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Efficient Computation of the Discrete Fourier Transform (DFT)

Recall the DFT:

or,

where  and .

Note that  are just samples on the unit circle:
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N = 4

k = 0, 1, 2, 3

n = 0, 1, 2, 3

Only four unique values!
For example, .

We note two important symmetry properties of :

(symmetry about the imaginary axis)

(periodicity)

This symmetry allows the number of computations for a DFT to be reduced
significantly.
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Computational Complexity

For a complex-valued sequence:

Direct computation requires:

1.  evaluations of trig functions (typically performed using table
lookup — a trade-off of memory for speed)

2.  real multiplications

3.  real additions

4. Misc. indexing and addressing operations

In general, we say that the complexity is  — which implies it is not
linearly proportional to the length of the input.

Why is this bad?

XR k( ) xR n( )
2πkn

N
------------- 

 cos xI n( )
2πkn

N
------------- 

 sin+

n 0=

N 1–

∑=

XI k( ) xR n( )
2πkn

N
------------- 

 sin xI n( )
2πkn

N
------------- 

 cos–

n 0=

N 1–

∑–=

2N
2

4N
2

4N N 1–( )

O N
2( )



OCTOBER 21, 1996 EE 4773/6773: LECTURE NO. 27 PAGE 3 of 4
Divide and Conquer

Consider the case  (N can be factored into a product of two integers):N LM=
x 0( ) x 1( ) x 2( ) … x N 1–( )

n=0 n=1 n=2 • • • n=N-1
Consider the mapping: :

We can similarly map the DFT index k using  (or ).

The DFT can be computed as:

The inner term represents an -point DFT, while the outer term represents an
-point DFT. What is the advantage of this approach?

Example: N=1000

Normal DFT (complexity ):  operations

Divide and Conquer ( ):  operations (2x reduction)

In general, the complexity of the divide and conquer approach is:

 complex multiplications
 additions

The complexity is reduced from  to something less...
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Example: Computation of a 15-Point DFT

An example of the flow of computations for a 15-point DFT decomposed into
 and :L 3= M 5=
L X(0)

X(3)

X(6)

X(9)

X(12)

3-Point DFT (5 of them) 5-Point DFT

WN
lq X(2)
For N highly composite (can be factored into a product of small prime
numbers):

we can decompose a DFT of large order into a sequence of small DFTs.

For example,

Suppose N is prime?

Can we impose additional constraints to further improve efficiency?

N r1r2r3…r v=

N 210 2x3x5x7= =
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