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“Notice all the computations, theoretical
scribblings, and lab equipment, Norm, ...
Yes, curiosity killed these cats,”

Septe

i

THR

b

ELECTRICAL AND COMPUTER ENGINEERING \

mber

i
i

MY

\




SEPTEMBER 11, 1995 EE 4773/6773: LECTURE NO. 10

PAGE 2 of 8

\

/

Poles and Zeroes

If X(2) is a rational function,

v K
b+ bz T+, 2+ .. +byZ 2. W
N(2 0" "1 2 s TEM _ k=0
X2 =53 = 1. 2. . N N
agtayz  +ayz  +..+ayz -
> &
K=0

if ay# 0 and by # 0, we can factor out sz_M and aNz_
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N(2 and D(2) can be expressed in factored form:

Py _m +NO(Z2—2)(Z2-2)...(2— 3,)

X3 = 53 - . Hz-pE-p) -y
or,
M
1 (z-2)
X@ = (62" Mk=1
1 (z— p)
k=1

where G = bo/ao.
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A zero is defined as a value of z for which X(2 = 0.

A pole is defined as a value of z for which X(2 - .

X(2 has M finite zeros at {z,,} .

X(2 has N finite poles at { z,} .

if IN> M|, X(2 has [N - M| zeros at z = 0 (repeated roots).
if IN < M|, X(2 has |N — M| poles at the origin (repeated roots).

Note also that, when N # M, X(2 can have poles and zeros at z = o,

In general, if we count the poles and zeros at z = o, X(2 has the same
number of poles and zeros.

Obviously, the ROC of a z-transform should not contain any poles.

Example:

x(n) = anu(n)

X(2 = — = < ROC: |Z > a

one zeroatz = O;onepoleatz = a
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Example:

X(r) = %{‘, 0O<nsM-1
Jo, elsewhere

Note: this is a finite duration signal!

M-1 —1.M M M
-1, _ 1-(az Z —a
X(2 = Z (az7) = ( _i = =
n=0 1-az z (z—a)

roots at z'vI = a'vI , which has M roots at

.~k
jZT[M
z = ae , k=01.. M-1.

Note that the zero at z = a cancels the corresponding pole.

Hence, finite duration signals are composed of ALL ZEROES!

A zeros are evenly spaced
around the unit circle
M-1
- > 3 >
\J
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Example:
X(2) = e,
(1-az )(1-a z")
_ 1
(1-(re!%z (- (re )z
_ 1
1-2rcosdz * + 172
A poles are complex conjugates:
ris bandwidth
0 is angle
r 0
- -
1
X
\J
NOTE THAT:
Ir| >1 implies instability
8 = mcorrespondsto f = /2
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Pole Location and Time-Domain Behavior for Causal Signals
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The System Function of a Linear Time-Invariant System
N M

— Z a y(n—K + Z b x(n—K
k=1 k=0

y(n)
Take the z-transform:

N M
-y a Y(37 <+ S b XDz "
k=1 k=0

N M
Yo+ S a Y37 = § b XAz
k=0

Y(2

=
[EEN

or,

M
FIR Filter (all zeros/moving average): H(z) = Z bkz_k
k=0
b0

N
1+ Z akz_k
k=1

The general case, FIR and IIR is obviously IIR, and is called an
autoregressive moving average (ARMA) filter.

[IR All-Pole Filter (all poles/autoregressive): H(z) =
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Example:
1
W) = Syn-1)+ 2x(n)
Y(3 = %z_lY(z)+2X(z)
HE) = ——
1—§Z
h(n) = 2%%1
Note:
) 2
R e v

Note: Think about implementing filters by decomposing the z-transform of
the transfer function into components.
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