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Abstract— In this study, we developed and evaluated a real-
time implementation of the multivariate auto-regressive
independent component analysis (MVARICA) model for
estimating effective connectivity using Partial Directed
Coherence (PDC). Each step of the MVARICA pipeline was
adapted for online processing, with a focus on optimizing
key hyperparameters, specifically model order and the
delta ridge penalty in real time. The performance of the
online model was benchmarked against a gold-standard
offline MVARICA implementation. Our real-time model
achieved a Mean Absolute Error (MAE) of 0.070 (7%
error), with 95% of the value falling within a 20% deviation
from the offline reference. Errors varied across frequency
bands: Delta (MAE = 11.5%), Theta (9.1%), Alpha (7.8%),
Beta (5.5%), and Gamma (3.6%). The Pearson correlation
across all frequency bands exceeded 0.744, indicating
strong agreement between the online and offline models.
The real-time model successfully captured the key
connectivity patterns identified by the offline version,
converged reliably on hyperparameter optimization, and
operated within real-time constraints for a low number of
channels. Specifically, latency remained under 100 ms for
low channel inputs but increased to approximately 1 second
for high-density configurations.

Keywords— EEG, Resting-state Functional Connectivity,
MVARICA, CNN, and Deep Learning.

1. INTRODUCTION

Electroencephalography (EEG) is a non-invasive
neuroimaging technique known for its high temporal
resolution, widely used to study neural dynamics in
neurological, developmental, and psychological
disorders. Its ability to capture real-time electrical
activity across the scalp makes EEG particularly valuable
for brain—computer interfaces (BCIs) and assistive
therapeutic technologies [1-4]. EEG enables real-time
monitoring of neuronal oscillations and thus serves as a
fundamental tool for neurofeedback and clinical
diagnostics [5, 6].

A central method for interpreting EEG data is functional
connectivity (FC), which quantifies statistical
dependencies between distributed brain regions. While
directed FC measures such as Granger causality and
Partial Directed Coherence (PDC) estimate causal
information flow in the frequency domain [7, 8], their
computation is traditionally offline and computationally
demanding. Moreover, methods combining Multivariate
Autoregressive (MVAR) modeling with Independent
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Component Analysis (ICA), known as MVARICA, have
shown promise in improving interpretability and
reducing artifacts such as volume conduction [9].
However, despite their utility, existing MVARICA
implementations remain limited to offline processing,
making them unsuitable for real-time or closed-loop
applications where immediate feedback is essential.

In this study, we address this critical limitation by
introducing a novel real-time implementation of
MVARICA for estimating resting-state directed
functional connectivity from high-density EEG. The
proposed framework transforms the conventional offline
MVARICA pipeline into an online, adaptive system
optimized for low-latency processing. Specifically, each
step of the MVARICA model—MVAR coefficient
estimation, ICA decomposition, and PDC computation—
has been reengineered for real-time operation through
algorithmic and computational optimizations.

This real-time design enables dynamic tracking of brain
network interactions with short update intervals (<250
ms) with large data window (e.g. 2 seconds), bridging the
gap between advanced EEG connectivity modeling and
real-time applications such as neurofeedback and
adaptive BCIs. This work is the first real-time framework
and validation of MVARICA for directed functional
connectivity in EEG in real-time, offering a complete
redesign of the MVARICA pipeline for real-time
operation, algorithmic innovations that enable stable,
low-latency estimation of brain network dynamics, it also
demonstrated the feasibility for integration into closed-
loop BCI and neurofeedback systems where immediate,
causal feedback is required.

II. BACKGROUND

The foundation of MVARICA originates from Auto-
Regressive (AR) models, which describes the current
value of a signal as a linear combination of its past values.
For EEG data, the model MVAR was used, as to account
for the multi-channel nature of the EEG data. The MVAR
model for a signal of N time points and M channels is
described in (1).

X)) =Xk  AK).X(t — k) + E(¢) (1

where X (t) is a vector of size M, at time point t, p, which
is a model hyperparameter called model order, is the
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number of past time points used to predict the current
time point ¢, and A(k) is the model coefficients, of
dimensions (M, M). E(t) is the error vector, of size M.
The AR coefficients are estimated using methods such as
the Yule-Walker equations or least squares optimization
[10]. The coefficients then served as the foundation for
computing the connectivity by applying the Fourier
transform to the coefficients. From the transformed
coefficients, connectivity metrics like PDC [11] can be
computed, as in (2).

By (f)
PDCii(f) = ——— 2
‘IZﬁ=1|Bij(f)|z

where i and j are two EEG channels and N is the number
of channels.

A distinctive feature of the MVARICA model was the
application of Independent Component Analysis (ICA)
on the residuals in the time domain to extract latent
channel patterns not captured by the MV AR coefficients.
These residual patterns were assumed to be non-Gaussian
and statistically independent, making ICA a natural
choice. Using the mixing and unmixing matrices derived
from the ICA decomposition, we updated the MVAR
coefficients to reflect contributions from the independent
sources.

