
Session 1320

Real-Time FIR and IIR Filter Design Using MATLAB
Interfaced with the TMS320C31 DSK

Walter J. Gomes III, Rulph Chassaing
University of Massachusetts Dartmouth

Abstract

This paper describes the design and real-time implementation of FIR and IIR filters using MATLAB
interfaced directly with the TMS320C31 (C31) digital signal processor. An FIR or IIR filter can be
readily designed using MATLAB functions to generate a set of coefficients associated with a desired
filter's characteristics. These coefficients are included in a generic filter program transparent to the user.
While the filter’s frequency response is plotted on the PC monitor screen, it is being implemented in
real-time with the C31 on board a $99 DSP Starter Kit (DSK). The authors have developed the
support files required to duplicate these results. These files are available to anyone interested. Similar
techniques can be developed to interface MATLAB with a different type of digital signal processor.

Introduction

Digital signal processors, such as the C31, are currently used for a wide range of applications from
communications and controls to speech processing. They are found in cellular phones, fax/modems,
disk drives, etc. They continue to be more and more successful because of the availability of low-cost
support tools. DSP-based systems can be readily reprogrammed for a different application.

The C31-based DSK1-3 includes Texas Instruments' C31 floating-point digital signal processor, and an
Analog Interface Circuit (AIC) chip with A/D and D/A converters, input (anti-aliasing) and output
(reconstruction) filters, all on a single chip. The package also includes an assembler, a debugger, and
many applications examples. The C31 is a 32-bit processor with 2K (32-bit) words of internal memory
(approximately 256 words of internal memory in the C31 on the DSK board are used for the
communications kernel and vector). It has a 24-bit address bus to address 224 or 16 million words for
program, data, and I/O. Its instruction cycle time of 40 ns is capable of performing 50 million floating-
point operations per second (MFLOPS).

The TLC320C40 AIC on the DSK board has 14-bit ADC and DAC. Although the AIC is rated for a
maximum of 20 kHz in order to achieve maximum performance, sampling rates of 44.1 kHz for audio
applications can be obtained. The AIC has two inputs, and connects to the serial port on the C31. Since
all the C31 pins are available through four 32-pin connectors on the DSK board, external devices such
as flash memory and alternative A/D and D/A converters can be connected to the C31 via these
connectors1,2.

% FIREX.M Main program that calls function dsk_fir()
frlen=1024; a=1; fs=16e3; Fc1=5e3; Fc2=5.5e3; order=48;
f=[0,Fc1/(fs/2),Fc2/(fs/2),1]; m=[1,1,0,0];
b=remez(order,f,m);
dsk_fir(b,fs);
h=freqz(b,a,frlen);
fpl=[0:fs/2/frlen:fs/2-fs/2/frlen];
plot(fpl,20*log10(abs(h)));
title('REMEZ Low Pass Filter, order=48, fs=16kHz, Fc=5kHz');
xlabel('Frequency'); ylabel('dB');

Figure 1. Main program for FIR filter design.

An assembler is included with the DSK package. In lieu of a linker, code is assembled at an absolute
address using available assembler directives to control the starting addresses of different sections. A
directive such as ".include" serves the function of a linker to include or chain several files together using
only the assembler.

Various FIR and IIR filter design techniques can be obtained with MATLAB. The current student
edition of MATLAB8, version 5, includes the signal processing functions that can be used for different
design characteristics. Using the techniques developed here, with one MATLAB command, the filter
frequency response obtained is displayed on the PC monitor while the filter is implemented in real-time.

FIR Filter Design with MATLAB

Figure 1 shows the main program, FIREX.M, to run in MATLAB for the design of a FIR lowpass
filter. The filter's characteristics are designated in this "M" file with specified magnitude at
corresponding frequencies. It uses the function remez(), available with MATLAB, to design the filter
with the resulting coefficients stored in the array b. Figure 2 shows a MATLAB plot of the magnitude
of the frequency response displayed on the PC monitor. The value of a=1 set in the program represents
a transfer function that has a numerator polynomial only.

Figure 2. Frequency response of FIR lowpass filter plotted with MATLAB.

