
Digital Filter Design Using Matlab

By Timothy J. Schlichter

EE 4000 Introduction to Digital Filtering

5/2/99

Submitted to: Dr. Joseph Picone
Mississippi State University

Department of Electrical and Computer Engineering

EXECUTIVE SUMMARY

A fundamental aspect of signal processing is filtering. Filtering involves the manipulation
of the spectrum of a signal by passing or blocking certain portions of the spectrum,
depending on the frequency of those portions. Filters are designed according to what kind
of manipulation of the signal is required for a particular application. Digital filters are
implemented using three fundamental building blocks: an adder, a multiplier, and a delay
element.

The design process of a digital filter is long and tedious if done by hand. With the aid of
computer programs performing filter design algorithms, designing and optimizing filters
can be done relatively quickly. This paper discusses the use of Matlab, a mathematical
software package, to design, manipulate, and analyze digital filters.

The design options in Matlab allow the user to either create a code for designing filters
that calls built-in functions, or to design filters in Sptool, a graphical user interface. Each
of these methods are examined in this paper. The strengths and weaknesses of each are
detailed in the following discussion.

This paper concludes with a discussion of how the data given by Matlab for various filters
can be used to implement filters on real digital signal processors. Matlab provides all the
information necessary for building a hardware replica of the filter designed in software.

TABLE OF CONTENTS

1. Abstract……………………………………………………………..4

2. Introduction. ………………………………………………………..4

3. Lowpass Filter Design………………………………………………7

4. Highpass and Bandpass Filter Design………………………………11

5. Sptool……………………………………………………………….13

6. Future Directions……………………………………………………16

7. Acknowledgments…………………………………………………..16

8. References…………………………………………………………..16

9. Appendix…………………………………………………………….17

Abstract

Matlab provides different options for digital filter design, which include function calls to
filter algorithms and a graphical user interface called Sptool. A variety of filter design
algorithms are available in Matlab for both IIR and FIR filters. This paper discusses the
different options in Matlab and gives examples of lowpass, highpass, and bandpass filter
designs.

Results show that the graphical user interface Sptool is a quicker and simpler option than
the option of making function calls to the filter algorithms. Sptool has a more user-
friendly environment since the spectrum of the filter is immediately displayed to the user,
and the user can quickly zoom in and examine particular areas of interest in the spectrum
(i.e. the passband). However, the shortcoming of Sptool is that it only displays the
magnitude response of the filter, not the phase response.

Introduction

A key element in processing digital signals is the filter. Filters perform direct
manipulations on the spectra of signals. To completely describe digital filters, three basic
elements (or building blocks) are needed: an adder, a multiplier, and a delay element. The
adder has two inputs and one output, and it simply adds the two inputs together. The
multiplier is a gain element, and it multiplies the input signal by a constant. The delay
element delays the incoming signal by one sample. Digital filters can be implemented
using either a block diagram or a signal flow graph. Figure 1 shows the three basic
elements in block diagram form, and Figure 2 shows them in signal flow graph form.

+

x(n)

y(n)
z(n) = x(n) + y(n) x(n) a ax(n) x(n) z^-1 x(n-1)

ADDER MULTIPLIER DELAY

Figure 1: Block Diagram of Filter Elements

x(n)

y(n)

z(n) = x(n) + y(n) x(n)
a

ax(n) x(n)
z^-1

x(n-1)

ADDER MULTIPLIER DELAY

Figure 2: Signal Flow Graph of Filter Elements

With the basic building blocks at hand, the two different filter structures can easily be
implemented. These two structures are Infinite Impulse Response (IIR) and Finite
Impulse Response (FIR), depending on the form of the system’s response to a unit pulse
input. IIR filters are commonly implemented using a feedback (recursive) structure, while
FIR filters usually require no feedback (non-recursive).

In the design of IIR filters, a commonly used approach is called the bilinear
transformation. This design begins with the transfer function of an analog filter, then
performs a mapping from the s-domain to the z-domain. Using differential equations, it
can be shown (Proakis 677) that the mapping from the s-plane to the z-plane is

s
T

z

z
=

−
+

−

−

2 1

1

1

1

This mapping results in a general form for an IIR filter with an arbitrary number of poles
and zeros. The system response and the difference equation for this filter is as follows:

H z
B z

A z

b z

a z

b b z b z

a z a z
a

n
n

n

M

n
n

n

N
M

M

N
N()

()

()

......

