. Osynthesis software. On the other hand, the initial testing
course, nothing comes for free. The trade-off for moredoes not require real time output, but mathematical
low level control is higher mathematical complexity. accuracy. The theory will be primarily developed using
The scope of this project is to analyze the mathematicathe numerical solution to the wave equation.
characteristics of a violin, develop a physical model

based on the wave equation, produce software that will'he ultimate objective for the outcome of this effort will
run in real time, and compare this to that of a realbe a synthesis engine with an interface that allows real

instrument. time access to key parameters of the physical system.
The key parameters are those determined to be
There are particular features of every instrument which@ssociated with real performance techniques such as
causes it to produce its own characteristic sound. IrPOW pressure, bow location, and fingering technique. In
order to capture those qualities in the physical modelorder to show that these objectives can be accomplished,
we must first understand both quantitatively andwe are demonstrating a selected subset of possible

qualitatively. This understanding can then be translatednodels. This subset includes the essential components
into a software model. of a violin model including the string and bridge for a
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plucked stimulus. Il. Why Power Spectral Density?

2. EXPERIMENTAL DESIGN Why is the PSD versus time significant? For a system
' comprised of a thin flexible string with fixed endpoints,

o the only frequencies that can be supported are a
. Real Violins fundamental whose wavelength is twice the length of
o ] ) the string and all of its harmonics. This is because the
What distinguishes a note on a particular instrumentendpoints, being fixed, determine that the waveforms
from the same note on another instrument? The answefass through zero at said endpoints. Thus, the solution
to this question can, hopefully, be determined from thefor the motion of the string can incorporate only those
analysis of the “real” data. By this we mean, the realfrequencies which are an integral multiple of the
data is data which uniquely determines the physicakundamental. For instance, if there was a waveform on
parameters of an instrument. We will consider thethe string whose frequency was not an integral multiple
harmonic content to be a unique signature of anof the fundamental then the amplitude of the waveform
instrument and thus, the real data associated with thagt the endpoints would not be zero--for all time--and
physical system. Because of the transient nature of theyys would not be a solution.
plucked string, the harmonic content will be analyzed as
a function of time in order to get an accurate picture ofThe fundamental frequency of the above thin flexible
the behavior of the string. string with fixed endpoints is a function, only; of the
_ o string length, the string tension, and the string mass
The real data for this projectis the recorded output takefﬁjensity_ Given a power Spectra| density for a genera|
from an electric violin's piezoelectric transducer. The system comprised of a thin flexible string with fixed
data was recorded directly from the violin into a endpoints and known tension and mass density (here
Panasonic SV-3700 DAT using a sampling frequency ofafter referred to as the “general system”), we should
48kHz. The output of this instrument will be used as thetherefore be able to uniquely determine the length of the
model for a plucked string supported by one rigid string. Or given any two of the three independent
support (the nut) and one non-rigid support (the bridge)variables, we can uniquely determine the third. Since
Because the model instrument has no resonating bOdﬁtring |ength, tension, and mass density are eas”y
the data recorded from it neglects any effect of thiSdetermined by physica| measurements, we can read”y
component. determine the PSD. Therefore, any deviations in the
PSD will be due to the degree to which (ignoring string
This raw data is necessary to determine the harmonigahomogenities) the endpoints do not remain fixed.
content versus time of the physical system. It would be
appropriate, but beyond the scope of this project, toThe degree to which the endpoints of the above system
devise a method of directly determining the move are unique|y determined by the physica|
displacement, velocity, and acceleration of the variousparameters (i.e. mass, stiffness, damping, and moment-
components of the system. However, for our purposesarms) of the specific instrument where the motion of the
we shall have to be satisfied with the output of the abovestring is the forcing function. Thus in a system which is
piezoelectric transducer. It is known that a piezoelectricgeneral with the exception that one endpoint moves (i.e.

transducer such as that found in professional musicaghe bridge), the PSD should uniquely reflect the physical
equipment does not produce output directly related tharameters of that endpoint.

either force or displacement, but rather a combination o
the two. l1l. The method of collection