0 1000 2000 3000 4000 5000 6000 7000 8000
-80

-70

-60

-50

-40

-30

-20

-10

0

10
REMEZ Lowpass Filter, order=48, fs=16 kHz, Fc=5 kHz

Frequency

dB

% DSK_FIR.M
function dsk_fir(bin,fsin)
MCLK=6.25e6; BW=(fsin/2)-250; SCF=(BW*288e3)/3600;
TA=round(MCLK/(2*SCF)); TB=round(MCLK/(2*TA*fsin));
A1=dec2hex(bitshift(TA,1)); A2=dec2hex(bitshift(TA,2));
B1=dec2hex(bitshift(TB,1)); B2=dec2hex(bitor(bitshift(TB,2),2));
coefflen=length(bin); firorder=coefflen-1;
alignbuf=round(2 .^ ceil(log2(coefflen))); % next power of 2
fid = fopen('firmat.cof','wt'); fprintf(fid,'\n .data \n');
fprintf(fid,'COEFF .float '); j=0;
for i=coefflen:-1:2
 if j > 4
 j=0; fprintf(fid,'\n .float ');
 end
 fprintf(fid,'%2.4E,',bin(i));
 j=j+1;
end
fprintf(fid,'\nH0 .float %2.4E\n',bin(1));
fprintf(fid,'\nLENGTH .set %d\n',coefflen);
fprintf(fid,'AICSEC .word 0%s%sh,1h,0%s%sh,63h \n',A1,A2,B1,B2);
fprintf(fid,' .brstart "XN_BUFF",%d',alignbuf); fclose(fid);
dos ('dsk3a firmat'); dos ('dsk3load firmat BOOT');

Figure 3. Function that generates a coefficients file to be included in generic FIR filter program.

The main program also calls the function dsk_fir(), developed by the authors and shown in Figure 3,
passing to it the filter's coefficients and the sampling frequency. This function generates a coefficient
file, FIRMAT.COF, in a format appropriate to be included in the generic FIR filter program
FIRMAT.ASM1 listed in Appendix A. This function also calculates certain AIC register values in order
to specify the sampling rate. It also selects one of the AIC's inputs and creates a buffer for the input
samples, aligned on a 2n-word boundary. Within MATLAB, the generic FIR filter program is then
assembled and downloaded (using the assembler and loader included with the DSK package) into the
DSK to run.

Within MATLAB, type FIREX to load and run FIREX.M. While the filter's frequency response is
plotted and displayed on the PC monitor, the filter is being implemented in real-time with the C31. The
frequency response of the lowpass filter obtained from an HP signal analyzer is displayed in Figure 4.

Figure 4. Real-time frequency response of lowpass FIR filter.

% IIREX.M Main program that calls function dsk_iir()
frlen=1024; fs=8e3; Fc1=1715; Fc2=1785; order=5; pripple=0.5; sripple=100;
[b,a]=ellip(order,pripple,sripple,[Fc1/(fs/2),Fc2/(fs/2)],'stop');
dsk_iir(b,a,fs);
h=freqz(b,a,frlen);
fpl=[0:fs/2/frlen:fs/2-fs/2/frlen];
plot(fpl,10*log10(abs(h)));
title('Elliptical Bandstop filter, order=10, fs=8kHz, Fc1=1715Hz, Fc2=1785Hz');
xlabel('Frequency'); ylabel('dB');

Figure 5. Main program for IIR filter design.

In lieu of a design with the MATLAB function remez(), other functions such as fir1() and fir2(), are
also available with MATLAB for different design techniques and have been successfully tested.

IIR Filter Design with MATLAB

Figure 5 shows a listing of the main program, IIREX.M, for the design of a IIR filter using the
MATLAB function ellip(). The filter's coefficients are contained within the a and b arrays. The filter is
designed as a bandstop of order 10 with a notch frequency of 1750 Hz. MATLAB commands are used
to plot the magnitude of the frequency response of the filter, and display it on the PC monitor. This
program also calls the function dsk_iir(), developed by the authors and listed in Figure 6, to implement
the filter on the DSK.

Dsk_iir() generates the coefficient file, IIRMAT.COF, in a format appropriate to be included in a
generic C-coded IIR filter program IIRMAT.C1 listed in Appendix B. It uses the following available
MATLAB functions to format the IIR transfer function:

1. tf2zp() finds the zeros and poles of the transfer function expressed in terms of coefficients a's
and b's associated with the denominator and numerator polynomials, respectively.

2. zp2sos() expresses the transfer function in terms of second-order sections used by the generic
C-coded IIR filter program listed in Appendix B. For example, for a tenth-order IIR filter, five second-
order sections or stages are cascaded, with one set of coefficients, a's and b's, for each stage.

From dsk_iir(), the C-coded IIR filter program is compiled, assembled, and linked using the TMS320
floating-point tools4-7. This creates a COFF executable file that is directly downloaded and run on the
DSK. These floating-point tools are commercially available from TI and other vendors, and are not
included with the $99 DSK package. Texas Instruments has an on-line DSP lab that can be accessed
to compile, assemble, and link. It can be found at
http://www.ti.com/sc/docs/dsps/dsplab.htm.

