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Properties of the Fourier Transform for Discrete-Time Signals

The Fourier transform for aperiodic finite-energy discrete-time signals is
defined as:

[ee]

X(w) = F[x(n)] = Z x(ne-

n=—oo

The inverse transform is defined as:

x(n) = F_]{ X(w)} = %TZ[ X(w)ejwndw
Tt

Notes:
* X(w) is periodic with period 21t

» Usually we plot the spectrum for the interval [-1t 11
([0 or[O,f./2] for real signals).

We refer to x(n) and X(w) as a Fourier transform pair:

F
X(N) o X(w)
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Symmetry Properties of the Fourier Transform

Suppose that x(n) and X(w) are complex-valued. They can be expressed in
rectangular form:

x(n) = xg(n) + jx;(n)
X(w) = Xg(w) + X, (w)
By noting that ejw = COSw + jsinw, we can show:

Xp(w) = z [ x(n) coswn + X, (n) sinwn]
n=—oo

X () = — Z [ Xg(n) sincn — x, (n) coswn]

n=—oo

and,
Xg(n) = %T 2[ [ Xg(w) coswn — X, (w) sinwn] dw
Tt

x,(n) = %TJ[XR(w)sin(oon) + X, (w) coswn] dw
Tt

These equations form the basis for our exploration of symmetry properties.
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Real Signals:

Real/Imaginary Symmetry:

(e¢]

Xgp(w) = z x(n) coswn

n=-—o
X () = - Z x(n) sinwn

n=—oo

Xp(-w) = Xp(w) (even

X (-w) = =X () (odd)

Magnitude/Phase Symmetry:

X(w)| = [X(-w)| (even

_OX(w)  (odd)

OX(—w)

Real and Even:

00

XR(w) = x(0) +2 Z x(n) coswn

n=1
X|(w) =0

Real and Odd:
Xgw) =0

X (w) = -2 Z x(n) sinwn
n=1
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Even/Odd Decomposition:

A complex signal can be decomposed into:

X(n) = xg(n) + x,(n)

where:
_1 .
Xe(n) = 5[x(n) +x ()]
_1 .
Xo(N) = 5[x(n) =x (n)]
Example:
mm:[]A -M<n<M
0, elsewhere
x(n) is real and even:
o 2 0
X(w) = Xp(w) = AL+ 2 z coswn[]
O =1 O
: 1
SIHB\/I + E%}O
X(@)] = |A sin(w/2)
D .
OX(w) = DO’ if X(w)>0

O if X(w) <0
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Linearity:

=
X1(n) - Xy (w)

=
Xo(N) - Xo(w)

F
alxl(n) + a2x2(n) - X 1((1)) + a2X2(oo)

Time Shifting:
F
x(n) - X(w)
F .
x(n—K - e 1%x(w)
Convolution:
F
X1(n) - Xy (w)
F
Xo(N) - Xo(w)
F
X(n) = x4(n) O x5(n) - X(w) = X;(w) X5(w)
Correlation:

F
X1(n) - Xy (w)

=
Xo(N) - Xy(w)

F
rxlxz(m) - lexz(w) = X (@) X5(~w)
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Weiner—Khintchine Theorem  (for real x(n)):

F
(rydm) = x(n) O x(n)) - S, (w)
Frequency Shifting:

F
x(n) - X(w)

F
e “"x(n) - X(00—wp)

Modulation:

F
x(n) - X(w)

F
1 1
X(n)coswgn - EX((» +0p) + EX(w— wWp)

Parseval’'s Theorem:

F
X1(n) - Xy (w)
=
Xo(N) - X,(w)
00 Tt
T X = Elﬁ [ X1(@Xfw)do
n=-—oo —TT
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Multiplication (Windowing):

F
X1(n) - Xy (w)

F
Xo(N) - Xo(w)

Tt

F 1
X5(N) = X;(M)Xo(N) - Xs(w) = >mt J’ X1 (A Xo(w—A)dw
—Tt
Differentiation in the Frequency Domain:
F
x(n) - X(w)

F
nX(n) - | S X(@)
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