Name:

Problem	Points	Score
1a	10	
1b	10	
1c	10	
2a	10	
2b	10	
2c	10	
2d	10	
3a	10	
3b	10	
3c	10	
Total	100	

Notes:

- 1. The exam is closed book / closed notes. Students are allowed a copy sheet only **one** side of **one** standard US-size (8.5" x 11") sheet of paper on which they can write relevant information such as theorems.
- 2. Please show ALL work. Incorrect answers with no supporting explanations or work will be given no partial credit.
- 3. If I can't read or follow your solution, it is wrong, and no partial credit will be given PLEASE BE NEAT!
- 4. Please indicate clearly your answer to every problem.
- 5. There is sufficient space after each problem to write your solution. In case you need extra paper please see the instructor.
- 6. Calculators of any kind are not allowed.

Problem No. 1:

A UV flip-flop performs the in the following fashion —

If UV = 00, the next state of the flip-flop is the same as the present state.

If UV = 01, the next state of the flip-flop is 0.

If UV = 10, the next state of the flip-flop is 1.

If UV = 11, the next state of the flip-flop is the complement of the present state.

Design a counter using 3 such UV flip-flops for the sequence

by following the steps described below.

a) Complete the following table and find an equation to represent the next state Q⁺ in terms of the inputs UV and the present state Q.

Solution:

Q	Q⁺	U	V
0	0	0	Х
0	1	1	Х
1	0	Х	1
1	1	Х	0

$$Q^+ = UQ' + V'Q$$

As you may note, this is the same as the JK flip-flop with J = U and K = V.

b) Design a complete state table for the specified counter.

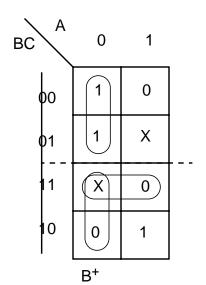
ABC	A ⁺ B ⁺ C ⁺
000	111
001	110
010	100
011	XXX
100	000
101	XXX
110	010
111	001

c) Based on parts a) and b), draw the appropriate K-maps and derive the equations for the flip-flop inputs. (Feel free to use any short-cut methods if applicable.)

Solution:

Since the UV flip-flop is the same as the JK flip-flop, we derive the input equations directly from the next-state maps.





вС	0	1	
00	1	0	
0	0	X	
11	Х	1	
10	0	0	
			ı

$$U_C = A'B'$$

$$V_B = A' + C$$

Problem No. 2:

Analyze a sequential network that uses JK flip-flops A and B, and has one input X and one output Z as described below—

$$J_A = AX$$
 $K_A = B + X$
 $J_B = A + X'$ $K_B = BX$
 $Z = AX + B'$

a) Derive the next-state equations for the two flip-flops in terms of the flip-flop outputs A,B and the input X. Is this network Moore or Mealy?

Solution:

The JK flip-flop state equation is $Q^+ = JQ' + K'Q$. Substituting the given equations, we get

$$A^{+} = J_{A}A' + K'_{A}A$$

$$= (AX)A' + (B + X)'A$$

$$= 0 + (B'X')A$$

$$= AB'X'$$

$$B^{+} = J_{B}B' + K'_{B}B$$

$$= (A + X')B' + (BX)'B$$

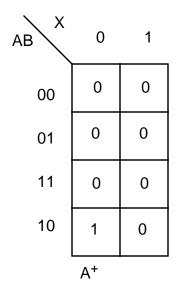
$$= AB' + B'X' + (B' + X')B$$

$$= AB' + B'X' + 0 + BX'$$

$$= AB' + X'$$

As the output Z is only a function of the state and the input (it depends on A, B and X), this network is a **Mealy** state machine.

b) Draw the next-state maps for the network based on part **a)**.

