Name:

Problem	Points	Score
1 a	10	
1 b	10	
1 c	10	
2 a	10	
2 b	10	
2 c	10	
2 d	10	
3 a	10	
3 b	10	
3 c	10	
Total	$\mathbf{1 0 0}$	

Notes:

1. The exam is closed book / closed notes. Students are allowed a copy sheet - only one side of one standard US-size (8.5" x 11") sheet of paper - on which they can write relevant information such as theorems.
2. Please show ALL work. Incorrect answers with no supporting explanations or work will be given no partial credit.
3. If I can't read or follow your solution, it is wrong, and no partial credit will be given PLEASE BE NEAT!
4. Please indicate clearly your answer to every problem.
5. There is sufficient space after each problem to write your solution. In case you need extra paper please see the instructor.
6. Calculators of any kind are not allowed.

Problem No. 1:

A UV flip-flop performs the in the following fashion -
If $U V=00$, the next state of the flip-flop is the same as the present state.
If $U V=01$, the next state of the flip-flop is 0 .
If $U V=10$, the next state of the flip-flop is 1 .
If $U V=11$, the next state of the flip-flop is the complement of the present state.
Design a counter using 3 such UV flip-flops for the sequence $000,010,100,110,001,111,000, \ldots$
by following the steps described below.
a) Complete the following table and find an equation to represent the next state Q^{+}in terms of the inputs UV and the present state Q.

Solution:

\mathbf{Q}	\mathbf{Q}^{+}	\mathbf{U}	\mathbf{V}
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

$$
Q^{+}=\quad U Q^{\prime}+V^{\prime} Q
$$

As you may note, this is the same as the JK flip-flop with $\mathrm{J}=\mathrm{U}$ and $\mathrm{K}=\mathrm{V}$.
b) Design a complete state table for the specified counter.

Solution:

$\mathbf{A B C}$	$\mathbf{A}^{+} \mathbf{B}^{+} \mathbf{C}^{+}$
000	010
001	111
010	100
011	$X X X$
100	110
101	$X X X$
110	001
111	000

c) Based on parts \mathbf{a}) and \mathbf{b}), draw the appropriate K -maps and derive the equations for the flip-flop inputs. (Feel free to use any short-cut methods if applicable.)

Solution:

Since the UV flip-flop is the same as the JK flip-flop, we derive the input equations directly from the next-state maps.

$U_{A}=\frac{B+C}{}$	$V_{A}=\frac{B}{1}$
$U_{B}=\frac{1}{A B}$	$V_{B}=\frac{1}{A}$
$U_{C}=\frac{A B}{}=$	

Problem No. 2:

Analyze a sequential network that uses JK flip-flops A and B , and has one input X and one output Z as described below-

$$
\begin{gathered}
J_{A}=A+X \quad K_{A}=B^{\prime} X \\
J_{B}=A X^{\prime} \quad K_{B}=B+X \\
Z=A+B^{\prime}
\end{gathered}
$$

a) Derive the next-state equations for the two flip-flops in terms of the flip-flop outputs A, B and the input X. Is this network Moore or Mealy?

Solution:

The JK flip-flop state equation is $Q^{+}=J Q^{\prime}+K^{\prime} Q$. Substituting the given equations, we get

$$
\begin{aligned}
A^{+} & =J_{A} A^{\prime}+K_{A}^{\prime} A \\
& =(A+X) A^{\prime}+\left(B^{\prime} X\right)^{\prime} A \\
& =A^{\prime} X+\left(B+X^{\prime}\right) A \\
& =A^{\prime} X+A B+A X^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
B^{+} & =J_{B} B^{\prime}+K_{B}^{\prime} B \\
& =\left(A X^{\prime}\right) B^{\prime}+(B+X)^{\prime} B \\
& =A B^{\prime} X^{\prime}+\left(B^{\prime} X\right) B \\
& =A B^{\prime} X^{\prime}
\end{aligned}
$$

$$
=A^{\prime} X+\left(B+X^{\prime}\right) A \quad=A B^{\prime} X^{\prime}+\left(B^{\prime} X\right) B
$$

As the output Z is only a function of the state (it depends only on A and B), this network is a Moore state machine.
b) Draw the next-state maps for the network based on part a).

Solution:

00	0	1
	0	1
01	0	1
11	1	1
10	1	0
	A^{+}	

c) Based on the state maps in part b) derive the corresponding next-state table for the network.

Solution:

$\mathbf{A B}$	$\mathbf{A}^{+} \mathbf{B}^{+}$		\mathbf{Z}
	$\mathbf{X}=\mathbf{0}$	$\mathbf{X}=\mathbf{1}$	
00	00	10	1
01	00	10	0
10	11	00	1
11	10	10	1

d) Trace the signals through the network for an input sequence of $X=01011$ and complete the following timing diagram accordingly. Identify false outputs if there are any.

Solution:

Problem No. 3:

A sequence detector has one input X and one output Z. The output Z becomes 1 if an input sequence of 110 or 101 is detected, otherwise it is 0 . Design a Mealy sequential network to implement this sequence detector.
a) Derive and draw the Mealy state graph for this network, and draw the corresponding next-state table. (Hint: minimum 5 states.)

Solution:

Since there are 5 states, we need 3 flipflops to represent them. Let the states be denoted as -

S_{0}	000
S_{1}	001
S_{2}	010
S_{3}	011
S_{4}	100

Present state	Next state		Output Z	
	$\mathbf{X = 0}$	$\mathbf{X = 1}$	$\mathbf{X = 0}$	$\mathbf{X = 1}$
000	000	001	0	0
001	010	100	0	0
010	000	011	0	1
011	010	100	0	0
100	010	100	1	0

b) Draw the corresponding next-state maps for the network based on the state table in part a).

Solution:

c) Implement the sequence detector network using D flip-flops. Derive the flip-flop input equations and an equation for Z based on the state maps in part \mathbf{b}).

Solution:

From the state-maps and the K-map for Z, we see that

$$
\begin{aligned}
D_{A} & =A^{+}=X A+X C \\
D_{B} & =B^{+}=X^{\prime} A+X^{\prime} C+X B C^{\prime} \\
D_{C} & =C^{+}=X A^{\prime} C^{\prime} \\
Z & =X^{\prime} A+X B C^{\prime}
\end{aligned}
$$