Furthermore, to determine the effects of the bridge, than order to investigate the phenomena associated with
resonating cavity must be divorced from the systemhe general system and the effects of movable endpoints,
This is conveniently the case with the electric we need to record data indicative of the displacements,
instruments as they have no resonating cavity. Thus thgelocities, and accelerations of said endpoint. But, we
real data, which we have, will be considered thewere limited to the data obtained from the forces applied
signature of a plucked string with one rigid and one non-g the piezoelectric devices at each foot of the bridge of
rigid endpoint. The real data will be referred to by the the electric violin.
power spectral density (PSD) versus time. By this we
mean, the power spectral density averaged over Fhese measurements due to the forces applied by the
window that is 4096 samples in length. Each sample isstring are indicative of the forces which would have
spaced 1/48000 seconds apart which is one of thgeen applied to the resonating cavity had there been one.
standard sampling frequencies for digital audio. Wepyt, these measurements were made on an instrument
chose the windows of 4096 samples to be overlapped byith no resonating cavity and therefore the effects due
half a window width in order to maintain continuity. to the bridge were isolated from the body of the
instrument. Therefore the PSD of the recorded
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waveforms (frequency domain output) divided by PSDV. The analysis techniques

of the general system (frequency domain forcing

function) will be the system transfer function (ignoring Basically, the real data was used in this project to
the contamination by the piezoelectric devices) of theanalyze the data we produced using the digital-

bridge. waveguide model and the numerical solution model.
The characteristics of the produced data were compared
IV. The limitations of the data found with those of the real data and the parameters of our

model were changed accordingly.
As stated earlier, piezoelectric devices do not produce
an output relational to either force or displacement, bufThe analysis of the data was done strictly in Matlab.
instead, a combination of the two. This is our primary Matlab provides an easy to use interface, and a
concern as to how our result may differ from the realminimum amount of programming was required to
data. We are limited to this however, because any deviceroduce very meaningful output. The following code
capable of measuring such exact data is well above ousegments and commands are Matlab commands.
means.

The comparison of the data was done by plotting the
The problem stemming from the piezoelectric problemattenuation of the power-spectral density with frequency
is that we are attempting to find the transfer function forand time. A fast-Fourier transform of the real was taken
the bridge isolated from the instrument. However, whatby windowing a position of the data.
we have is the transfer function of two cascaded
systems. One system is the bridge and the other system S =fft(w(1:a))
is the piezoelectric device. In order to determine the
transfer function of the bridge, we would have to know Here w is the data file and a is the size of the window.
the transfer function of the piezoelectric device. Then the power-spectral density was calculated by using
Unfortunately, measurement of the transfer function of
the piezoelectric device is outside the scope of this R = 20log(S * conj(S)) / a
project. In fact, determination of the transfer function of
piezoelectric device would require the destruction of theThis data was then normalized in order to give a clearer
violin. picture of the attenuation characteristics. This allows us
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Figure 1: Harmonic spectrum of plucked violin string as function of time
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to see the decay of the harmonics in relation to theAnalysis of the displacement of the A string stimulated
fundamental, as opposed to the decay of all partials. by a pluck shows that the section of string attached to
the bridge approximates a rectangular waveform, as
The subsequent calculations involved moving a windowshown in figure 2. The point of pluck determines the
by a pre-defined position the size of the window andsymmetry of the waveform. If the pluck is near the
repeating the above calculations for these new windowsbridge, the waveform has an extended positive
This would, essentially, result in overlapping the presenfassuming the pluck, away from the body of the
window to a certain extent of the previous window instrument, is in the positive direction) portion followed
enabling us to obtain a better attenuation plot. Initially, aby a narrow negative portion with areas under each
rectangular window was used, but was later replaced byvaveform being equal so that there is no DC offset. On

a hamming window to obtain a better plot. the other hand if the pluck is in the center of the string,
the positive and negative portions of the waveform are
VI. The results of the analysis of the data symmetric.

