Efficient Computation of the Discrete Fourier Transform (DFT)

- ELECTRICAL AND COMPUTER ENGINEERING

Computational Complexity

For a complex-valued sequence:

$$X_{R}(k) = \sum_{n=0}^{N-1} \left[x_{R}(n) \cos\left(\frac{2\pi kn}{N}\right) + x_{I}(n) \sin\left(\frac{2\pi kn}{N}\right) \right]$$
$$X_{I}(k) = -\sum_{n=0}^{N-1} \left[x_{R}(n) \sin\left(\frac{2\pi kn}{N}\right) - x_{I}(n) \cos\left(\frac{2\pi kn}{N}\right) \right]$$

Direct computation requires:

- 1. $2N^2$ evaluations of trig functions (typically performed using table lookup a trade-off of memory for speed)
- 2. $4N^2$ real multiplications
- 3. 4N(N-1) real additions
- 4. Misc. indexing and addressing operations

In general, we say that the complexity is $O(N^2)$ — which implies it is not linearly proportional to the length of the input.

Why is this bad?

Divide and Conquer

Consider the case N = LM (N can be factored into a product of two integers):

n=0	n=1	n=2	• • •	n=N-1
<i>x</i> (0)	<i>x</i> (1)	<i>x</i> (2)		<i>x</i> (<i>N</i> – 1)

Consider the mapping: n = l + mL:

l/m	0	1	• • •	M-1
0	<i>x</i> (0)	x(L)	••••	x((M-1)L)
1	x(1)	x(L + 1)	•••	x((M-1)L+1)
2	x(2)	<i>x</i> (<i>L</i> + 2)	•••	x((M-1)L+2)
•••	•••	••••	••••	
L-1	x(L-1)	x(2L - 1)	•••	x(ML-1)

We can similarly map the DFT index k using k = Mp + q (or k = qL + p). The DFT can be computed as:

$$X(p, q) = \sum_{l=0}^{L-1} \left\{ W_{N}^{lq} \left[\sum_{m=0}^{M-1} x(l, m) W_{M}^{mq} \right] \right\} W_{L}^{lp}$$

The inner term represents an M-point DFT, while the outer term represents an L-point DFT. What is the advantage of this approach?

Example: N=1000

Normal DFT (complexity N^2): 10^6 operations

Divide and Conquer (L = 2, M = 500): $5x10^5$ operations (2x reduction)

In general, the complexity of the divide and conquer approach is:

N(M + L + 1) complex multiplications

N(M + L - 2) additions

The complexity is reduced from $O(N^2)$ to something less...

Can we impose additional constraints to further improve efficiency?

