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Causality and Its Implications

Is it possible to realize an ideal filter in practice?

The impulse response of this filter is:

It is clear that the ideal lowpass filter:

• is noncausal
• is unrealizable
• has an impulse response that is not absolutely

summable
• is unstable
• has a main lobe whose width is inversely

proportional to the bandwidth

What happens if we truncate the filter and
delay (shift) the impulse response?

Paley-Weiner Theorem:  If  has finite energy and
 for , then

Conversely, if  is square integrable and if the above integral is
finite, then we can associate a phase response  so that the

resulting filter with frequency response is causal.
Note: This implies  can be zero at some points, but not zero over

some finite interval.
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Relationships Between Real and Imaginary Components
of the Fourier Transform for Causal Signals

Recall that  can be decomposed into a real and imaginary part:

where

If  is causal, it is possible to recover  from its even part  for

 or from its odd part  for . From the above equations:

Note that  for , and that to recover  from , we

must know .
By taking the Fourier transform of the above expression for , we can

show the relationship between  and :

This integral is called a discrete Hilbert transform. Lest you think this is
some unrealizable mathematical abstraction, this operation can be
implemented with the system shown below:
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The Nomenclature of Digital Filters
Passband Stopband
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Note: The best trade-off of these parameters is most often highly application
dependent!
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The Design of Linear-Phase Filters (A Frequency Sampling Approach)

An FIR filter of length M has a frequency response:

where the filter coefficients are also samples of the impulse response:

Consider the case where:

It is straightforward to show that the frequency response of such a filter is
given by:

where

The phase characteristics for both filters is a simple delay:

It is also possible to design linear phase filters with the constraint:

Recall this is an antisymmetric linear phase filter.
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The previous equations define a system of linear equations that specify
samples of the impulse response in terms of samples of the frequency
response.

If we select uniformly spaced samples in frequency:

we can write the following equations:

where

These equations can be solved using a standard linear equation solver.

Alternate design equations are available if we constrain the shape of the
impulse response in the time domain. One important algorithm is the Kaiser
window design:
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The Kaiser Window Filter Design
(Good Housekeeping Seal of App roval!)

Steps:

1. Compute the attenuation:

2. Compute the filter order (  is the bandwidth):

 (round upwards)

If N is acceptable:

3.

4.

5. Compute  using (can be computed recursively):

6. Compute the window weights:

7. The final filter coefficients are:

The resulting frequency response is:
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