Plots were produced for the various types of strings ofThe rectangular displacement waveform gives rise to
the guitar and violin and the corresponding datarectangular force waveform. This waveform is filtered
produced by the digital-waveguide model and the datdy the bridge and subsequently applied to the body of
produced by the numerical solution model. the instrument. The upper plate of an acoustic
instrument undergoes displacements due to the applied
The determination of the transfer function for the realforces and the velocities associated with the
system will not be attempted. What will be undertakendisplacements are coupled to the air and thus radiated.
as analysis is to determine, in a qualitative manner, howor our real system, which is electric, the forces
closely the transfer function of some “other” system (i.e.transmitted through the bridge are applied to
the modelled system), whose parameters we have undeiezoelectric devices. These devices are rigidly attached
control, can be made to match that of the real system. Ifo the body of the instrument which is also rigid.
for the same input with our model, we can cause theTherefore, the velocity of the feet of the bridge is zero.
same output as the real system; we have effectivelyfhis in effect isolates the bridge from the body of the
duplicated the transfer function of the real system.instrument which is essential for modeling the string-
Unfortunately, we do not have the luxury to make bridge combination.
extensive measurements of real system parameters. We
therefore have to take trial and error approach toThe combined effects of viscous damping and losses
determining the parameters of our model. through the bridge result in a power spectral density that
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Figure 2: Waveshape of a plucked string near one endpoint including losses
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is a function of time. The initial rectangular waveform as a function of the forces generated by the motion of
described above is rich in harmonics. As time the string then the equation becomes more complex and
progresses, the amount of each harmonic decreases asnay contain additional space dimensions.
function of increasing frequency such that
approximately one second after pluck only theln any investigation where we do not know the origin of
fundamental remains. the phenomena of interest nor the depth of the effects on
the phenomena due to various motions of the string and
The initial energy loss of the string is not sustainable. Ifits endpoints, it seems appropriate to begin with the
the initial losses were due to viscous damping, the strindowest order of complexity and increase complexity
would be completely damped before one secondonly when necessary.
Therefore, the initial “losses” imposed on the string are
due to the excitation of resonate modes of the bridge an&ince we do not have the luxury of extensive testing of
are not real losses. In effect, the bridge drives the stringeal parameters, we have to employ a trial and error
as well. method of determining which physical parameters
determine the sound of the plucked violin string and to
Presented in figure 1 is the plot of the power spectralwhat degree these or other parameters determine the
density of the A string of an electric violin excited by a quality of the sound. This is an impossible task but we
plucked stimulus. These plots show starting at the reahave, none-the-less, undertaken it.
the initial spectral content of the forces applied at the
feet of the bridge. As we move forward, we see that theln order to maximize the possibility of a successful trial
fundamental progressively dominates. An importantand error methodology, we opted to develop a “high
quality of a “good” violin is the duration of the “voice” fidelity” model of the string/endpoint physical system.
or the degree to which the fundamental remains. The advantage to this method is that physical parameters
such as mass, length, tension, stiffness as well as the
A string with fixed endpoints exhibits no time spacial dimensions are employed directly in the model.
dependence with its power spectral density. This meanBurthermore, these physical data are those most likely to
that all the harmonics decrease with the same timde found in the literature. Conversely, finding the
dependence such that the mix remains constant. Thisoefficients of some filter determined by earlier
also means that the rectangular waveform is maintainethvestigators to best model the bridge effects was
as time progresses. This would not be described as eonsidered to be much less likely.
pleasing sound quality.
The basis of this “high fidelity” model is the finite
3. COMPARISON OF REAL DATA WITH differtta_nce'numedriclaldmbethdo_](c:if where-in thetr_:lbove vr\:avhe
equation is modeled by difference equations whic
THE SIMULATION AND DIGITAL relate the position of the nodes of the string at time
WAVEGUIDE (n+1)k and (m+1)h to the position of the nodes at nk and
mh where nk is the current time step and mh is the
current space step. Given initial conditions in time and
space, the algorithm advances the position of the string
to the desired time and space.

3.1. Simulation

The motion of a thin flexible string held under tension
between fixed endpoints is described by a hyperboli
second order partial differential equation in one spac
dimension. The equation is given below for the
undamped case.

“The explicit difference equation implied to advance the
eString motion for the conditions of viscous damping and
rigid endpoints is given at the bottom of the page.

