OCTOBER 23, 1996 EE 4773/6773: LECTURE NO. 28 PAGE 1 of 6

/

\

The Radix-2 Fast Fourier Transform

Under the constraint N = rV, we have additional symmetry. Let us consider the
case r = 2, and reexamine the divide and conquer algorithm with M = N/2 and
L = 2.

Define:
f1(n) = x(2n)
fo(n) = x(2n+1)
This is referred to as a decimation-in-time approach. Why?
Let us derive a simplified expression for X(K):
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Note that F,(k) and F,(k) are N/2-point DFTs. This implies a reduction of a
factor of 2 for large N. We can repeat the process by reducing F,(k) (and F,(k))

from N/2 to N/4-point transforms, and so on. This gives a complexity of

O(NlogN) as opposed to O(NZ).

This approach gives rise to a family of algorithms known as the Radix-2 Fast
Fourier Transform. It has a simple graphical interpretation.

We can also do decimation-in-frequency.
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The Decimation-In-Time FFT
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Signal Flow Graphs For Decimation-In-Time FFTs
(Butterfly Diagrams)

An implementation of an 8-point DFT:
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DFT of Two Real Sequences

Consider:

x(n) = xy(n) + jxy(n)
Because the DFT is a linear operator:

X(K) = Xq(K) + [X5(K)

But,
x,(N) = [x(n) + X (n)]/2
Xo(N) = [X(n) —x"(n)]/2]
Therefore,

X,(K) = S{DFT[Xn] + DFT[X (]}
X, = 5:{ DFTIX(n)] ~DFT[X (M)}
But, DFT[X'(n)] = X*(N = k), which implies:
Xy = SX(9 + X (N = K]

X = 5X(09 =X (N=K]

Strategy:
(1) Compute the FFT of x(n).
(2) Use simple math to split the result apart.

/.
k ELECTRICAL AND COMPUTER ENGINEERING ‘ )




OCTOBER 23, 1996 EE 4773/6773: LECTURE NO. 28

PAGE 5 of 6

/

DFT of a 2N-Point Real Sequence

Consider g(n) as a 2N-point real signal. Let us define two signals:

X(n) = g(2n)
X(n) = g(2n+1)

and, of course,
X(n) = x4(n) + jx,(n)
We can show:
k
G(k) = Xl(k) +W2NX2(k)
k
G(k+ N) = Xl(k)_Wszz(k)
Strategy:
(1) Form x4(n) and x,(n).

(2) Take N-point DFTSs.
(3) Combine
Note the reduction from length 2N to length N in complexity.
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Quantization Properties
One of the reasons the DFT/FFT is so popular is that is very robust to

guantization noise (because it is a linear operator).

We can show that the numerical properties for a DFT are:

2

G2  .2b
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Note that the SNR decreases with the length of the FFT.

If the input is scaled to have a maximum magnitude of 1, then:

For an FFT with scaling,

2
(0]}
-5 = 2P <1
9
0_2
X _ ~A2b-v-1
== 2
q

where v is the radix base of the FFT.

Note that the SNR in dB is linearly related to the number of bits (similar to

what we observed with the uniform quantizer).
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