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Frequency Transformations For Analog Filters
Cutoff
Type of Frequencies of
Transformation Transformation New Filter
Lowpass '
P s 2B 2y
d Q'
p
Highpass ' :
ghp .. QpQ 0 Q 0
S
Bandpass DSZ +Q,Q, 1 Q,Q,
S>> Q F———[
Bandstop 5(Q,— Q)0 Q,Q,
S - QDBZ—D
Ls"+0Q, U
Strategy:

(1) Prewarp the cutoff frequencies

(2) Design an analog lowpass filter

(3) Use a frequency transformation to prewarped frequencies
4) Use the bilinear transform to get a digital filter
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Frequency Transformations For Digital Filters
Cutoff
Type of Frequencies of
Transformation Transformation New Filter
1 71 _a Wy
Lowpass 1 az_l ) sin[(oop P p)/2]
sin[(u)p + W IO)/2]
Highpass 2—1 Z +a wlO
1+az _ cod(w,+ &)/ 2]
~ cog (0, —w )/ 2]
Bandpass A 7 < alz— ra, W, W
a7 ‘—a;z +1| A7 —2aK/(K +1)
a, = (K-1)/(K+1)
cog (w, + )/ 2]
cog (w,—wy)/ 2]
D‘*’u “i5,, e
K = cot |:'tanD2 0
Bandstop 1 z —a;z +a, Wy, W
a,z “—a, 7 T+1 3, = —20/(K+1)
a, = <(K-1)/(K +1)
cog (w, + wy)/ 2]
~ cod(w, - w;)/ 2]
_ d”u “ig,, doe0
K = tanq |:‘tanD > 0
Strategy:
(1) Design a digital lowpass filter (using standard technigques)
(2) Use a digital frequency transformation

\_
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Designs of IIR Filters Based on Least Squares Methods

(1) Padé’s Approximation
Suppose hy(n) is specified for n= 0. Our desired filter has the form:

(e¢]

Z h(KZ "

H(@2 =

2
20

To find the best { a,} and {b,}, we can minimize the squared error:

U

S [hym -h(n)?

n=20
Consider the case where U = L-1 = M+N-1:
y(n) = —a;y(n—1) —a,y(n—2) —... + byx(n) + b x(n—1) +... +by,x(n— M)
This implies:
h(n) = —a;h(n-1) —a,h(n-2) —... —ay h(h—N)
+byd(n) + b d(N—1) +... +by, 5(n— M)

Since d(n—k) = 0 except for n = Kk,

h(n) = —a;h(n-1) —a,h(n-2) —... —a, h(h—N) + b O<n<s M
h(n) = —a;h(n-1) —a,h(n-2) —... —ay h(n—N) n>M

This gives a set of N+ M + 1 linear equations. We can solve these

equations using a standard linear equation solver (or matrix algebra) —

this is called the Padé approximation method.

/A f
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(2) Least-Squares Using an All-Pole Filter
Suppose hy(n) is specified for n= 0. Our desired filter has the form:

by

N
—k
1+ Z a,z
k=1

Consider the following minimization problem:

H(2) =

o(n) 5(n)

1 y(n)

- H4(2 - )
A + _
I
I
I
L _ _ _ 4 Minimize Error

N
1
y(n) = | hy(n) + Z hy(n—K)
0 K=1
Define the mean-squared error as:
- 2
E= 5 vy
n=1
where y4(0) = y(0) = 1 implies by = h(0).

Differentiating w.r.t. a, and rewriting as a system of linear equations:

N

Y adadk ) = g0 1=12..N
k=1

where, for finite data (L » N) ,
L—|k=1|
rdd(k, ) = rdd(k—l) = z hd(n)hd(n+ k—1) O<k-I1<N
n=~0

k ELECTRICAL AND COMPUTER ENGINEERING




NOVEMBER 15, 1996 EE 4773/6773: LECTURE NO. 38 PAGE 5 of 7

\

(3) Least-Squares Using an ARMA (Pole/Zero) Filter

Suppose our desired filter has the form:
M

z bkz_k

N
1+y gz

k=1
The impulse response can be written as:
N M

h(n) = — Z ah(n—K) + Z b, d(n—K) n=0
k=1 k=0

or,
N
h(n) = — z ah(n-K +b_ 0<sn<sM
k=1

N
— Z ah(n-K) n>M
k=1

This is, in general, a nonlinear optimization problem (that can be solved
directly with iterative algorithms).

A sub-optimal approach, known as Prony’s method, uses a two-step
process: (1) fit the poles of the filter; (2) minimize the remaining error
using zeros.

Define:
N
hy(n) = — Z a hy(n—K) n>M
k=1
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and,
” ~ 2
Ep= Y [hy(m) —hg(m)]
n=M+1
This gives:
N
Z arqqk. ) = g4k 0)
=1
where,

(0]

rqgk ) = Z hg(n—Khyn—1)
n=M+1

N
b, = hy(n) + Z ahy(n—K 0Osns M
k=1

We can use the Padé approximation method to solve this problem.

(4) Least-Squares Using a Two-Stage Optimization

Consider the all-pole portion of the filter:

1
H,@ = N
~ _—k
1+ Z a7
k=1
The difference equation corresponding this system is:
N

v(n) = — Z a.v(n-K +5(n) n=0
k=1
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Once we solve this system of equations for {a,} , we can find {b,} by solving:

In a two-step process, we optimize both the poles and zeros of the filter.
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N
v(n) = — Z a.v(n—K +93(n) n=0
k=1

Similarly, the all-zero portion of the filter can be written as:

M
Hid =y bz«
k=0

The impulse response can be written as:

M
hgm) = Y bv(n-K
k=0

The error signal is given by:
M

&(n) = hy(m) —hg(n) = hym -y bMn-K
k=0

Its energy is given by:
00 M
E, = z hy(n) — z b v(n—K
n=0 k=0
By differentiating w.r.t. the filter coefficients, we obtain:

2

M
Z b r k1) =10
k=0

where,

rofk ) = Z v(n—RKv(n—1l) and r (k) = Z hy(Mv(n—K
n=0 0

n=

The above equation can be solved using any standard technique
(matrix inversion, Gaussian elimination, etc.).

This method of two-stage optimization is known as Shanks’ method.
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