If other effects such as string stiffness or end point

262U 52U motion are to be included, the equations get
C— = — considerably more complex and may involve additional
> 2 y p y
oX ot space dimensions. It was determined at the onset that

should such complexity be required that it would then

If viscous damping is included the equation contains aPace the “high fidelity” model outside the scope of the
term proportional to velocity. If either endpoint moves ProJect.

n+1 1 Kog,n,,K 2 n n : n-1
0 A A - B ]

Equation 1: DE for string motion and viscous losses
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The initial level of complexity attempted was the model String Model

of a thin (vanishing diameter), flexible (zero stiffness),

and heterogeneous string with rigid endpoints. ThisLet us image a glass tube of arbitrary shape. Further, let

model, when plucked, generated a sound best describag imagine a thin flexible string of mass density g per

as a harmonic generator. The sound was not consideregin running through the tube. The string is spooled

to be characteristic of the p|UCk8d violin String. The between two reels such that a tension T dynes is

sound was not particularly pleasant either. maintained. If this tube is not bent too sharply -which is
to say the radius of curvature is large compared to the

Thus additional complexity was required. Observationdeviation of the tube from a straight line-the tension will

of the harmonic content versus time of the real datape everywhere equal to T dynes (see figure 3).

showed that the spectral components dissipated at a rate

proportional to their frequency. Furthermore, the timeThe force against any inside portion of the tube wall is

constant was not single valued. The string energ)given by the relationship:

decreased sharply after pluck but sustained for a perio

considerably longer than could be supported by the TAS
initial time constant. It appeared that the energy was AT = @T = —
being transferred to some other system from which the R

string could retrieve it later. The most likely adjoint

system for energy storage and subsequent retrieval wdsiven that the string is moving through the tube there

the bridge. It was now apparent that the bridge must bevill be a centrifugal force acting outward and therefore

modeled. against the forces due to the string tension. This force is
equal to the velocity squared times the mass of the

A search of the relevant literature turned up aportion of string under investigation divided by the

mechanical model of the violin bridge. A “high fidelity” radius of curvature. The net inward force is now:

model of the bridge would be relatively complex. The

bridge evidenced two degrees of freedom; it had a s

component of motion parallel to the string motion and a —%T - EUZ)

component normal to the string motion. These two

motions were, unfortunately, coupled. A decision was ) ) o )

made to decouple the motions such that a solution couliNce we can, in our imagination, run the string at any

be obtained without resorting to the complexity requiredvelocity we choose. Let us run the string at a velocity of

of a system of simultaneous equations.

The new model including the decoupled bridge motions c= I

supported the assumption that the bridge was the sink/ €

source for the string energy that we were looking for. ) . .

However, there were serious technical problems with thé/Ve notice that at velocity c, there are no forces acting

simplified bridge motion. These problems createdagainst the tube walls! This means that if you break

instabilities which caused the solution for the string notaway the tube from around the string (you can do this in

to converge unless additional damping, more than wagour imagination) the waveshape will remain

desired, was applied to the system.Though the sountdinchanged!

generated was clearly that of a plucked string; it was the ) o o )
sound of a severely damped string. The equivalent situation is when the string is stationary

but the waveform moves along the string with velocity ¢
The next step would be to rework the algorithm into aindependent of its shape.
system of simultaneous equations involving two space
dimensions. This is, due to the considerable complexityl he point of the above illustration is that the string

involved, outside the scope of this effort. shape remains unchanged as it travels along the string.
As
x A\
/ S T
T . K
R @

v

Figure 3: Forces on a moving string
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Thus the general solution for the traveling wave must bUnfortunately, to find our next solution, we must leave
of the form F(x-ct) where c is the velocity of the comforting confines of electrical engineering theory
propagation and the product ct represents a shiftin@nd enter the nether regions inhabited by mechanical
along the x axis. Notice that shifting the wave in x doesengineers. We require our next solution in terms of
not change its shape just as shifting a time function inforces, masses, lengths, moments and their relatives
time (as Electrical Engineers are fond of doing) does novelocity and acceleration. Since we have to deal with the
change its shape. uncooperative air, bridge and nut we will have to work
in their mechanical domain.
Its seems that we have only half of the answer; we mus
account for motion of the string in both directions. Wave Equation
Therefore the general solution must be of the form
Let us derive the wave equation. We shall again borrow
U = F(x-ct) from Morse (reference Vibration and Sound). We have a
thin flexible string held between two end points under
tension T dynes. We shall concern ourselves, however,
with only a differential section ds of this string. This
section of the string shall be displaced from the initial or
unperturbed position as shown in figure 4.

All the form of the general solution means is that where-
ever you see x you will see ct tagging along. We might
refer to this property as (again borrowing from

Electrical Engineering) “space invariance” in order to
leverage off the term “time invariance” where-in the

dependent variable t and its associated delay are alway
seen as pairs.