% DSK_IIR.M
function dsk_iir(bin,ain,fsin)
MCLK=6.25e6; BW=(fsin/2)-250; SCF=(BW*288e3)/3600;
%.... as in function dsk_fir.m to calculate A1,A2,B1,B2
[z,p,k]=tf2zp(bin,ain); sec_ord_sec=zp2sos(z,p,k);
stages=length(sec_ord_sec(:,1)); fid = fopen('iirmat.cof','wt');
fprintf(fid,'\n#define stages %d',stages);
fprintf(fid,'\nfloat a[stages][3]={/*numerator coefficients*/');
for i=1:stages
 fprintf(fid,'\n{');
 for m=1:3
 fprintf(fid,'%2.4E',sec_ord_sec(i,m));
 if (m == 3)
 if (i ~= stages)
 fprintf(fid,'},');
 end
 else
 fprintf(fid,', ');
 end
 end
 if i == stages
 fprintf(fid,'} };');
 end
end
fprintf(fid,'\nfloat b[stages][2]={/*denominator coefficients*/');
for i=1:stages
 fprintf(fid,'\n{');
 for m=5:6
 fprintf(fid,'%2.4E',sec_ord_sec(i,m));
 if (m == 6)
 if (i ~= stages)
 fprintf(fid,'},');
 end
 else
 fprintf(fid,', ');
 end
 end
 if i == stages
 fprintf(fid,'} };');
 end
end
fprintf(fid,'\nintAICSEC[4]={0x0%s%s,0x1,0x0%s%s,0x63};',A1,A2,B1,B2);
fclose(fid);
dos('cl30 -k iirmat -z iirmat.cmd'); dos('dsk3load iirmat boot');

Figure 6. Function that generates a coefficients file to be included in generic IIR filter program.

Within MATLAB, type IIREX to load and run IIREX.M. While the filter's frequency response is
plotted and displayed on the PC monitor, the filter is being implemented in real-time with the C31.
Figure 7 shows the frequency response of the filter obtained from a HP signal analyzer.

In lieu of an elliptical design with the MATLAB function ellip(), other designs have been
successfully tested using other functions also available with MATLAB to obtain the coefficients:

a) Chebyshev type I and type II design with the functions cheby1() and cheby2(), respectively.

b) Butterworth design with the function butter().

Figure 7. Real-time frequency response of bandstop IIR filter.

Appendix A

Figure A.1 is a listing of a generic FIR filter program, FIRMAT.ASM1, written in C3x assembly code.
The generated coefficient file, FIRMAT.COF, is included in this filter program. The file
AICCOM31.ASM1, also included in this filter program, contains I/O routines to communicate with
DSK’s codec.

;FIRMAT.ASM - Generic FIR program used by MATLAB function
 .start ".text",0x809900 ;starting address of text
 .start ".data",0x809C00 ;starting address of data
 .include "AICCOM31.ASM" ;AIC communication routines
 .include "FIRMAT.COF" ;coefficients file
 .data ;data section
XN .sect "XN_BUFF" ;buffer section for samples
 .loop LENGTH ;loop LENGTH times
 .float 0 ;init samples buffer to zero
 .endloop ;end of loop
XB_ADDR .word XN+LENGTH-1 ;last (bottom) sample address
HN_ADDR .word COEFF ;starting addr of coefficients
 .text ;text section
 .entry BEGIN ;start of code
BEGIN LDP AICSEC ;init to data page 128
 CALL AICSET ;init AIC
 LDI LENGTH,BK ;BK=size of circular buffer
 LDI @XB_ADDR,AR1 ;AR1=last sample address
FILT LDI LENGTH-1,AR4 ;AR4=length-1 as loop counter
LOOP CALL AICIO_P ;AICIO routine,IN->R6 OUT->R7
 FLOAT R6,R3 ;input new sample ->R3
 STF R3,*AR1++% ;store newest sample
 LDI @HN_ADDR,AR0 ;AR0 points to H(N-1)
 LDF 0,R0 ;init R0
 LDF 0,R2 ;init R2
 RPTS LENGTH-1 ;repeat LENGTH-1 times
 MPYF3 *AR0++,*AR1++%,R0 ;R0 = HN*XN
|| ADDF3 R0,R2,R2 ;accumulation in R2
 DBNZD AR4,LOOP ;delayed branch until AR4<0
 ADDF R0,R2 ;last accumulation
 FIX R2,R7 ;convert float R2 to integer R7
 NOP ;added due to delayed branch
 BR FILT ;branch to filter routine
 .end ;end

Figure A.1. Generic FIR filter program.

