Name:

Problem	Points	Score
1a	5	
1b	5	
2a	5	
2b	10	
2c	10	
3a	10	
3b	10	
4	10	
5	20	
6a	5	
6b	5	
6c	5	
Total	100	

Notes:

- 1. The exam is closed book / closed notes. Students are allowed a copy sheet only **one** side of **one** standard US-size (8.5" x 11") sheet of paper on which they can write relevant information such as theorems.
- 2. Please show ALL work. Incorrect answers with no supporting explanations or work will be given no partial credit.
- 3. If I can't read or follow your solution, it is wrong, and no partial credit will be given PLEASE BE NEAT!
- 4. Please indicate clearly your answer to every problem.
- 5. There is sufficient space after each problem to write your solution. In case you need extra paper please see the instructor.
- 6. Calculators of any kind are not allowed.

Problem No. 1:

a) Convert the following number from decimal to octal, and then to binary.

b) Convert the following number from binary to hexadecimal and then to decimal.

1101000.011₂

D	- 1 -	1	М.	_	^
Pro	ble	ım ı	N	Э.	2:

a) Perform the following binary division. Clearly indicate the quotient and the remainder in the space provided.

 $10111001 \div 1101$

Quotient:			
Remainder:			

b) Add the following two numbers in binary using a 5-bit 1's complement representation. Indicate if there is an overflow.

$$(-3) + (-11)$$

c) Perform the following subtraction assuming 2's complement representation of the binary numbers. Indicate if there is an overflow.

10011 - 11010

Problem No. 3:

a) Find the complement of F. Do **not** simplify the expression.

$$F = AB + (A' + C)(B + E')[D'E(A' + B) + 1]$$

b) Find the dual of F. Do **not** simplify the expression.

$$F = (A+B')(A'D'+E) + (AC'+BD)[(C+E')(B'+D)+0]$$

Problem No. 4:

An electronics company wants to cut costs on a circuit being designed in its lab. It has organized a design competition for the students of ECE 3713 to simplify the following circuit and find the minimum expression for F. The winner has to draw a circuit diagram for this minimum form using at most two logic gates. Please send your entry for this competition.

Problem No. 5:

Assume that you have graduated and now run your own multi-billion electronics company that sells the following circuit —

$$(A \equiv B)(C + D') + (C \equiv D)(A + B')$$

As a smart engineer, you design the following circuit to save costs —

$$(C \oplus D)' + C(A \equiv B)$$

Now you need to check if the two circuits perform the same task. Do so by simplifying both expressions to a minimum form and compare if they are equal.

Problem No. 6:

A combinatorial switching network has four inputs A,B,C and D; and two outputs X and Y. The output X goes high if the representation ABCD has no two adjacent 1s, otherwise it is 0. Y equals 1 if there are no two adjacent 0s in the representation ABCD, otherwise it is low.

a) Construct a truth table for this network.

b) Provide a maxterm representation for X.

c) Provide a minterm representation for Y.