The force perpendicular to the x axis is given by

Tsina,—Tsina,
Now that we have this simple and elegant genera
solution, we wonder how we might find a specific
solution given certain initial or boundary conditions. It
seems logical to again tap the rich stores of Electrica
Engineering theory and remember that any arbitrary,
wave shape can be synthesized as a superposition
harmonically related sinusoids. Thus, we can use the .
Fourier series as a synthesis tool by determining the sina = tana
spectral content of the initial string shape and realizing
that shape will not change over our space variable yTherefore, our force directing the string back to the x
(assuming we have no losses and ideal boundaraxis is given by
conditions), we can reflect the traveling waves at eact
endpoint and sum to obtain string displacement U as T(tana, —tana )
function of time.

Since thea s are small (this is a restatement of the
necessary condition that the radius of curvature is large
compared to the deviation of the string about the x axis),
we can employ the approximation:

Again we are faced with the problem that though weWhere

have a simple and elegant solution, we can not use it

The above solution assumes no losses and ide: _ ou
boundary conditions. We do not enjoy either of these tana = 5')2
conditions. Our problem includes viscous losses due t¢
the string motion through the air, mechanical losses ir
the bridge and nut, and non-ideal boundary conditions

as the bridge and (to a lesser degree) the nut move.

giving us

aux+ dx_b

tana, —tang, = ——%
2 1 ax ax

We now have for the expression of force:

-|-|:6Ux+ dx %}
0x 0x

X x+dx . .
We can advance our derivation further if we remember

that:
Figure 4: Forces of string under tension

MS State DSP Conference Fall'95



Physical Modeling Group Page 79

_ of(x) 2 2
f(x+dg = f(x) +dx—— ou ou
0x Tdx— = edx—
ax2 ot?
Now we have as our expression for force:
or
QU U U
x+dx _ YYx0 _ 2 2
TG % ox 0~ Td X2 Tou _ou
e€0x2 ot
Since we have chosen a differential element and have
applied a finite force to it, we must determine and applywhere
an opposite force or wave bye to our differential element
as it accelerates off to infinity. For our balancing act we T _ 2
will invoke the great wizard of Mechanical Land, s c
Lagrange.

We know both the mass of our element and its velocity:~nite Difference Methods

therefore we can calculate the kinetic energy. We carkI h h h L ¢ ial
safely ignore the potential energy due to localizedYOW that we have the wave equation in terms of partia

overtension since we will assume that the tension jdifferential equations we can arrive at a unique solution
uniform along the string (actually the speed of reflecting our initial and boundary conditions. First we

propagation of the longitudinal wave is sufficiently fast MUSt recognize that our equation is of the type called

that we can ignore localized overtension). FurthermorelYPerbolic. Given the following general equation:

if the tension is very high -and in our case it is, we can

ignore_ gravitational forces. Therefore we have for our aZU 62U aZU +d6U LU -
opposing force: 2 22 Ca? 5t T8y tfu=9
d DBWKD 0 The equation is said to be hyperbolic if
dtpu, 5 au "V
td b2—-ac>0
where

If we recall the definition of the derivative of f(x), we
can begin construction of a numerical algorithm:

1 2
Wy = ésds( U.")
IimO
X —

f(x+Kk)—f(x) _
” = f(X)
and

For our purposes we will not allow h to approach zero
Wp =0 and thus the reference to finite difference methods. Also,
we will employ a “backward” difference along with the
Since we are discussing an element of vanishing lengtgPove forward d|fffarenc_e. If we expand f(y,x + h) and
we can reasonably equate the differecial element ds witf(y:X - h) as Taylor's series, we can sum the two and

the differencial element dx. Thus we have: solve for the second partial of f(y,x) with respect to x.
Thus we have
dr o i 2]
—| —r=edxU = edxU 2 32
dt[GUtEQ tD} t fyox+ 0 = 10 +k2 (0 + 521 (v 0
0X 2 9x2
or, and
2 2
U ) = 0 k2 o”

. When we sum the above we have
Our opposing forces can now be equated:
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2 n+1 n-1
Fly, x+ K+ 0y x=K) = 2F(y, X) + k-0 f(y, %) rPm Um0
ax? 2k
O O
and finally Our difference equation becomes
2
0 - flyx+ K=2f(y, ¥) + f(y, x=K n+1_ _1
—f(y,x) = u = z
3 (v, x) 2 m . §k[ ]
If we perform the same manipulations on f(y,x) with K 2 n k2 n nQ
regards the independent variable y, we will have our £ = [4%1—;) EUm +25p B‘Jm—l U1 D"YJ

wave equation in terms of two difference equations: one
in the space dimension y, and the other in the time Y = [Bk—ZEU n-1
dimension t. & m

Therefore, we have fory k
Where,C = E and R is the damping coefficient.

