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Lattice Filters

Let us define a two-stage lattice filter structure:

fo(n) f,(n) fo(n)
| -
x(n) K,
Ka
— 71 > 71 } >
9o 94(n) Q)

We can implement a second-order FIR filter using this structure:
y(n) = x(n) + a5()x(n—1) +a,x(n—-2)
The output from the first stage of the lattice is:
fi(n) = x(n) + K x(n—-1)
g4(n) = K x(n) + x(n—1)
The output from the second stage is:
fo(n) = f4(n) +K,g9,(n-1)
g,(nN) = Kyf,(n) +gq(n—1)
We can solve for f,(n) through substitution of f,(n) and g;(n-1):
fo(n) = x(n) + K x(n—-1) + Ky,[K x(n—=1) + x(n—2)]
= X(n) + K (1 +K,)x(n—1) +K,yx(n-2)
If we equate coefficients with our FIR equation above:
a,(2) = K, a,(1) = Ky(1+Ky)

or, solving for {K.} ,

a,(1)
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General M th-Order Lattice Filters

For the general case, we can write:
fo(n = gp(n) = x(n)
f(n)="~f,_,0+K.g,_1n-1), m=12...M-1
gm(n):Kmfm_l(n)+gm_1(n—1), m=12...M-1
The output of the (M —1)st stage corresponds to the output of an FIR filter:
y(n) = fy_1(n)
This can also be expressed as:

m
f ()= Z o ,(Kx(n=K, a,0) =1
k=0
We can write this using z-transforms as:
Fn@ = AL@X(3
o,

F(@

Fo(@

Hence, at each stage of the filter, we can view the output as an FIR filter
operation. We refer to A (2) as the forward filter or forward polynomial. We

A2 =

referto {K;} as reflection coefficients. a;(m). are FIR filter coefficients.
Note that for a stable filter:
|Ki| <1

Hence, {K;} are much easier to quantize than a,(m).

We will revisit this formulation in speech processing under the topic of linear
prediction.
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G,,(2: The Reverse Polynomial

We can similarly solve for g,(n):
g,(n) =K, f,(n)+g(n-1)
= Kox(n) + K (1 +K,)x(n—-1) +x(n-2)
= a,(QX(N) + ax()x(n-1) +x(n-2)
Following our previous development, we can see that g(n) is the output

from an m-stage lattice filter:
m
Im(n) = Z Bm{Kx(n—K
k=0

where the filter coefficients {B(k)} are associated with a filter whose

coefficients are the reverse of A _(2):
B (K=a (m-K, k=01.,m
with B (m) = 1.

In the z-transform domain,

G2 = B(9X(2
where

m
Br®d = Y BZ
k=0

and,

m
—k - -1
Br@ = Y apm-RZ" =2 A2
k=0
(what does this say about zeros?)
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Matrix Formulations: Relationship to Two-Port Networks

We can write the following recurrence relations in the z-domain:

Fo(@d = G2 = X(2
F@=F. _,@+K.Z'6, _,@d,  m=12.,M-1

G,(2) =K @+7'G, 2, m=12.,M-1

mFm—l
Dividing by X(2):

A2 =By =1
A@D=A _@+K Z B .2, m=12.,M-1

-1
Bm(z):KmAm_l(z)+z Bm_12; m=12..,M-1

This can be written in matrix form as:

A@| |1 K| Am-1d

-1
By(2 Km 1||z27B,_ 1@

The reflection coefficients can be converted to direct-form filter coefficients
by noting that:

Ap2 = By =1
A@D=A _@+K Z B 2, m=12.,M-1

_ M -1 _
Bm(z)—z Am(z ), m=12.. M-1
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Conversions

Conversion from direct-form filter coefficients to lattice coefficients:

a,0 =1
a,(m =K,
a,K =o,_(K+K a. . (m-K
=a,_1K+a (mMa,_(m-K l<ksm-1

Conversion from lattice coefficients to direct-form filter coefficients:

for m=M-1,M-2,...,1:

Kp = (M)

oK) =K By (K)
1-K2,

o (K -Ko,(m=K

1—ar2n(m)

Opm-1(K)

1<ksm-1
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f o() f1(n) fo(n)
| |
I
x(N) K2
K,
> 71 > 71 | >
9o 94(n) Q)
Inverse (Synthesis) Filter - All Pole
£ f4(n) foln)
| >
K2 Kq x(n)
_K2 -Kl
d5(N) g,(n) do(N)

Forward (Analysis) Filter - All Zeros
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