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Abstract— Emotional experiences during music listening
are supported by dynamic interactions between percep-
tual, cognitive, and physiological processes, yet the extent
to which bodily responses reflect or predict music-induced
emotions remains an open question. In this preliminary
study, we aimed to investigate the relationship between
music listening enjoyment and a variety of physiological
responses, testing whether any subset of these measures
can be used to predict music-induced emotions. We
presented each participant with obscure instrumental
music excerpts, recorded several physiological responses
during music listening, and asked them to subjectively
rate their experienced valence (positive to negative affect)
and arousal (high to low energy). Using an exploratory
structural equation model, we found that high-frequency
heart rate variability (HF HRV), skin conductance levels
(SCL), and respiration rate had small yet significant
correlations with arousal, while HF HRV and the range
of skin conductance responses (SCR) were correlated
with valence. These findings indicate that physiological
responses like SCR and respiration rate could potentially
serve as an objective measure of music-induced emotions,
though the low predictive power of the model necessitates
more expansive confirmatory analyses. Future research
should expand upon these findings through larger sample
sizes, cluster models, and by more closely investigating the
influence of internal state.

Keywords— Music listening, arousal, valence, subjective rat-
ings, emotional responses, psychophysiology, physiology

I. INTRODUCTION

Listening to music is one of the most enjoyable and
emotionally rich experiences in which people engage.
Unlike other rewarding activities, music does not fulfill
an obvious biological need or resemble fundamental
drives such as eating or social bonding; however, people
frequently seek out music for the pleasure it brings and
the genuine emotions it can evoke [1–3]. These musical
emotions—such as happiness, sadness, and fear—can be
identified universally [2]. While it is widely acknowl-
edged that music can evoke strong affective states, the
specific relationship between emotional changes during
listening and the pleasurable aspects of the experience
remains underexplored.

Previous studies have explored whether emotional state
can be reliably indicated by physiological responses to
music [4–6]. Two dimensions can be used to describe
emotion: valence and arousal. Valence refers to how
positive or negative an emotion is, where happiness and

calm are classified as positively valenced emotions, and
sadness and anger are classified as negatively valenced
[7]. Valence is typically assessed through self-reported
emotional ratings, such as through the Self-Assessment
Manikin (SAM) [8]. Arousal reflects the level of phys-
iological or emotional activation a person experiences,
where happiness and anger are high arousal emotions,
and sadness and calm are low arousal emotions [7].
Like valence, arousal can be self-reported but is also
frequently measured using physiological indicators such
as heart rate, which reflect the body’s autonomic ner-
vous system activity [9–11].

While subjective emotional ratings remain a key mea-
sure, more objective physiological indicators such as
heart rate (BPM), electrodermal activity (EDA), and
respiration (RSP) have been increasingly used to de-
termine whether these responses can predict emotional
states during music listening [12, 13]. Some studies
have found that EDA, specifically SCL, was positively
correlated with happy music, but not with sad music
[5, 14]. These studies also found no effect of BPM,
with Lundqvist et al. [14] finding that both types of
music triggered a pattern of initial slowing followed
by speeding up of BPM. The researchers interpreted
this pattern as an orienting response, suggesting that it
reflected a shift in the participants’ attention toward the
music. Other studies report a positive linear relationship
between BPM and valence, especially in the context of
“musical chills” [12, 15, 16]. This seems to be contrary
to the general emotion literature, in which people expe-
rience faster BPMs in the presence of strong negative
valence, and a weaker relationship with positive valence
[17]. Other music studies have found a strong positive
relationship between RSP rate and valence [12], skin
conductance responses (SCR) and arousal [18], and SCL
with valence and arousal [12, 19, 20].

Fast-tempo music is often associated with feelings of
excitement or high arousal, while slower tempos are
usually associated with calmer, lower arousal states.
These differences in rhythm can have a strong effect
on how we emotionally interpret what we hear [21].
Our bodies often adjust in response to music. For
instance, changes in heart rate or breathing may reflect
the tempo or intensity of a song (e.g., [22]). This
adjustment is partly driven by a mechanism in which
the brain processes rhythmic patterns in music and
relays signals to various organs, such as the heart. These
signals modulate physiological responses; faster musical
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tempos are typically associated with increased pulse
rate and blood pressure, while slower tempos tend to
produce the opposite effect [23]. This physical reac-
tion can inform our emotional experience, potentially
amplifying the feelings expressed in music [24, 25].
When we respond emotionally to happy or sad music,
it is not just about whether the music feels positive or
negative—the structure of the music itself, especially
elements like tempo and rhythm, could also play a big
role. Subconscious autonomic responses were identified
for both respiratory and cardiovascular parameters that
were consistent across all participants, regardless of
their musical preferences or prior training [26]. In prior
research [26], musical profile was closely reflected in
changes in the skin’s microvasculature, suggesting a
potential subconscious link between auditory stimuli
and cardiovascular responses. This implies that the sub-
jective experience of a "chill" may depend on whether
the intensity of these cardiovascular changes surpasses
a certain threshold, allowing them to enter conscious
awareness.