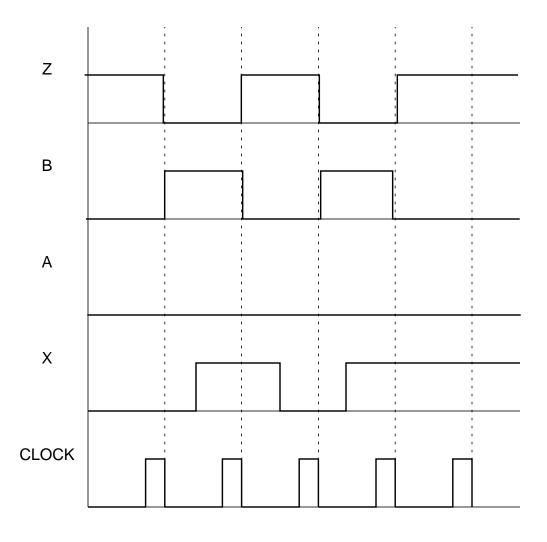


AB X	0	1
00	1	0
01	1	0
11	1	0
10	1	1
1	B ⁺	

c) Based on the state maps in part **b)** derive the corresponding next-state table for the network.

AB	A ⁺ B ⁺		2	<u>z</u>
	X = 0	X = 1	X = 0	X = 1
00	01	00	1	1
01	01	00	0	0
10	11	01	1	1
11	01	00	0	1

d) Trace the signals through the network for an input sequence of X = 01011 and complete the following timing diagram accordingly. Identify false outputs if there are any.

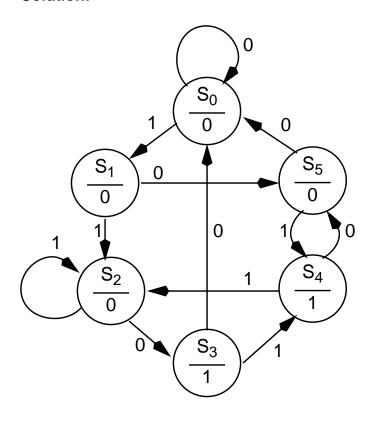


Problem No. 3:

A sequence detector has one input X and one output Z. The output Z becomes 1 if an input sequence of 110 or 101 is detected, otherwise it is 0. Design a **Moore** sequential network to implement this sequence detector.

a) Derive and draw the Moore state graph for this network, and draw the corresponding next-state table. (**Hint**: minimum 6 states.)

Solution:

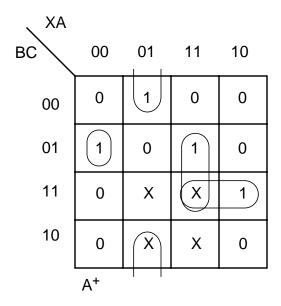


Since there are 5 states, we need 3 flip-flops to represent them. Let the states be denoted as —

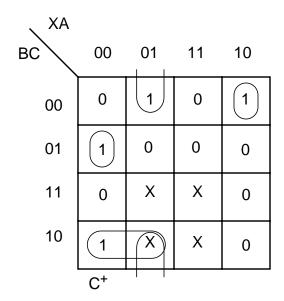
S_0	000
S_1	001
S_2	010
S_3	011
S_4	100
S ₅	101

Present	Next	Z		
state	X = 0	X = 1	_	
000	000	001	0	
001	101	010	0	
010	011	010	0	
011	000	100	1	
100	101	010	1	
101	000	100	0	

b) Draw the corresponding next-state maps for the network based on the state table in part a).



、 ΧΑ				
ВС	00	01	11	10
00	0	0	1	0
01	0	0	0	1
11	0	Х	Х	0
10	1	X	X	1



、 ΧΑ				
ВС	00	01	<u> </u>	10
00	0	1	1	0
01	0	0	0	0
11	1	Х	Х	1
10	0	X	X	0
	Z			

c) Implement the sequence detector network using D flip-flops. Derive the flip-flop input equations and an equation for Z based on the state maps in part b).

Solution:

From the state-maps and the K-map for Z, we see that

$$\begin{split} D_A &= A^+ = XAC + XBC + X'AC' + X'A'B'C \\ D_B &= B^+ = BC' + XAC' + XA'B'C \\ D_C &= C^+ = X'AC' + X'BC' + XA'B'C' + X'A'B'C \\ Z &= AC' + BC \end{split}$$