......
,= = =

+ + +
+ + +

=

−

=

−

=

− −

− −

∑

∑
0

0

0 1
1

1
1 01

1 (Ingle 183)

 y n b x n m a y n mm m
n

N

m

M

() () ()= − − −
==

∑∑
00

This system response can be easily realized using a signal flow graph.

x(n) y(n)
b0

b1

b2

b3

b4

-a1

-a2

-a3

-a4

z^-1

z^-1

z^-1

z^-1

Figure 3: Signal Flow Graph of IIR Filter

An FIR filter has a difference equation of

y n b x n kk
k

M

() ()= −
=

−

∑
0

1

 (Proakis 620)

By taking the z-transform, the system response is

H z b b z b z b zM
M

k
k

k

M

()= + + + =−
−

− −

=

−

∑0 1
1

1
1

0

1

(Ingle 197)

The realization of an FIR filter using a signal flow graph is straightforward.

x(n)
z^-1 z^-1 z^-1 z^-1

b0 b1 b2 b3 b4

y(n)

Figure 4: Signal Flow Graph of FIR Filter

Matlab has several design algorithms that can be used to create and analyze both IIR and
FIR digital filters. The IIR filters that can be created in Matlab are Butterworth,
Chebyshev type 1 and 2, and elliptic. The FIR filter algorithms in Matlab are equiripple,
least squares, and Kaiser window. The Matlab code required to implement these filters
involves bilinear transformations and function calls to analog prototype filters. The
following sections give examples of Matlab implementation of the IIR filters listed above.

Lowpass Filter Design

Using Matlab, a lowpass digital filter is designed using various analog prototypes:
Chebyshev, Butterworth, and Elliptic. The optimum filter type is chosen on the basis of
implementation complexity, magnitude response, and phase response. The design
specifications for the filter are as follows:

• Cutoff frequency = 1000Hz
• Sample frequency = 8000Hz
• Passband ripple = 0.5dB
• Stopband attn. = 60dB
• Transition band = 100Hz

Matlab Code (Chebyshev):

% Lowpass digital filter with Chebyshev-I analog prototype
%
% Digital Filter Specifications:
wp = 0.125*2*pi; % digital passband frequency in Hz (normalized)
ws = 0.1375*2*pi; % digital stopband frequency in Hz (normalized)
Rp = 0.5; % passband ripple in dB
As = 20; % stopband attenuation in dB

% Analog Prototype Specifications:
Fs = 1; T = 1/Fs;
OmegaP = (2/T)*tan(wp/2); % prewarp prototype passband frequency
OmegaS = (2/T)*tan(ws/2); % prewarp prototype stopband frequency

% Analog Chebyshev-1 Prototype Filter Calculation:
[c, d] = chb1(OmegaP, OmegaS, Rp, As);

% Bilinear Transformation:
[b, a] = bilinear(cs, ds, Fs);
%
[db,mag,pha,grd,w] = freqz(b,a);
plot(w*8000/2/pi,db);
xlabel('frequency (Hz)'); ylabel('decibels'); title('Magnitude in
dB');

This exact code is also used for the elliptic and Butterworth designs. The only change is
in the filter calculations of each type. Instead of calling chb1 (), the elliptic filter design
calls a function “elliptic ()” and the Butterworth design calls a function
“butterworth ()”. See the appendix for the Matlab code of the function chb1 ().

The following figures show the magnitude and phase responses of each type of filter.

0 500 1000 1500
-60

-50

-40

-30

-20

-10

0

frequenc y (Hz)

d
e

c
ib

e
ls

M agnitude Res pons e of Cheby s hev F ilter

0 500 100 0 150 0

-1

-0 .8

-0 .6

-0 .4

-0 .2

0

0.2

0 .4

0 .6

0 .8

1

freq uenc y (H z)

p
h

a
s

e
 (

n
o

rm
a

liz
e

d
 w

.r
.t

 p
i)

P has e o f C heby s hev F ilt e r

0 500 1000 1500
-60

-50

-40

-30

-20

-10

0

frequenc y (Hz)

d
e

c
ib

e
ls

M agnitude Respons e of E ll ip t ic F ilter

0 500 1000 1500
-1

-0 .8

-0 .6

-0 .4

-0 .2

0

0.2

0.4

0.6

0.8

1

frequenc y (Hz)

p
h

a
s

e
 (

n
o

rm
a

liz
e

d
 w

.r
.t

.
p

i)