In this study, we investigated whether a systematic
relationship exists between certain physiological mea-
surements (i.e., heart function, skin-conductance, and
respiration) and behavioral reports of music-induced
emotion (i.e. valence and arousal) in previously unexpe-
rienced music. By incorporating physiological data into
the study of music listening, we aim to better understand
how internal states shape emotional responses to music
and to broaden the multisensory perspective of music
cognition. These findings may offer an alternative to
subjective, behavioral measures of emotion and may
help us distinguish between the perceptual and cognitive
effects of music on emotion. The results can allow
us to partially bridge the gap between science and
experience by judging implicit appraisals (physiology)
in conjunction with explicit ones (subjective ratings).

II. MATERIALS AND METHODS

II-A. Dataset

All studies were approved by the North General In-
stitutional Review Board (IRB) of the University of
California, Los Angeles (UCLA). All of the participants
were UCLA undergraduate students who were recruited
through the UCLA Psychology Subject Pool. They were
compensated with course credit for their participation
in the study. The data were collected anonymously,
and each participant had normal hearing. Demographic
information (i.e., age, gender, and ethnicity) was not
collected, as it did not have relevance to our hypotheses.
Informed consent for research and publication was
obtained from all individuals prior to experimentation.
To prevent potential biases, participants were not briefed
on the study’s hypothesis but only about the respective
tasks. Thirty-five students participated in the study, but
five participants’ data were removed on account of

technological errors. One more participant was removed
from the data analysis for having a baseline average
heart rate that was three standard deviations above the
mean (122 BPM). This resulted in the inclusion of 29
participants in the study.

II-B. Study Design

After signing the consent form, we asked participants
to wear headphones and focus on a fixation cross in
the center of the computer screen for the duration of
the experiment. We used a BIOPAC MP160 and wire-
less BioNomadix monitors to collect electrocardiogram
(ECG), EDA, photoplethysmography (PPG), and RSP
measurements from the participants at a sampling rate
of 2000 Hz (every half millisecond). ECG is measured
in microVolts (µV), EDA in microsiemens (µS), PPG in
volts, and RSP in volts. We also used the AcKnowledge
Data Acquisition and Analysis Software to process and
save the raw data. The experiment consisted of three
repeating stages.

1) Baseline Trial: Participants listened to white noise
for 45 seconds. This acted as the baseline condi-
tion, which allowed us to collect initial baseline
physiology and allowed participant physiology to
return to baseline levels between each music pre-
sentation.

2) Experimental Trial: Participants listened to a music
excerpt that was between 45 and 60 seconds long.

3) Response Trial: Participants were asked to report
their subjective induced valence and arousal on
the computer in the form of Likert Scales ranging
±100 for each dimension. They were also asked to
click a check box if they knew the song they had
just heard.

This was repeated 28 times, once for each of the 28
songs included in the experiment. The order of the songs
was randomized.

II-C. Song Excerpt Criteria

In this study, we were interested in the perceptual in-
fluences of music on emotion, rather than the cognitive
ones. Previous studies of music-induced emotion used
popular songs as stimuli, which were often familiar to
the participant and contained lyrics [7]. These songs
have cognitive associations that could shift one’s inter-
pretation of a piece of music, and thus the emotions
they feel when listening to it. To avoid this potential
cognitive bias, we established a strict procedure for
song selection. Firstly, we scoured previous studies to
find songs that were validated as inducing emotion,
to give us a foundation for the study. Out of three
papers [1, 7, 27], we collected 179 songs. To establish
whether they were obscure, we used Google Trends
to compare the song to an incredibly popular song
in the United States and abroad ("Yellow Submarine"
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by the Beetles). If the song of choice was below the
25% threshold, then we considered it "obscure" enough
for experimentation. This resulted in a sublist of 76
songs. According to a previous study [28], 45 seconds
to 60 seconds of music listening is necessary to induce
emotion. This is also similar to Khalfa et al.[5], who had
participants listen to one-minute music clips. Using this
as our guide, we extracted 45-to-60 seconds-long song
excerpts that did not include lyrics. Some of the selected
songs did not have instrumental sections that were long
enough, reducing our song list further to 45 songs of
varying genres. Finally, we wanted to have an equal
number of songs in each category of valence and arousal
pairings: Positive Valence & High Arousal (PV-HA),
Negative Valence & High Arousal (NV-HA), Positive
Valence & Low Arousal (PV-LA), Negative Valence &
Low Arousal (NV-LA). We also wanted to limit the
experiment to one hour, so as to reduce participant
fatigue. This resulted in 7 songs per category and 28
songs total.

