
OCTOBER 21, 1996 EE 4773/6773: LECTURE NO. 27 PAGE 1 of 4
Efficient Computation of the Discrete Fourier Transform (DFT)

Recall the DFT:

or,

where and .

Note that are just samples on the unit circle:

X k() x n()e
j2πkn N⁄–

n 0=

N 1–

∑= , k 0 1 2 … N 1–, , , ,=

X k() x n()WN
kn

n 0=

N 1–

∑= , k 0 1 2 … N 1–, , , ,=

WN e
j2π– N⁄

= WN
kn

e
j2π– kn N⁄

=

WN
kn
N = 4

k = 0, 1, 2, 3

n = 0, 1, 2, 3

Only four unique values!
For example, .

We note two important symmetry properties of :

(symmetry about the imaginary axis)

(periodicity)

This symmetry allows the number of computations for a DFT to be reduced
significantly.

W4
3() 2()

e
j2π– 4⁄() 3() 2()

e
j3π–

e
jπ–

1–= = = =

WN
kn

WN
k N 2⁄+

WN
k

–=

WN
k N+

WN
k

=

ELECTRICAL AND COMPUTER ENGINEERING

OCTOBER 21, 1996 EE 4773/6773: LECTURE NO. 27 PAGE 2 of 4

ELECTRICAL AND COMPUTER ENGINEERING

Computational Complexity

For a complex-valued sequence:

Direct computation requires:

1. evaluations of trig functions (typically performed using table
lookup — a trade-off of memory for speed)

2. real multiplications

3. real additions

4. Misc. indexing and addressing operations

In general, we say that the complexity is — which implies it is not
linearly proportional to the length of the input.

Why is this bad?

XR k() xR n()
2πkn

N
------------- 

 cos xI n()
2πkn

N
------------- 

 sin+

n 0=

N 1–

∑=

XI k() xR n()
2πkn

N
------------- 

 sin xI n()
2πkn

N
------------- 

 cos–

n 0=

N 1–

∑–=

2N
2

4N
2

4N N 1–()

O N
2()

OCTOBER 21, 1996 EE 4773/6773: LECTURE NO. 27 PAGE 3 of 4
Divide and Conquer

Consider the case (N can be factored into a product of two integers):N LM=
x 0() x 1() x 2() … x N 1–()

n=0 n=1 n=2 • • • n=N-1
Consider the mapping: :

We can similarly map the DFT index k using (or).

The DFT can be computed as:

The inner term represents an -point DFT, while the outer term represents an
-point DFT. What is the advantage of this approach?

Example: N=1000

Normal DFT (complexity): operations

Divide and Conquer (): operations (2x reduction)

In general, the complexity of the divide and conquer approach is:

 complex multiplications
 additions

The complexity is reduced from to something less...

l/m 0 1 • • • M-1

0
1

2

• • •

L-1

n l mL+=

x 0() x L() … x M 1–()L()

x 1() x L 1+() … x M 1–()L 1+()

x 2() x L 2+() … x M 1–()L 2+()

… … … …
x L 1–() x 2L 1–() … x ML 1–()

k Mp q+= k qL p+=

X p q,() WN
lq

x l m,()WM
mq

m 0=

M 1–

∑
 
 
 
 
 

WL
lp

l 0=

L 1–

∑=

M

L

N
2

10
6

L 2= , M 500= 5x10
5

N M L 1+ +()
N M L 2–+()

O N
2

()
ELECTRICAL AND COMPUTER ENGINEERING

OCTOBER 21, 1996 EE 4773/6773: LECTURE NO. 27 PAGE 4 of 4

M

Example: Computation of a 15-Point DFT

An example of the flow of computations for a 15-point DFT decomposed into
 and :L 3= M 5=
L X(0)

X(3)

X(6)

X(9)

X(12)

3-Point DFT (5 of them) 5-Point DFT

WN
lq X(2)
For N highly composite (can be factored into a product of small prime
numbers):

we can decompose a DFT of large order into a sequence of small DFTs.

For example,

Suppose N is prime?

Can we impose additional constraints to further improve efficiency?

N r1r2r3…r v=

N 210 2x3x5x7= =
ELECTRICAL AND COMPUTER ENGINEERING

