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The Fourier Series for Discrete-Time Periodic Signals

For a periodic signal  with period , the Fourier series representation
consists of  harmonically related exponential functions:

where the  are the coefficients in the series representation.

The expression for  can be obtained by taking the “dot-product:”

Interchanging the order of summation on the right-hand side:

Note that:

hence,

.

This is called the discrete-time Fourier series (DTFS).
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Example:

or,
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The Power Density Spectrum of Periodic Signals

The average power for a periodic signal was defined as:

It can easily be shown that:

The sequence  is the distribution of power as a function of frequency

and is called the power density spectrum of the periodic signal.

The energy of a sequence over a single period is given analogously as:

If  is real and periodic, we can easily show that:

What is the significance of this result?
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The Fourier Transform of Discrete-Time Aperiodic Signals

Define the Fourier transform of a finite-energy discrete-time signal  is
defined as:

Note that this is a continuous spectrum — not a line spectrum.
Also, note that it is periodic:

The inverse of this can be shown to be:

This is done using a procedure analogous to the previous derivation,
multiply by a basis function and integrate over a full period.
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Convergence of the Fourier Transform

Define:

You can think of this as the short-term discrete Fourier transform (more on
this later).

What happens as ?

This is defined as uniform convergence. It can be shown that this is true if
 is absolutely summable:

Some sequences are not absolutely summable, but are square summable:

For such sequences, the spectrum does not necessarily converge.

XN ω( ) x n( )e
jωn–

n N–=

N

∑=

N ∞→

XN ω( ) X ω( )→ if X ω( ) XN ω( )–
N ∞→
lim 0=

x n( )

x n( ) ∞<
n ∞–=

∞

∑

x n( )
2 ∞<

n ∞–=

∞

∑



SEPTEMBER 25, 1996 EE 4773/6773: LECTURE NO. 16 PAGE 8 of 9

ELECTRICAL AND COMPUTER ENGINEERING

Example: Gibbs Phenomena

Consider  (see Figure 3.14):
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Energy Density Spectrum of Aperiodic Signals

Recall that

It is easy to show that:

.

We define the energy density spectrum of  as:

.

Suppose that  is real. Then, it follows that:

,

or,

 (even symmetry) and  (odd symmetry).

From this it follows that the critical frequency interval in DSP is:

.

Summarize the differences in the spectrum of (a) a periodic square wave,
(b) a single square pulse, (c) a windowed periodic square wave.
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