II-D. Pre-processing and Data Preparation

Prior to data analysis, all trials in which participants
indicated that they knew the song were removed from
the analysis. This resulted in the exclusion of 12 ex-
perimental, baseline, and response trials out of 812,
resulting in 800 analyzed trials. All data were initially
analyzed using the NeuroKit2 package (version 0.2.11)
in Python (version 3.11.9). We used the default pa-
rameters from the *_process functions in NeuroKit2
for filtering, artifact criteria, and resampling [29]. The
documentation can be found here. Per experimental
and baseline trial, we calculated the average heart rate
(BPM), time-domain analysis of heart rate variability
(Root Mean Square of Successive Differences; RMSSD
HRV), frequency-domain analysis of heart rate variabil-
ity (High Frequency; HF HRV), tonic EDA (or SCL),
phasic EDA (or SCR), area under the curve of phasic
EDA, range of phasic EDA, RSP rate, RSP amplitude,
and PPG. We did not analyze the response trials given
their exceedingly short durations. Some experimental
and baseline trials had incomplete data, particularly
for RSP measurements. This is likely due to improper
attachment of electrodes during data collection. This
reduced the trials to 761 experimental trials of RSP
rate, 789 experimental trials of RSP amplitude, 799
baseline trials of HF HRV, 755 baseline trials of RSP
rate, and 795 baseline trials of RSP amplitude. All other
measurements retained all 800 experimental trials and
800 baseline trials.

III. RESULTS

III-A. Baseline Validity

To determine whether physiology returned to baseline
levels during each baseline trial, we conducted an ar-
ray of pairwise t-tests comparing the initial baseline

to the average of all subsequent baselines, per mea-
surement. Using the conservative Bonferroni correction
(α = 0.005), we find that none of the measures are
significantly different between the initial baseline and
the subsequent baseline trials (see Table 1); however,
RMSSD HRV (t = 2.277, p = 0.031), HF HRV (t =
2.073, p = 0.048), and tonic EDA (t = 2.378, p = 0.024)
should be interpreted with caution, as they would be
significant without the comparisons correction. All other
physiological measurements can be safely interpreted.

Table 1. Pairwise t-test results comparing the initial and sub-
sequent baseline trials across participants. Values in bold are
significant under Bonferroni corrections, where α = 0.005,
and underlined values would be significant if Bonferroni
corrections were not used, where α = 0.05.

Measurement t-value p-value

BPM -1.160 0.256
RMSSD HRV 2.277 0.031
HF HRV 2.073 0.048
EDA Tonic 2.378 0.024
EDA Phasic 1.017 0.318
EDA Phasic AUC 1.417 0.167
EDA Phasic Range -0.763 0.452
RSP Rate 1.105 0.280
RSP Amplitude -1.643 0.112
PPG -1.222 0.232

III-B. Experimental Analysis

The relationship between physiological measurements
and subjective emotional ratings can be expressed as
a latent variable model (see Figure 1). In this model,
Physiology predicts Subjective Experience, where the
physiological measurements load on to the Physiology
latent variable and the subjective ratings of valence
and arousal load on to the Subjective Experience latent
variable. The heart rate measurements covary since they
are recorded from the same channel (ECG), as are the
EDA measurements and the RSP measurements. For the
current data structure, the model should also be a three-
level model, as the data are clustered within song (level
2) and within participant (level 3).

Unfortunately, neither a model with latent variables nor
multiple levels can converge, as there is not enough data
in the present sample to produce sufficient power. We in-
stead developed an exploratory model by first analyzing
the measurements from each physiological channel sep-
arately. This resulted in four models containing ECG-
only, EDA-only, RSP-only, and PPG-only, regressed
onto arousal and valence directly. All four models had
great model fit, though they are just-identified, as is
indexed by the CFI, RMSEA, and SRMR values (see
Table 2). According to BIC, EDA and PPG were the
top performers.

