NOVEMBER 20, 1996 EE 4773/6773: LECTURE NO. 40 PAGE 1 of 5

4 N

FIR Least-Squares Inverse Filters (Weiner Filters)

Consider the following optimization problem:

d(n) = 5(n) h(r) an) = o)
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L — — — 4 Minimize Error
We seek to design an FIR filter, H,(2), such that:

h(r) O h,(n) = &(n)
H@H,(2 =1
M
/(") is an FIR filter: H,(2) = by +byZ " +.. +byz " = ¥ bz "
k=0

We will use a least-squares error criterion:
M
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Upon differentiating with respect to b :
M
Z bernk=1 = rys) | =0,1,..,.M
k=0
where,
M) = Z h(n)h(n— 1) (autocorrelation)
n=0
rgp) = z d(n)h(n-1) (crosscorrelation)
n=0

The filter that satisfies this equation is called a Weiner filter.

If d(r) = 3(n),

h(0) =0

ran) = 0
dh 0 0 otherwise

This gives the following system of equations:

O D M=) M) || by o)
rhh(l) rhh(O) rhh(M—Z) rhh(M—l) b1 0

M=) r, M=2) ... 1,42 (D) by —1 0

| The M) M =1) (D) @ || by | L 0 ]

Solving this equation for {b,}, and substituting the result into our

expression for the mean-squared error gives:
Emnin = 1—h(0)b,

/A f
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Example 8.4.6: Find a 2nd order FIR approximation to:

%1 n=~0
h(n) = J-a n=1

% 0 otherwise
Method 1: Truncate the exact inverse:

H(2) = l1-az *

1 1
H,(2 = = —
1-az
Truncating H,(2) to two terms gives:

-1 2 =2
1 =1+0z +0a z +...

Hi(2 = 1+az -
The corresponding error is:

4

[00]
Et — Z aZn — a
2
n=>o 1-a
Method 2: Least squares solution:

@ = 1+a” 1) = h(0) = 1

therefore,
1+a® —a ||Po =H
—a 1+0(2 b1 0
and,
_ 1+q? .«
by = 2 by = 2 4
1+a” +a 1+a” +a
Note that:
a4
Emin = 1—h(0)b0 = > 4<Et
l1+a +a
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Design of IIR Filters in the Frequency Domain

Consider the problem of fitting a general rational polynomial to a desired
frequency response:

K 1 2
1+Byz  +Byz

1+ 1. -2

H2 =G

We must determine {a,}, {b,}, and G.

The frequency response can be expressed as:

H(w) = GAw)e ®

where

K 1 2
1+Byz  +Byyz

1+ -1y 2
k=147 %2 TOpZ

Alw) =

and O(w) is the phase response.
For this type of problem, it is easier to deal with the group delay:

dz
_eJood(JO

1@ = 20w = 1,2

It can be shown that:

o

]
B1kZ* 2By A Z+ 205 |0
1, = Rajl_l { - [

&= 2 4Byt By 7 +agzt oy, .

At a selected group of frequencies, w, , the magnitude and phase errors are
given by:
Emag = GA(wy) — Ay(w,)
Ephase = Tg(wk) _Tg(‘”o) _Td(wk)

where Tg(ooo) Is the group delay in the passband of the filter (a minor detail).
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If we define an objective function, or cost function as:
L
_ 2
E(p. G = (1-7) Z W [GAw) — Ag(w)]
n=1

L
293 Vn[Tg(wn)—Tg(wo)—Td(oon)]z
n=1

we can optimize the filter design as per a user’s requirements.
The optimal gain is given by:

L
Z w, A(w) Ay(w,)
A _n=1
G = L
2
Z w A% (W)
n=1
The error for this value of the gain is:
L
_ ~ 2
E(p. G = (1-A) Z W, [GA(w) —Ay(wp)]
n=1

L
253 vn[Tg(wn)—Tg(wO)—Td(wn)]Z
n=1

A closed-form solution for this equation is not possible since it involves a
nonlinear optimization. A standard technique to solve this equation is to
iterate on a solution starting with an initial guess. The iterative solution takes
on the form:

I@(m+ 1) _ p(m)—A(m)Q(m)g(m)

This is a gradient search algorithm that iterates by adjusting the new values
of the coefficients based on the amount of error and the derivatives in the
neighborhood of the current solution.

Does it work?
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