P has e of E llip t ic F ilte r

0 500 1000 1500
-60

-50

-40

-30

-20

-10

0

frequenc y

d
e

c
ib

e
ls

M agn itude R es pons e o f B u t te rw orth F il te r

0 5 0 0 1 0 0 0 1 5 0 0
-1

-0 . 8

-0 . 6

-0 . 4

-0 . 2

0

0 . 2

0 . 4

0 . 6

0 . 8

1

fre q u e n c y

p
h

a
s

e
(n

o
rm

a
li

z
e

d
 w

.r
.t

 p
i)

P h a s e o f B u t t e rw o rt h F i l t e r

The Matlab code outputs the filter order and the filter coefficients. For this example, the
Chebyshev filter order was nine. The elliptic filter had an order of five, and the
Butterworth filter order was thirty-two.

Several conclusions can be drawn about these low-pass filter designs from this simple
example. First, in general, for a given set of design constraints, the elliptic filter design
algorithm will result in the simplest filter (in terms of complexity). The most complex
filter is the Butterworth filter with an order of thirty-two. In terms of passband ripple, the
Butterworth filter gives the optimum response. In the passband, there is almost no ripple
(monotonic). The elliptic and Chebyshev filters both have much more ripple in the
passband. So, there is a tradeoff between these three different types of filters. In terms of
magnitude response and complexity, the elliptic ripple is most likely the optimum choice.
However, the elliptic ripple has a phase response that is more nonlinear than the
Chebyshev and Butterworth filters. Therefore, if a sharp cutoff and relatively low
complexity is required, the choice would be the elliptic filter. If the phase response would
need to be more linear, a Chebyshev or Butterworth filter should be chosen over the
elliptic filter.

Highpass and Bandpass Filter Design

Matlab provides functions for implementing lowpass-to-highpass and lowpass-to-bandpass
conversions. By providing a filter order, the passband ripple, and the 3dB cutoff
frequency to the function cheby1 (), a highpass filter can be designed. The filter order is
found using the function chebord (). For a Butterworth prototype, the functions are
butter () and buttord (). For the elliptic prototype, the functions are ellip () and
ellipord ().

The following Matlab code is used to design a Chebyshev highpass digital filter with a
passband at 1100Hz and a 100Hz transition band.

% Highpass Chebyshev Digital Filter

ws = 0.125*2*pi; % digital stopband frequency in rad/s
wp = 0.1375*2*pi; % digital passband frequency in rad/s
Rp = 0.5; % passband ripple in dB
As = 20;

[N,wn] = cheb1ord(wp/pi,ws/pi,Rp,As);
[b,a] = cheby1(N, Rp, wn, 'high');

[db,mag,pha,grd,w] = freqz_m(b,a);
plot(w*8000/2/pi,db);
axis([800 1200 -22 1]);

The following figure shows the magnitude response of the highpass filter.

800 850 900 950 1000 1050 1100 1150 1200

-20

-15

-10

-5

0

frequency (Hz)

d
e

c
ib

e
ls

M agnitude Respons e of Chebys hev F ilter

Bandpass filters are found using these same two functions. However, with bandpass
filters, the passband and stopband frequencies (wp and ws) are two-element vectors since
there are two passband frequencies and two stopband frequencies. The Matlab code
below shows the design of an elliptic digital bandpass filter.

% Bandpass Elliptic Digital Filter

ws = [0.3*pi 0.75*pi] %Stopband edge frequency
wp = [0.4*pi 0.6*pi] %Passband edge frequency
Rp = 0.5; %Passband ripple in dB
As = 20; %Stopband attenuation in dB

[N,wn] = ellipord(wp/pi,ws/pi,Rp,As);
[b,a] = ellip(N,Rp,As,wn);

[db,mag,pha,grd,w] = freqz_m(b,a);
plot(w*8000/2/pi,db);
axis([500 3500 -22 1]);
xlabel('frequency (Hz)'); ylabel('decibels'); title('Magnitude
Response of Elliptic Filter');

The following figure shows the magnitude response of the bandpass filter designed in the
Matlab code above.