Each of the models had some measurements that signif-
icantly predicted valence and arousal and some that did
not (see Table 3). As an exploratory step, we created
a single model that combines the significant measure-
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Figure 1. Proposed path model illustrating the relationship
between physiological measurements and reports of subjective
emotional experience during music listening. Clustering by
participant and by song is not visible in the model.

Table 2. Fit statistics for each of the four individual physiology
models. All of the models are just-identified.

Model CFI RMSEA SRMR BIC

ECG-only 1.000 <0.001 <0.001 31681.231
EDA-only 1.000 <0.001 <0.001 16957.495
RSP-only 1.000 <0.001 <0.001 23757.859
PPG-only 1.000 <0.001 <0.001 16949.281

ments from across the four models (see Figure 2). This
model has the best fit for the data so far (χ2(4) =
2.903, p = 0.574, CFI = 1.000, RMSEA < 0.001, SRMR
= 0.012, BIC = 16113.650). The regression results
show multiple small yet significant standardized effects
across measurements, suggesting that musically-induced
emotions are correlated with biological responses from
across the body. HF HRV (β = 0.090, p = 0.013),
EDA tonic (β = 0.075, p = 0.025), and RSP rate (β
= 0.100, p = 0.003) were all significantly correlated
with arousal. In the composite model, PPG was only
marginally significantly correlated with valence (β =
-0.064, p = 0.059), potentially due to collinearity or
instability; however, HF HRV (β = 0.085, p = 0.021),
and the range of phasic EDA (β = 0.158, p < .001)
were still correlated with valence scores. Despite these
relationships, the variance explained for arousal (R2

= 0.024, 95% CI [0.009, 0.051]) and valence (R2 =
0.036, 95% CI [0.019, 0.070]) is very small. Arousal

and valence are also positively correlated (r = 0.413, p
< 0.001).

Table 3. Standardized regression coefficients and p-values for
all predictors across the four initial physiology models. Values
in bold are statistically significant (p < 0.05) and were later
included in the composite model.

Measurement Arousal p-value Valence p-value

BPM -0.031 0.470 -0.045 0.300
RMSSD HRV -0.057 0.199 -0.029 0.514
HF HRV 0.091 0.016 0.079 0.037

EDA Tonic 0.104 0.004 0.040 0.262
EDA Phasic -0.564 0.293 -0.991 0.062
EDA Phasic AUC 0.623 0.245 0.957 0.072
EDA Phasic Range -0.033 0.432 0.165 <0.001

RSP Rate 0.133 <0.001 0.019 0.621
RSP Amplitude 0.055 0.141 0.039 0.304

PPG -0.024 0.493 -0.080 0.023

EDA Tonic

RSP Rate

HRV HF

EDA Phasic Range

PPG Mean

Arousal

Valence 0.964

0.976

0.090

0.085

0.100

0.075

0.158

-0.064

0.413

Figure 2. Composite model. Path values (labeling single-
headed arrows) represent standardized regression coefficients.
Values in bold are statistically significant (p < .05). Residual
variances (double-headed arrow pointing at a singular mea-
surement) and covariances (double-headed arrow connecting
two measurements) are also visible.

It is important to note that the composite model treats all
trials as independent observations, despite the multilevel
data structure. Given the likelihood of an increased
Type 1 error due to assuming observation independence,
we also decided to calculate intraclass correlations
(ICCs) per measurement to estimate the amount of
variance due to clustering that was unaccounted for
in the non-clustered model (see Table 4). The ICCs
indicate strong clustering within participants for all
physiological measurements (e.g., HF HRV, etc.), but
moderate to weak clustering for subjective emotional
reports (i.e., Valence and Arousal). Contrarily, there was
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strong clustering within trials for the subjective reports,
but weak clustering for the physiological measurements.

Table 4. ICCs for composite model measurements for both the
participant level (Level 3) and song level (Level 2) clusters.