2

if(y t) = f(y+ h,t)—Zf(y, t) + f(y—h,t)
ay? h? Ah! But we still have a problem. We have our initial
o conditions and our boundary conditions. We also have a
The wave equation is now method of advancing to U at n+1 given U at n so you
ask what can be the problem. If you will notice, our
c'{f(“ ht)=2f(y, t)+ f(y—h, t)} algorithm requires information not just at n but also at n-
h2 1.
If we start at n=0, n-1 is undefined. Therefore we must
f(y, t+K)—2f(y, ) + f(y, t—K) start at n=1. But we have no knowledge of the solution
= K2 at n=1. We therefore require an auxiliary equation to

solve for U at n=1 based on knowledge of U at n=0.

Substituting Um for f(y,t) , Um for f(y,t + k) , and

Um+1 for f(y + h,t) we have The solution for the auxiliary equation must not contain

any terms at n-1. Therefore if we expand f(y,t + k) in a
Taylor series we have

Cz[unm+1—2u”m+ Unm—l} _Up oy ey
h? k2 3 k2 a2
(yt+ K = f(y,t) + ks F(Xt) + =—=F (X!
as our implicit difference equation. ot 2 atz
Oh! But now you mention it. We forgot about losses; we (¢ \va remember that
have to account for viscous losses due to the string’s
motion in the air. 5 5
- . . 9 tyt) = 29 .0 =R f(yt
We now have to derive a difference equation for the first 5Ty = c— ) -Rf(y,
partial of displacement U with respect to time as the 't ay

viscous losses are a function of the string’s velocity.
We can make the substitution
We will use the same trick as above and we then have

2 K[ 2 92 2

ﬂf(y t) = fly, t+ K —f(y, t—k) (yt+k) = f(y,t)+k§f(x,t)+7 c 7f(y,t)—Raf(y,t)

ot 2k ay
We must now add the new term to the original equation. We need now only one more piece of information. At
We now have t=0- we should expect the string velocity to be zero. If

we then discard the velocity term in the above equation,
1 -1 we will have
c? U'm+1-2U"m+ U "m-1] _ Umn+ +2Umn"'umn
h2 - k2
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N
----- <LZ — Z 4—214—-----

Figure 5: Simple string with rigid endpoints

k2 2 62 3.2. The Digital Waveguide
fRt+ R = Fy)+ 5500

oy The numerical method for computing the motion and

forces of a plucked string is thorough, but lacks the

desired response speed. A simulation containing only
one pluck could take up to an hour to process. The same
mathematical analysis can be used to derive a method

It follows then that

2 2[u Neou "_u n for performing the same tasks with much less strain on a
Umn+ 1. Umn+ ch m+1 ;n m-1 CPU. A string can be modeled as two parallel delay
h lines. One delay line can be used to carry the waves

travelling in one direction, while the waves which
bounce off of the nut and travel in the opposite direction
can be carried by the other delay line. This is illustrated
in figure 5. The output can be found at any point along
the string by summing the values of the upper and lower
rails at that point.

Thus we have our auxiliary equation which will
advance our solution to n=1 from which our main
equation will advance the solution to it's ultimate
destination.

Non-Rigid Endpoints . . . -
In the simplest case, a string with two rigid supports can

be modeled with two delay lines, and inverters at each
end. The inverters invert the wave as it bounces off of
the nut, as would a real wave. The initial value of the

displacement of each node can be calculated knowing
the point of maximum displacement and the amount of
that displacement.

Though we made a valiant effort, we never succeeded in

generating an accurate model of the string attached to /A MOre accurate representation of a violin string can be
the objective movable endpoint -the bridge. Some represented in figure 6. In this case, the nut is considered

success was had with simplified moving endpoints but {0 be arigid support, and the bridge is not. The losses at
they were of no interest as regards the generation of the bridge can be modeled with a lowpass filter. because

“violin like” sounds. The effort has, by no means, been of the differences in the physical characteristics in each
abandoned. ’ ’ string on the violin, each string will have its own

transfer curve. The strings which produce higher pitches
are under more tension, and have less mass. This causes

For the reader who is rabidly hanging on each word, |
apologize. The above bold heading promising
information about moving endpoints was a tease. For
those readers trudging ahead on shear determination,
your ordeal is over. Well! One more paragraph.

