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Relationship of the DFT to Other Transforms

• A periodic sequence with fundamental period N can be

represented in a Fourier series of the form:

where the Fourier series coefficients are given by the expression

The DFT is therefore related to the Fourier Series by the simple
expression:

• For an aperiodic sequence, we have shown that:

are the DFT coefficients of the periodic sequence of period N, given by

and  is determined by aliasing  over the interval .

The finite duration sequence

is obviously different from the original sequence unless is finite
duration and length , in which case

Only in this case will the IDFT return .
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• Recall the z-Transform:

If we sample this transform at equally spaced points on the unit circle,

If is of finite duration of length , its -transform is uniquely
determined by an -point DFT:

which can be simplified to:

This expression is similar to the one we derived for the Fourier transform:

or,

X z( ) x n( )z
n–

n ∞–=

∞

∑=

X k( ) X z( )
z ej2πk N⁄=

≡ x n( )e
j2πkn N⁄–

n ∞–=

∞

∑= , k 0 1 2 … N 1–, , , ,=

x n( ) N z

N

X z( ) x n( )z
n–

n 0=

N 1–

∑=

X z( )
1
N
---- X k( )e

j2πkn N⁄

k 0=

N 1–

∑ z
n–

n 0=

N 1–

∑=

X z( )
1 z

N–
–
N

------------------ X k( )

1 e
j2πk N⁄

z
1–

–
--------------------------------------

k 0=

N 1–

∑=

X ω( )
1 e

jωN–
–

N
------------------------ X k( )

1 e
j ω 2πk–( )– N⁄

–
---------------------------------------------

k 0=

N 1–

∑=

X ω( ) X
2π
N
------k( )P ω 2π

N
------k–( )

k 0=

N 1–

∑= , N L≥



OCTOBER 9, 1996 EE 4773/6773: LECTURE NO. 22 PAGE 3 of 6

ELECTRICAL AND COMPUTER ENGINEERING

• Suppose that is a continuous-time periodic signal with a

fundamental period . The signal can be expressed in a

Fourier Series

If we sample at a uniform rate , we can show

that the Fourier series coefficients are related:

These are an aliased version of the Fourier series coefficients .

• Recall the relationship of the spectrum of a discrete signal to the Fourier
transform of a continuous-time signal:

, or,

We can easily show that:

and,

This last relation illustrates time-domain and frequency-domain aliasing.
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Time-Domain Windowing
Let denote a sequence to be analyzed. Let’s limit the duration of

 to  samples:

where  is a rectangular window and is defined as

.

The Fourier transform of  is given by:

The transform of  is given by:

.

This introduces frequency domain aliasing (the so-called picket fence
effect):
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Improvements Via Better Windows

Rectangular Window:

Hanning Window:
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Popular Windows

1. Rectangular:

2. Generalized Hanning:

3. Bartlett

4. Kaiser

5. Chebyshev:

6. Gaussian

There are many others. The most important characteristics are the width of the
main lobe and the attenuation in the stop-band (height of highest sidelobe). The
Hamming window is used quite extensively.
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