Measurement Level 3 ICC Level 2 ICC

Arousal 0.027 0.328
Valence 0.074 0.221
HF HRV 0.296 0.024
EDA Tonic 0.858 0.003
EDA Phasic Range 0.332 <0.001
RSP Rate 0.539 0.014
PPG 0.852 0.002

III-C. Internal State Relationship

Another point of interest in this experiment is the
influence of internal state on physiology during music
listening. In this case, internal state refers to the physi-
ological state of a participant prior to experimentation,
as recorded in the initial baseline. Since the baseline
trials are not significantly different from one another,
we can use them in this analysis. We tested whether
participant physiology in these baseline trials was pre-
dictive of physiology in subsequent experimental trials
using a linear mixed model (LMM). Each physiology
measurement during the baseline trials was significantly
predictive of the respective physiological measurement
scores in subsequent experimental trials (see Table 5).
The fixed effects are also very large, with EDA Tonic
having the strongest relationship (β = 0.949, p < 0.001).

Table 5. LMM of Prior Baseline Trial and Subsequent Exper-
imental Trial. Values in bold are significant.

Variable Fixed Effects Standard Error p-value

BPM 0.656 0.035 <0.001
RMSSD HRV 0.237 0.029 <0.001
HF HRV 0.224 0.039 <0.001
EDA Tonic 0.949 0.010 <0.001
EDA Phasic 0.485 0.032 <0.001
EDA Phasic AUC 0.499 0.032 <0.001
EDA Phasic Range 0.697 0.021 <0.001
RSP Rate 0.148 0.039 <0.001
RSP Amplitude 0.561 0.029 <0.001
PPG 0.344 0.031 <0.001

IV. DISCUSSION

These results imply that the examined physiological
responses play a small yet significant role in musically-
induced valence and arousal ratings. In the composite
model, we observed that some physiological measure-
ments like HRV HF, RSP rate, and EDA tonic, are
significantly predictive of arousal scores, while HRV
HF and EDA phasic range are significantly predictive
of valence scores. Given that this model was exploratory
and was not able to account for latent variables or
multilevel clustering, future experiments should collect
more data in order to test the relationship between
physiology and subjective reporting under a complete
multilevel latent variable model. The ICCs imply strong

participant level clustering effects for the physiological
measures, and strong song level effects for subjective
reporting, so we expect a multilevel structural equation
model to produce different results than our exploratory
model. Future experiments could also expand the du-
ration of baseline trials, as many other studies have
done [5, 12, 14–16, 19, 20], collect a more diverse
and generalizable sample of participants than our cur-
rent homogeneous sample (i.e., undergraduate students),
and collect additional demographic information such as
musical experience to use as a covariate.

Some of our findings were inconsistent with prior stud-
ies, as we found a positive relationship between RSP
Rate and arousal, rather than valence [12] and between a
measure of phasic EDA and valence, rather than arousal
[18]. This may be attributed to the high correlation
between valence and arousal during music listening.
Unlike emotional ratings during visual perceptual plea-
sure, there was a linear relationship between valence and
arousal, rather than a parabolic one [17]. This is likely
because music is created to be enjoyed, so music that
elicits fear (low valence, high arousal) is uncommon
or lacking in this dataset. Further, it is intuitive that
RSP would be tied to high arousal, given the relation-
ship between heart rate, breathing, and arousal [9–11].
The significant relationship between arousal and RSP
rate implies a potential relationship between BPM and
arousal as well, even though that is not evidenced in the
current analysis. For the EDA relationship, we suggest
that valence may influence phasic activity indirectly, via
mechanisms such as motivational salience, attentional
capture, or contextual expectancy.

The internal state analysis offers new perspectives on
the relationship between music-induced emotions and
physiology. For instance, there is a strong relationship
between baseline measurements of EDA Phasic Range
and measurements of EDA Phasic Range during music
listening. EDA Phasic Range also exhibits a successful
return to baseline across baseline trials and is sig-
nificantly correlated with Valence. Future experiments
could investigate whether there is an influence of prior
internal state on the relationship between physiology
during music listening and subjective emotional re-
sponses, although it is beyond the scope of the current
paper to make any claims as to its influence.

V. CONCLUSIONS

This preliminary study implies that the physiological
measurements collected here have the potential to be
used as a tool for measuring music-induced emotion,
even if they do not fully explain why music induces
emotional responses. These physiological measurements
are best predictive of subjective emotional responses
when addressed in combination, rather than individu-
ally, giving us a more wholistic understanding of the
relationship between physiology and emotion. Further,
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prior internal state may affect the way humans re-
spond to emotion-inducing music. Another interesting
relationship that could be explored in future studies
is the impact of specific song features on physiology
and subjective emotional ratings [30]. Future studies
should continue to focus on the role of physiology
in the music-emotion relationship, perhaps including
additional physiological measures such as EEG, so that
we may better understand the mechanisms behind the
emotional power of music.
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