Figure 6: Digital waveguide model of string with non-rigid endpoints
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them to be less affected by the bridge. In other wordsto the wave equation model had been derived, that

for smaller strings with less mass, the bridge appears tinformation could have been directly transferred to the

be more rigid. digital waveguide model, just as the string model was
derived.

This was easily shown with the digital waveguide

model. The initial filter to be implemented was a singe 4. EVALUATION

pole FIR:

1, The data produced by the digital waveguide model was
57 able to closely approximate these characteristics. An
exact reproduction of the characteristics was not able to
be achieved due to the complexity of the filter that
would be necessary to get the exact characteristics. We
ere able to produce data from this model which had
gh attenuation rates at high frequencies similarly to
the real data. Although the high-frequency components
of this data were not that rich in harmonics of their
counterparts, the actual sound output by this data closely
matched with that of a real violin.

u(n) =

NI

This filter gave the more massive, lower frequency
strings an abnormally long decay time. The higher
strings appeared normal, however. This was remedieﬁ{
by implementing a higher order filter to the lower
strings. The filter used for the G and D strings is a two
pole FIR:

u(n) = %+ %12—1 + %12—2
The observation of the plots of the data produced by the
numerical solution model showed that all the

%requencies had the same attenuation rate. This was due
2 the fact that we were unable to incorporate the exact
fhodel of a bridge into the model, as a solution of the

behavior of the bridge was too complicated

While these filters are not true representations of th
process by which the high frequencies are attenuated
the bridge, it does provide a more accurate picture than
single transfer function for all four strings. If a solution

Normalized

0.5 -
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400
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Figure 7: Harmonic spectrum of digital waveguide model incorporating losses at bridge
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mathematically to determine. The bridge gives rise to This provides for an environment where development of
the various attenuation rates of the frequency the model can be done purely mathematically, and once
components and it's absence should meant that all the the mathematical model is complete, it can be applied to
should be having the same attenuation (or no the digital waveguide model for implementation into a
attenuation), which is exactly what was observed from live application.
the plot.
The chief limitation of our project is the failure to
5. TCL INTERFACE develop a model of the bridge in the wave equation
model. Though a mathematical model was not
developed, experimentation with the digital waveguide

Any high fidelity physical model is a complex system. model showed that sufficient results could be obtained
Even liberal comments do not make the code usefrom a system of low-order low pass filters.

friendly. Thus to promote general access, we have
implemented a point-and-click interface. Further work could be done to develop the bowed string
model and the model of the resonant cavity. Completion

When designing the GUI, we had in mind the wide of this would produce a complete model of the violin.
range of users that might want to use this system. It was

important that anyone could use even those that are not
adept in using Unix tools. Users do not what to have to
try to interpret someone else’s code to be able to achieve
the sound produced by the digital-waveguide. With this
in mind, we began to lay out a design of how we wanted
the interface to interpret our data and present to the user
in a useful manner.

The first step was to present to the user four input
options that they could perform. These included looking

at the figure and a single string of the instrument where
the user is allowed to pluck the string and watch what
the strings does after being plucked. The next option is
to be able to choose a specific note, string, and either
sharp, flat, or natural, which is then either played or

stored in an output file. The note that is heard is

produced from the digital waveguide in real time. The

third and fourth options are to choose a file to play or to

connect to a MIDI interface.

6. SUMMARY

This project successfully completed its task of
developing a real-time demonstration involving physical
modeling. Although the end product, at this point, is not
as complete a model as would be desired, the model
does exhibit the sonic characteristics of a plucked violin
string.

This project showed the importance of approaching the
problem from both the wave equation and digital
waveguide methods. The wave equation method, though
computationally intensive, produces output which is
mathematically accurate. Because Matlab was used,
once the mathematical expression was derived, the
solution could then be directly solved. This provides for
an environment where

The digital waveguide is much better suited for

implementation in a real time system because it consists
of many functional blocks which are very simple.
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