The Fourier Series of a Continuous-Time Periodic Signal

Define:

$$
x(t)=\sum_{k=-\infty}^{\infty} c_{k} e^{j 2 \pi k F_{0} t}
$$

where $F_{0}=\frac{1}{T_{p}}$ is the fundamental frequency (period).
The coefficients, c_{k}, can be shown to be given by the following expression:

$$
c_{k}=\frac{1}{T_{p}} \int_{T_{p}} x(t) e^{-j 2 \pi k F_{0} t} d t
$$

The signal $x(t)$ can be EXACTLY recovered from these coefficients using the above definition.

The Dirichlet conditions guarantee convergence at every value of $x(t)$ except at values of t for which $x(t)$ is discontinuous (in which case it converges to the average value). The Dirichlet conditions are:

1. The signal has a finite number of finite discontinuities in any period.
2. The signal has a finite number of maxima and minima during any period..
3. The signal is absolutely integrable in any period:

$$
\int_{-\infty}^{\infty}|x(t)| d t<\infty .
$$

What is the utility of this representation?

In general, Fourier coefficients are complex:

$$
c_{k}=\left|c_{k}\right| e^{j \theta_{k}}
$$

For periodic signals that are real, c_{k} and c_{-k} are complex conjugates. In this case, we may write the Fourier series as:

$$
x(t)=c_{0}+2 \sum_{k=1}^{\infty}\left|c_{k}\right| \cos \left(2 \pi k F_{0} t+\theta_{k}\right)
$$

what is the meaning of c_{0} ?
We may also write the above expression as:

$$
x(t)=a_{0}+\sum_{k=1}^{\infty}\left(a_{k} \cos \left(2 \pi k F_{0} t\right)-b_{k} \sin \left(2 \pi k F_{0} t\right)\right)
$$

where

$$
\begin{aligned}
a_{0} & =c_{0} \\
a_{k} & =2\left|c_{k}\right| \cos \theta_{k} \\
b_{k} & =2\left|c_{k}\right| \sin \theta_{k}
\end{aligned}
$$

The Power Density Spectrum of Periodic Signals:

A periodic signal has infinite energy and a finite average power defined as:

$$
\begin{gathered}
P_{x}=\frac{1}{T_{p_{p}}} \int_{T_{p}}|x(t)|^{2} d t \\
P_{x}=\frac{1}{T_{p}} \int_{T_{p}} x(t)\left(\sum_{k=-\infty}^{\infty} c_{k}^{*} e^{-j 2 \pi k F_{0} t}\right) d t
\end{gathered}
$$

This can be shown to simplify to:

$$
P_{x}=\sum_{k=-\infty}^{\infty}\left|c_{k}\right|^{2} .
$$

If the periodic signal is real:

$$
\begin{aligned}
P_{x} & =c_{0}^{2}+2 \sum_{k=1}^{\infty}\left|c_{k}\right|^{2} \\
& =c_{0}^{2}+\frac{1}{2} \sum_{k=1}^{\infty}\left(a_{k}^{2}+b_{k}^{2}\right)
\end{aligned}
$$

Example:

$$
c_{0}=\frac{1}{T_{p}} \int_{-T_{p} / 2}^{T_{p} / 2} x(t) d t=\frac{A \tau}{T_{p}}
$$

Define $F_{0}=\frac{1}{T_{p}}$:

$$
\begin{aligned}
c_{k} & =\frac{1}{T_{p}} \int_{-T_{p} / 2}^{T_{p} / 2} A e^{-j 2 \pi k F_{0} t} d t \\
& =\frac{A \tau}{T_{p}} \frac{\sin \pi k F_{0} \tau}{\pi k F_{0} \tau}, \quad k= \pm 1, \pm 2, \ldots
\end{aligned}
$$

Note that this is a LINE SPECTRUM with a sinc function envelope. Zero crossings occur at $k=l \frac{T p}{\tau}$.

What happens if I increase τ ? increase T_{p} ?

Frequency Analysis of Continuous-Time Aperiodic Signals:

 The Fourier TransformAnalysis:

$$
X(f)=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t
$$

Synthesis (Inversion):

$$
x(t)=\int_{-\infty}^{\infty} X(f) e^{j 2 \pi f t} d f
$$

A Fourier transform is guaranteed to exist if the Dirichlet conditions hold:

1. The signal has a finite number of finite discontinuities.
2. The signal has a finite number of maxima and minima.
3. The signal is absolutely integrable:

$$
\int_{-\infty}^{\infty}|x(t)| d t<\infty
$$

Energy Density Spectrum of Aperiodic Slgnals

Let $x(t)$ be any finite energy signal with a Fourier transform $X(f)$.
Its energy is:

$$
E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t
$$

Note that:

$$
\begin{aligned}
E_{x} & =\int_{-\infty}^{\infty}|x(t)|^{2} d t \\
& =\int_{-\infty}^{\infty} x(t) x^{*}(t) d t \\
& =\int_{-\infty}^{\infty} x(t)\left(\int_{-\infty}^{\infty} X^{*}(f) e^{-j 2 \pi f t} d f\right) d t \\
& =\int_{-\infty}^{\infty} X^{*}(f)\left[\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t\right] d f \\
& =\int_{-\infty}^{\infty} X^{*}(f) X(f) d f \\
& =\int_{-\infty}^{\infty}|X(f)|^{2} d f
\end{aligned}
$$

Therefore, we have Parseval's relation for aperiodic, finite energy signals:

$$
E_{x}=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{-\infty}^{\infty}|X(f)|^{2} d f
$$

We define the energy density spectrum of $x(t)$ as:

$$
S_{x x}=|X(f)|^{2}
$$

Note: a real function, no phase information.

Example:

$$
\begin{gathered}
x(t)= \begin{cases}A, & |t| \leq \tau / 2 \\
0, & |t|>\tau / 2\end{cases} \\
X(f)=A \tau \frac{\sin \pi f \tau}{\pi f \tau}
\end{gathered}
$$

Note: zero crossings every $1 / \tau$.
Question(s): (a) Suppose I shift $x(t)$ forward by $\tau / 2$, what happens to its energy density?
(b) Suppose I increase τ, what happens to $X(f)$?

