Efficient Computation of the Discrete Fourier Transform (DFT)

Recall the DFT:

$$
X(k)=\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi k n / N}, \quad k=0,1,2, \ldots, N-1
$$

or,

$$
X(k)=\sum_{n=0}^{N-1} x(n) W_{N}^{k n}, \quad k=0,1,2, \ldots, N-1
$$

where $W_{N}=e^{-j 2 \pi / N}$ and $W_{N}^{k n}=e^{-j 2 \pi k n / N}$.
Note that $W_{N}^{k n}$ are just samples on the unit circle:
$\mathrm{N}=4$
$k=0,1,2,3$
$\mathrm{n}=0,1,2,3$

Only four unique values!

For example, $W_{4}^{(3)(2)}=e^{(-j 2 \pi / 4)(3)(2)}=e^{-j 3 \pi}=e^{-j \pi}=-1$.
We note two important symmetry properties of $W_{N}^{k n}$:

$$
\begin{aligned}
& W_{N}^{k+N / 2}=-W_{N}^{k} \\
& W_{N}^{k+N}=W_{N}^{k}
\end{aligned}
$$

(symmetry about the imaginary axis) (periodicity)

This symmetry allows the number of computations for a DFT to be reduced significantly.

Computational Complexity

For a complex-valued sequence:

$$
\begin{aligned}
& X_{R}(k)=\sum_{n=0}^{N-1}\left[x_{R}(n) \cos \left(\frac{2 \pi k n}{N}\right)+x_{I}(n) \sin \left(\frac{2 \pi k n}{N}\right)\right] \\
& X_{I}(k)=-\sum_{n=0}^{N-1}\left[x_{R}(n) \sin \left(\frac{2 \pi k n}{N}\right)-x_{I}(n) \cos \left(\frac{2 \pi k n}{N}\right)\right]
\end{aligned}
$$

Direct computation requires:

1. $2 N^{2}$ evaluations of trig functions (typically performed using table lookup - a trade-off of memory for speed)
2. $4 N^{2}$ real multiplications
3. $4 N(N-1)$ real additions
4. Misc. indexing and addressing operations

In general, we say that the complexity is $O\left(N^{2}\right)$ - which implies it is not linearly proportional to the length of the input.

Why is this bad?

Divide and Conquer

Consider the case $N=L M$ (N can be factored into a product of two integers):

$\mathrm{n}=0$	$\mathrm{n}=1$	$\mathrm{n}=2$	\cdots	$\mathrm{n}=\mathrm{N}-1$
$x(0)$	$x(1)$	$x(2)$	\cdots	$x(N-1)$

Consider the mapping: $n=l+m L$:

I / m	0	1	\cdots	$\mathrm{M}-1$
0	$x(0)$	$x(L)$	\ldots	$x((M-1) L)$
1	$x(1)$	$x(L+1)$	\ldots	$x((M-1) L+1)$
2	$x(2)$	$x(L+2)$	\ldots	$x((M-1) L+2)$
\cdots	\ldots	\ldots	\ldots	\ldots
$\mathrm{L}-1$	$x(L-1)$	$x(2 L-1)$	\ldots	$x(M L-1)$

We can similarly map the DFT index k using $k=M p+q$ (or $k=q L+p$).
The DFT can be computed as:

$$
X(p, q)=\sum_{l=0}^{L-1}\left\{W_{N}^{l q}\left[\sum_{m=0}^{M-1} x(l, m) W_{M}^{m q}\right]\right\} W_{L}^{l p}
$$

The inner term represents an M-point DFT, while the outer term represents an L-point DFT. What is the advantage of this approach?

Example: $\mathrm{N}=1000$
Normal DFT (complexity N^{2}): $\quad 10^{6}$ operations
Divide and Conquer ($L=2, M=500$): 5×10^{5} operations ($2 x$ reduction) In general, the complexity of the divide and conquer approach is:

$$
N(M+L+1) \text { complex multiplications }
$$

$N(M+L-2)$ additions
The complexity is reduced from $O\left(N^{2}\right)$ to something less...

Example: Computation of a 15 -Point DFT

An example of the flow of computations for a 15-point DFT decomposed into $L=3$ and $M=5$:

3-Point DFT (5 of them)
5-Point DFT

For N highly composite (can be factored into a product of small prime numbers):

$$
N=r_{1} r_{2} r_{3} \ldots r_{v}
$$

we can decompose a DFT of large order into a sequence of small DFTs.
For example,

$$
N=210=2 \times 3 \times 5 \times 7
$$

Suppose N is prime?
Can we impose additional constraints to further improve efficiency?

