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ELECTRICAL AND COMPUTER ENGINEERING

The Radix-2 Fast Fourier Transform

Under the constraint , we have additional symmetry. Let us consider the
case , and reexamine the divide and conquer algorithm with and

.

Define:

This is referred to as a decimation-in-time approach. Why?
Let us derive a simplified expression for :

But, :

Note that  and  are -point DFTs. This implies a reduction of a

factor of 2 for large N. We can repeat the process by reducing  (and )

from  to -point transforms, and so on. This gives a complexity of

 as opposed to .

This approach gives rise to a family of algorithms known as the Radix-2 Fast
Fourier Transform. It has a simple graphical interpretation.

We can also do decimation-in-frequency.
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The Decimation-In-Time FFT
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Signal Flow Graphs For Decimation-In-Time FFTs
(Butterfly Diagrams)

An implementation of an 8-point DFT:
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DFT of Two Real Sequences

Consider:

Because the DFT is a linear operator:

But,

Therefore,

But, , which implies:

Strategy:

(1) Compute the FFT of .

(2) Use simple math to split the result apart.
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DFT of a 2N-Point Real Sequence

Consider  as a 2N-point real signal. Let us define two signals:

and, of course,

We can show:

Strategy:

(1) Form  and .

(2) Take N-point DFTs.

(3) Combine

Note the reduction from length 2N to length N in complexity.
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Quantization Properties

One of the reasons the DFT/FFT is so popular is that is very robust to
quantization noise (because it is a linear operator).

We can show that the numerical properties for a DFT are:

Note that the SNR decreases with the length of the FFT.

If the input is scaled to have a maximum magnitude of 1, then:

For an FFT with scaling,

where  is the radix base of the FFT.

Note that the SNR in dB is linearly related to the number of bits (similar to
what we observed with the uniform quantizer).
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