
OCTOBER 30, 1996 EE 4773/6773: LECTURE NO. 31 PAGE 1 of 7

ELECTRICAL AND COMPUTER ENGINEERING

y n()x n()

IIR Filters - Direct Form Structures

An Infinite Impulse Response (IIR) filter consisting of a ratio of two
polynomials can be decomposed into the cascade of an all-zero filter and an
all-pole filter:

or,

This can be implemented efficiently using multiplications,
additions, and the maximum of memory locations using a

Direct Form II realization:

y n() aky n k–()

k 1=

N

∑– bkx n k–()

k 0=

M

∑+=

w n() akw n k–()

k 1=

N

∑– x n()+=

y n() bkw n k–()

k 0=

M

∑=

M N 1+ +()
M N+() M N,{ }

+

+

+ +

+

+

+

+
.........

z-1

z-1

z-1

-a1

-aN

-aN-1

-a2

b0

b1

b2

bN-1

bN

w n()

OCTOBER 30, 1996 EE 4773/6773: LECTURE NO. 31 PAGE 2 of 7

ELECTRICAL AND COMPUTER ENGINEERING

SIgnal Flow Graphs and Transposed Structures

From Network Theory, we recall the following theorem:

Transposition or Flow-Graph Reversal Theorem:

If we reverse the directions of all branch transmittances and interchange
the input and output, the system function remains unchanged.

Block diagram representations of filters can be converted to signal flow
graphs by treating delay elements and multipliers as weights on an arc, and
replacing summers with a filled circle. This allows us to transform the
problem of the design of a filter into a network topology problem (or a graph
theory problem).

Extending such theory results in the following transposed structure for the
Direct Form II implementation (see Table 7.1):

x n() y n()

+

+

+

+

+
...

z-1

z-1

z-1

-a1

-aN

-aN-1

-a2

b0

b1

b2

bN-1

bN

+

OCTOBER 30, 1996 EE 4773/6773: LECTURE NO. 31 PAGE 3 of 7
Cascade-Form Structures

A system can be factored into a product of second-order systems:

where K is the integer part of . has the general form:

This may be implemented using the following form for each second-order
section:

H z() Hk z()

k 1=

K

∏=

N 1+() 2⁄ Hk z()

Hk z()
b0 b1z

1–
b2z

2–
+ +

1 a1z
1–

a2z
2–

+ +
--=
x n() y n()

+

+

z-1

z-1

bk1

bk2

1

-ak1

-ak2

+

+

bk0
What are the significant differences between this realization and a direct
form realization?
ELECTRICAL AND COMPUTER ENGINEERING

OCTOBER 30, 1996 EE 4773/6773: LECTURE NO. 31 PAGE 4 of 7

ELECTRICAL AND COMPUTER ENGINEERING

Parallel-Form Structures

A system can be factored into a sum of second-order systems using a
partial-fraction expansion:

where K is the integer part of . has the general form:

This may be implemented using the following form for each second-order
section:

H z() C Hk z()

k 1=

K

∏+=

N 1+() 2⁄ Hk z()

Hk z()
bk0 bk1z

1–
+

1 a1z
1–

a2z
2–

+ +
---=

x n() y n()

+

+

z-1

z-1

bk1-ak1

-ak2

+
bk0

OCTOBER 30, 1996 EE 4773/6773: LECTURE NO. 31 PAGE 5 of 7

x

x

Lattice and Ladder Structures

For the FIR lattice structure:
f 0 n() f 1 n() f 2 n()

z-1 z-1

K1

K1

K2

K2

n()

g0 n() g1 n() g2 n()
the inverse, or IIR equivalent, is:
y n()n()

z-1+

+

...

...

z-1+

+

K1

-K1

KN

-KN
This structure can be generalized to implement a pole/zero filter. Consider
the filter:

We already know that can be implemented with the above lattice filter.

H z()

cM k()z
k–

k 0=

M

∑

1 aN k()z
k–

k 1=

N

∑+

CM z()

AN z()
---------------= =

AN z()
ELECTRICAL AND COMPUTER ENGINEERING

OCTOBER 30, 1996 EE 4773/6773: LECTURE NO. 31 PAGE 6 of 7

x

Consider the lattice-ladder filter shown below:
y n()

n()

z-1+

+

...

...

z-1+

+

K1

-K1

KN

-KN

+++ ...

v0v1vN-1vN
The coefficients of the ladder filter, {vk}, can be found from the following
recursion:

The recursion is performed backwards: m=M,M-1,...,2.

At each stage of the iteration, is computed, and then is

computed from and . Next, is computed using the

step-down procedure previously described.

Ladder filters find applications in channel equalization (such as modems).

vm cm m()=

Cm 1– z() Cm z() vmBm z()–=

vm Cm 1– z()

vm Bm z() Bm 1– z()
ELECTRICAL AND COMPUTER ENGINEERING

OCTOBER 30, 1996 EE 4773/6773: LECTURE NO. 31 PAGE 7 of 7

ELECTRICAL AND COMPUTER ENGINEERING

Software Implementation of Discrete-Time Systems

