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Causality and Its Implications
. . . . L . A H(w)
Is it possible to realize an ideal filter in practice?
L, |0l < 00, 1
=5 <l <
, w.<lwsm -

The impulse response of this filter is:

HOR

EF’ |0l < 0,
h(n) = :

EP‘)CSInOOCn

DF on OL)C<|OO| <7

[] (

It is clear that the ideal lowpass filter:

e is noncausal

e is unrealizable

* has an impulse response that is not absolutely
summable

* is unstable

* has a main lobe whose width is inversely
proportional to the bandwidth

What happens if we truncate the filter and
delay (shift) the impulse response?

-

Paley-Weiner Theorem: If h(n) has finite energy and
h(n) = 0 for n< 0, then

Tt

II(Iong(w)l)de < oo

—Tt

Conversely, if |H(w)| is square integrable and if the above integral is

finite, then we can associate a phase response ©(w) so that the

resulting filter with frequency response H(w) = |H(oo)|ej@(‘*’)

Note: This implies |H(w)| can be zero at some points, but not zero over

some finite interval.

A
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Relationships Between Real and Imaginary Components
of the Fourier Transform for Causal Signals

Recall that h(n) can be decomposed into a real and imaginary part:
h(n) = hg(n) +hy(n)
where

h(n) = 2Th(m) +he-n)]  hg(n) = STh(n) ~h(-n)]

If h(n) is causal, it is possible to recover h(n) from its even part h(n) for

O<n<o orfrom its odd part h,(n) for 1 <n<wc. From the above equations:
h(n) = 2h(n)u(n) —h,(0)(n) n=0
h(n) = 2h (n)u(n) + h(0)d(n) n=1

Note that h(n) = h(n) for n>0, and that to recover h(n) from h(n), we

must know h(0).
By taking the Fourier transform of the above expression for h(n), we can

show the relationship between Hg(w) and H (w):

Tt

=1 w—A
H,(w) __2nIHR(w)COt 5 dA
—Tt

This integral is called a discrete Hilbert transform. Lest you think this is
some unrealizable mathematical abstraction, this operation can be
implemented with the system shown below:

s(n) Hilbert . Downsample sa(n)
o » Transformer J - (2:2) >

> Delay Line
$¢(n-1),0,5¢(n),0.... e s(n-1), s(n), ...

O,Si(l’]-l),O,Si(ﬂ),o,...> Hilbert /

Transformer

/A f
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The Nomenclature of Digital Filters

Transition
A Passband . l . Stopband
- »: Jln >
1+61 ————————— -+t = —-

Passband Ripple

Note: The best trade-off of these parameters is most often highly application
dependent!
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The Design of Linear-Phase Filters (A Frequency Sampling Approach)

An FIR filter of length M has a frequency response:

M -1 M-1 _
HD = Y b, 2" H@ = Y b wk
k=0 k=0
where the filter coefficients are also samples of the impulse response:
=B OsneMd
0o, otherwise

Consider the case where:
h(n) = h(M-=1-n)

It is straightforward to show that the frequency response of such a filter is
given by:

H(w) = H (we oM~ D72
where
V1 (M—=3)/2 .
H@=hT=D+2 ¥ h(n)cosoo%VIT_—nE, M odd
n=0
(M/2)-1
H (w) = 2 z h(n)cosoo%lVIT_l—nEr M even
n=0

The phase characteristics for both filters is a simple delay:

2 M-1p

%—wD—Z—D, H (w)=0
OH (w) = O

O M-1g

RN > ot T H (w) <0
N

It is also possible to design linear phase filters with the constraint:
h(n) = —=h(M-1-n)
Recall this is an antisymmetric linear phase filter.
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The previous equations define a system of linear equations that specify

samples of the impulse response in terms of samples of the frequency
response.

If we select uniformly spaced samples in frequency:
M-1

k = 0, 17 M odd
W, = 2T
K D
EM k =0, 1,...,%—1 M even
we can write the following equations:
(M—-1)/2
h(r) = H k=01.., =1 \odd
Z a,h(nN) = H (w) =0 L 0
n=0
MO
o0t
M
Z a h(n) = H (@) k=01..., E_l M even
where
aanZCOS[(Dk——n} n;tMT_l
_ M- 1D
a, = 1, fh=—5-pallk

These equations can be solved using a standard linear equation solver.

Alternate design equations are available if we constrain the shape of the

impulse response in the time domain. One important algorithm is the Kaiser
window design:

1+d
1-5
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The Kaiser Window Filter Design
(Good Housekeeping Seal of App roval!)

Steps:

1. Compute the attenuation:

2. Compute the filter order (AF is the bandwidth):

_ A-7.95
= 53 ToAF (round upwards)
If N is acceptable:
0.1107A-8.7) 50< A
[l
3. a= %0.584ZA—21)0'4+ 0.0788§A—21)  21<A<50
[0 A<?21

Co = 2(fs—fp)
_ 1. . _
C = H([stnka—stnkfp] (k=1,2...,N)

5. Compute | 4(a) using (can be computed recursively):

(o¢]

n
X/ 2
0 =1+ § [———( = }
n=1
6. Compute the window weights:

Elo[a J1-(k/ N)ZJ

wy = E (@) =N

. 0 K > N
7. The final filter coefficients are:
h(n) = c w,
The resulting frequency response is:
N
Af) = cp+2 § cumoosemkf) s fs %g

k=1

/A f
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