12.9

a)
$$2^4 - 1111 = 10000 - 1111 = 1$$

b) 27 - 1001101 = 110011

c) 27 - 1011100 = 100100

d) 25 - 11101= 100000 - 11101 = 11

12.15

Applying the rules of Boolean algebra,

$$F = \overline{A} B(C + \overline{C}) + AB(C + \overline{C}) = \overline{A} B + AB$$

Therefore,

$$F = B(\overline{A} + A) = B$$

12.11

ABC	BC	$B\overline{C}$	$\overline{B}A$	80×80×34	A+B
000	0	0	0	0	0
001	0	0	0	0	0
010	0	1	0	1	1
011	1	0	0	1	1
100	0	0	1	1 0	1
101	0	0	1	1	1
110	0	1	0	1	1
111	1	0	0	1	Hay-St.

Comparing the last two columns, it is clear that $BC + B\overline{C} + \overline{B}A = A + B$

$$F = \overline{AB} \bullet \overline{CD} \bullet \overline{E}$$
$$= \overline{AB} + CD + \overline{E}$$

where the second expression is a result of applying DeMorgan's theorem to the first.

