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Frequency-Domain Sampling

Recall the Fourier transform of an aperiodic discrete-time signal:

Evaluate this at equidistant samples :

The summation can be subdivided:

If we interchange the summations:

The signal

is obtained by the periodic repetition of every N samples. Its Fourier
Series is given by:

and
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Reconstruction from the Fourier Transform

Since  is the periodic reconstruction of ,

ONLY when :
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Assuming ,

We can write the Fourier transform in terms of :

This can be simplified to:

where

What is the significance of this equation?
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Frequency Domain Interpolation Via Zero-Padding

Suppose  for  and . Let us define :

We define the discrete Fourier transform (DFT) of  as:

and the inverse discrete Fourier transform (IDFT):

Clearly, if ,  for .

Important questions:

What is the meaning of life?

Why ?

Example: f1 = 999.0 Hz, f2 = 1199.0 Hz, fs = 8000.0 Hz
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The DFT as a Linear Transformation

We can rewrite the DFT as follows:

where , which is an Nth root of unity.

We can express the DFT as a matrix operation by defining:

and rewriting the DFT as:

and the inverse DFT as:
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DFT Matrix Operations

Note that, given our definition of , the IDFT can be expressed as:

Therefore, we can equate IDFT equations and write:

which, in turn, implies that

where  is an  identity matrix.

Therefore, the matrix is an orthogonal (unitary) matrix, and its inverse

exists.

More important questions:

If a tree falls in the forest...

Is  redundant?

Can we simply the number of computations required for ?
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