(2)

Does a differential equation describe a linear system?

Example 1: Consider the following system:

$$\frac{d}{dt}y(t) + ty(t) = x(t)$$

Define $y_1(t)$ as the output due to $x_1(t)$, and $y_2(t)$ as the output due to $x_2(t)$. Let's compute the output to these:

$$x_1(t):$$
 $\frac{d}{dt}y_1(t) + ty_1(t) = x_1(t)$ (1)

 $x_2(t)$: $\frac{d}{dt}y_2(t) + ty_2(t) = x_2(t)$

 $\alpha x_1(t) + \beta x_2(t)$: Multiply (1) by α and (2) by β , and add (1) and (2):

$$\alpha \left(\frac{d}{dt}y_1(t) + ty_1(t)\right) + \beta \left(\frac{d}{dt}y_2(t) + ty_2(t)\right) = \alpha x_1(t) + \beta x_2(t)$$

Rearranging terms:

$$\frac{d}{dt}(\alpha y_1(t) + \beta y_2(t)) + t(\alpha y_1(t) + \beta y_2(t)) = \alpha x_1(t) + \beta x_2(t)$$
(3)

If we define $y_3(t) = \alpha y_1(t) + \beta y_2(t)$ and $x_3(t) = \alpha x_1(t) + \beta x_2(t)$, we see that (3) can be rewritten as:

$$\frac{d}{dt}y_3(t) + ty_3(t) = x_3(t)$$

Hence, it is linear system.

Example 2: Consider the following system:

$$\frac{d}{dt}y(t) = x^2(t)$$

Define $y_1(t)$ as the output due to $x_1(t)$, and $y_2(t)$ as the output due to $x_2(t)$. Let's compute the output to these:

$$x_1(t):$$
 $\frac{d}{dt}y_1(t) = x_1^2(t)$ (1)

$$x_2(t)$$
: $\frac{d}{dt}y_2(t) = x_2^2(t)$

 $v_2(t) = x_2^2(t)$ (2)

 $\alpha x_1(t) + \beta x_2(t)$: Multiply (1) by α and (2) by β , and add (1) and (2):

$$\alpha \left(\frac{d}{dt}y_1(t)\right) + \beta \left(\frac{d}{dt}y_2(t)\right) = \alpha^2 x_1^2(t) + \beta^2 x_2^2(t)$$

Rearranging terms:

$$\frac{d}{dt}(\alpha y_1(t) + \beta y_2(t)) = \alpha^2 x_1^2(t) + \beta^2 x_2^2(t)$$
(3)

If we define $y_3(t) = \alpha y_1(t) + \beta y_2(t)$ and $x_3(t) = \alpha x_1(t) + \beta x_2(t)$, we see that (3) cannot be rewritten as:

$$\frac{d}{dt}y_3(t) = x_3^2(t)$$

because

$$x_{3}^{2}(t) = (\alpha x_{1}(t) + \beta x_{2}(t))^{2} \neq \alpha^{2} x_{1}^{2}(t) + \beta^{2} x_{2}^{2}(t)$$

Therefore, the system is not linear!