500 1000 1500 2000 2500 3000 3500

-20

-15

-10

-5

0

frequency (Hz)

d
e

c
ib

e
ls

M agnitude Response of E lliptic Filter

Sptool

Matlab has a very useful visualization tool for designing and analyzing digital filters called
Signal Processing Tool, or Sptool. Sptool is a graphical user interface capable of
analyzing and manipulating signals, filters, and spectra. For filter design, Sptool allows
the user to select the filter design algorithm to use when creating the filter. The design
algorithms included in Sptool are FIR filters (equiripple, least squares, Kaiser window)
and IIR filters (Butterworth, Chebyshev type 1 and 2, elliptic). The user is also allowed to
specify the type of filter (lowpass, bandpass, highpass, or bandstop). Sptool designs the
filter and displays the magnitude response and the filter order.

The figures below show actual Sptool screenshots for a lowpass filter design using the
specifications given above. The Chebyshev Type 1 algorithm was used for these
screenshots. By using the zoom options, different parts of the spectrum can be analyzed
quickly and easily with Sptool. The second screenshot is a windowed view of the
passband of the spectrum contained in the first screenshot.

Future Directions

Digital filters can be quickly and easily designed in Matlab using the methods described
above. Sptool offers a much quicker way of designing and comparing different filters than
using the function calls to the filter algorithms. However, Sptool allows the user to view
the magnitude response of the filter, not the phase response. For some applications, the
phase response may be more important than the magnitude response, so in these cases
Sptool would not be as useful in determining the optimum filter design. Also, Sptool does
not give a direct output of the filter coefficients. With the Matlab code given above, the
filter coefficient are displayed to the user.

The results from Matlab can be used directly to implement the digital filters on real DSPs.
These results are all that is needed to draw a complete signal flow graph with adders,
multipliers, and delay elements. The filter coefficients are used as the gain factors for the
multipliers, and shift registers are used as the delay elements (for each z-n factor).

Acknowledgments

Many thanks to Dr. Joseph Picone for his guidance, assistance, and time in the execution
of this project.

References

• Hanselman, Duane, and Littlefield, Bruce. Mastering Matlab 5. Prentice Hall. Upper
Saddle River, NJ, 1998.

• Ingle, Vinay K. and Proakis, John G. Digital Signal Processing Using Matlab. PWS

Publishing Company, 1997.

• Proakis, John G. and Manolakis, Dimitris G. Digital Signal Processing: Principles,
Algorithms, and Applications, 3rd Edition. Prentice Hall. Upper Saddle River, NJ,
1996.

• Ziemer, Rodger E., Tranter, William H., and Fannin, D. Ronald. Signals and Systems:

Continuous and Discrete, 3rd Edition. Macmillan Publishing Company, 1993.

Appendix

function [b,a] = chb1(Wp, Ws, Rp, As);
% Analog Lowpass Filter Design: Chebyshev-1
%
% [b,a] = chb1(Wp, Ws, Rp, As);
% b = Numerator coefficients of Ha(s)
% a = Denominator coefficients of Ha(s)
% Wp = Passband edge frequency in rad/sec
% Ws = Stopband edge frequency in rad/sec
% Rp = Passband ripple in dB
% As = Stopband attenuation in dB
%
if Wp <= 0

error('Passband edge must be larger than 0')
end
if Ws <= Wp

error('Stopband edge must be larger than Passband edge')
end
if (Rp <= 0) | (As < 0)

error('PB ripple and/or SB attenuation must be larger than 0')
end
ep = sqrt(10^(Rp/10)-1);
A = 10^(As/20);
OmegaC = Wp;
OmegaR = Ws/Wp;
g = sqrt(A*A-1)/ep;
N = ceil(log10(g+sqrt(g*g-1))/log10(OmegaR+sqrt(OmegaR*OmegaR-1)));
fprintf('\n*** Chebyshev-1 Filter Order = %2.0f \n' ,N);
[b,a] = ap_chb1(N, Rp, OmegaC);

function [b,a] = ap_chb1(N, Rp, Omegac);
% Chebyshev-1 Analog Lowpass Filter Prototype
%
% [b,a] = ap_chb1(N, Rp, Omegac);
% b = nemerator polynomial coefficients
% a = denominator polynomial coefficients
% N = Order of the elliptical filter
% Rp = Passband Ripple in dB
% Omegac = cutoff frequency in rad/sec
%
[z,p,k] = cheb1ap(N,Rp);

a = real(poly(p));
aNn = a(N+1);
p = p*Omegac;
a = real(poly(p));
aNu = a(N+1);
k = k*aNu/aNn;
b0 = k;
B = real(poly(z));
b = k*B;