Appendix B

Figure B.1 is a listing of a generic IIR filter program, IIRMAT.C1, written in C. The generated
coefficient file, IIRMAT.COF, is included in this filter program. The file AICCOMC.C1, also included
in this filter program, contains the C coded version of AICCOM31.ASM.

/*IIRMAT.C - Generic IIR program used by MATLAB function*/
#include "aiccomc.c" /*include AIC comm routines*/
#include "iirmat.cof" /*coefficients file */
float dly[stages][2] = {0}; /*delay samples */
int data_in, data_out;
float IIR(int *IO_in, int *IO_out, int n, int len)
{
 int i, loop = 0; float un, yn, input;
 while (loop < len)
 {
 asm(" IDLE ");
 ++loop;
 input = *IO_in;
 for (i = 0; i < n; i++)
 {
 un = input - b[i][0] * dly[i][0] - b[i][1] * dly[i][1];
 yn = a[i][2]*dly[i][1] + a[i][1]*dly[i][0] + a[i][0]*un;
 dly[i][1] = dly[i][0];
 dly[i][0] = un; input = yn;
 }
 *IO_out = yn;
 }
}
void c_int05()
{
 PBASE[0x48] = data_out << 2;
 data_in = PBASE[0x4C] << 16 >> 18;
}
main()
{
 #define length 345
 int *IO_OUTPUT, *IO_INPUT;
 IO_INPUT = &data_in;
 IO_OUTPUT = &data_out;
 AICSET_I();
 for (;;)
 IIR((int *)IO_INPUT, (int *)IO_OUTPUT, stages, length);
}

Figure B.1. Generic IIR filter program.

Conclusion

MATLAB is a powerful tool for the design of both FIR and IIR filters, and can be interfaced directly
with the $99 C31-based DSK to implement filters in real-time. All support files/programs are
transparent to the user while the desired filter is being implemented in real-time. The TMS320 floating-
point tools are not required to implement the FIR filter since the generic FIR filter program, written in

C3x assembly language, is assembled and run with the tools included with the DSK package. However
they are required to implement the IIR filter since the generic IIR filter program is written in C and
needs to be compiled, assembled, and linked before running on the DSK. Similar techniques can be
developed to use an equivalent IIR filter program written in C3x assembly language, which would use
the assembler available with the DSK package.

Acknowledgement

Three grants in 1996-98 from the National Science Foundation's (NSF) Undergraduate Faculty
Enhancement (UFE) Program provided support to offer six workshops on DSP and Applications
during the summers of 1996-98 for a total of 113 faculty. The direct interface between MATLAB and
the DSK evolved during the 1998 workshop. The suggestions offered by Drs. T. Welch and C. Wright
who attended that workshop are appreciated.

References

1. R. Chassaing, Digital Signal Processing-Laboratory Experiments Using C and the TMS320C31 DSK, J. Wiley,
1999.

2. B. Bitler, R. Chassaing, and P. Martin,"Digital Signal Processing with the TMS320C31 DSK," in Proceedings
of the 1997 ASEE Annual Conference.

3. TMS320C3x DSP Starter Kit User's Guide, Texas Instruments Inc., 1996.
4. TMS320C3x User's Guide, Texas Instruments Inc., 1997.
5. TMS320C3x/C4x Optimizing C Compiler User's Guide, Texas Instruments Inc., 1997.
6. TMS320C3x/C4x Assembly Language Tools User's Guide, Texas Instruments Inc., 1997.
7. R. Chassaing, Digital Signal Processing with C and the TMS320C30, J. Wiley, 1992.
8. Student Version of MATLAB 5.0, The Mathworks, MA, 1998.
9. C. H. G. Wright, T. B. Welch, W. J. Gomes III, and Michael G. Morrow, "Teaching DSP Concepts Using

MATLAB and the TMS320C31 DSK," in Proceedings of the 1999 ICASSP.

WALTER J. GOMES III is a Computer Engineer at the Naval Undersea Warfare Center, Newport, RI designing
embedded subsystems for Autonomous Underwater Vehicles. He received a BS in Computer Engineering from the
University of Massachusetts Dartmouth where he is currently completing a DSP research requirement for his MSEE. He
is a member of IEEE and Eta Kappa Nu. Email: jgomes@ieee.org

RULPH CHASSAING received the PhD (EE) from the Polytechnic Institute of New York. He is the author of "Digital
Signal Processing-Laboratory Experiments Using C and the TMS320C31 DSK" and "Digital Signal Processing with C
and the TMS320C30", and coauthored with Dr. D. W. Horning "Digital Signal Processing with the TMS320C25", all
published by Wiley (1999, 1992, 1990). Email: chassaing@email.msn.com