To prevent overfitting the model coefficients to the data,
we employed delta ridge regression [12], which
incorporated a regularization parameter, J. This
parameter played a critical role in stabilizing the solution,
particularly when the number of time points was limited
or the predictors were highly collinear—a typical
scenario in EEG data. We optimized two key
hyperparameters—model order and J—for accurate
model performance. Model orders were selected using
techniques such as leave-one-out cross-validation
(LOOCV), which minimized the mean squared
generalization error, or by minimizing the Akaike
Information Criterion (AIC). The o0 parameter was
optimized using the bisection search method [13].
However, these conventional optimization strategies
were not well-suited for real-time applications due to
their computational demands.

III. MATERIALS AND METHODS

To adapt the MVARICA model for real-time
applications, we modified the algorithm to operate within
real-time constraints and optimized its hyperparameters
during execution. Our objective was to run the complete
MVARICA pipeline under 250 ms, even under varying
computational stress conditions. A chart of the original
offline algorithm is illustrated in Fig. 1, the primary
computational bottlenecks in the model included the
initial estimation of MVAR coefficients, fitting the ICA
on the residuals, and computing the PDC.
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Figure 1. Flowchart of MVARICA.

The offline model coefficients were computed using a
least-squares solution. This was replaced by incremental
QR updates based on Givens rotations [14]. The QR-
based approach offers superior computational efficiency
and numerical stability compared to solving the least-
squares problem via the normal equations. Moreover, it
aligns well with the real-time requirements of the system.
In scenarios involving high window overlap—such as
computing PDC on a 2-second window with 90%
overlap, which is common in functional connectivity
analyses—the majority of the data remains unchanged
between successive windows. The incremental method
leverages this by updating only the necessary ranks and
discarding  outdated ones, thereby optimizing
performance for real-time applications.

To modify the ICA step in the MVARICA, it is important
to pick a method that is appropriate and fast. Several
methods were considered, like Second Order Blind
Identification (SOBA) [15], Independent Vector
Analysis (IVA) [16], or Sparse ICA (SICA) [17].
However, IVA assumes the sources are Gaussian, and
SOBA also assumes the sources are not independent and
non-Gaussian. While SICA does take an independent and
non-Gaussian source, the residual cannot be considered
sparse. An appropriate method was Orthogonal-
Preconditioned ICA for Real Data (O-PICARD) [18, 19],
which makes the same assumptions as regular ICA
(FAST-ICA). As part of the MVAR coefficient update
from the ICA, we leveraged the iterative nature of our
application. Specifically, we used the unmixing matrix
from the previous iteration as the initial guess for the
subsequent iteration to O-PICARD, to accelerate
convergence and improve computational efficiency.
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The computation of the PDC was kept the same, as the
PDC computation complexity is not related to the length
of the data; instead, it is affected by the number of EEG
channels and the model order.

To enable real-time hyperparameter optimization, we
implemented two distinct methods—one for each
hyperparameter: model order and the delta regularization
parameter. To optimize the model order, we introduced a
Recursive-AIC (RAIC) method, as outlined in Algorithm
1. The approach was based on minimizing the AIC score,
similar to traditional offline approaches; however, the
search window was significantly reduced to support real-
time performance. The core idea was to allow the model
order to converge gradually over time rather than search
exhaustively at every step. We employed an adaptive
search window strategy guided by the heuristic: “If the
underlying stationary characteristics of the signal do not
change substantially, the optimal model order is unlikely
to shift significantly.” To quantify such changes, we
maintained a running history of the signal’s mean and
standard deviation. If the current mean or standard
deviation exceeded a predefined percentile threshold
(e.g., the 90th percentile) of this historical distribution,
the search window was dynamically expanded, allowing
for faster convergence in response to more substantial
shifts in signal properties.

To optimize the delta hyperparameter, we used the
standard ADAM optimizer [20], where the loss was
computed from the Mean Squared Error (MSE) of the
residual.

IV. EXPERIMENTAL SETUP

To evaluate the model, there are three aspects to validate:

1. How accurate is the online system?
2. How well does it optimize the hyperparameters?
3. How fast is it?

In order to evaluate the first question, we compared our
real-time online model with an offline model. The offline
model was based on our previous work [21, 21], which is
based on the SCOT package implementation [9]. The
comparison between the two models is done under the
same hyperparameter conditions (i.e., no optimization
was performed). To evaluate the second question, each
hyperparameter optimization method was assessed
independently, where we tested each method for
accuracy, convergence, and stability. The third question
was tested under different conditions of stress, using
different number of channels and different overlap
percentages.

The dataset used in this study was obtained from the
Healthy Brain Network (HBN) initiative [22]. We
selected 265 resting-state EEG recordings from healthy
children and adolescents aged 5 to 21 years. The data
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Algorithm 1 RAIC: Rolling AIC-based model order
adaptation

I: procedure RAIC(X, mean_hist,
rent_order, change_percentile)
mean; < mean(X)
stdy  std(X)
roll_mean < |mean; —mean, |
roll_std < |std; — stdy |
eps_mean < percentile(mean_hist, change_percentile)
eps_std < percentile(std_hist, change_percentile)
Append roll_mean to mean_hist
Append roll_std to std_hist
is_nonstationary — (roll_mean >
eps_mean) or (roll_std > eps_std)
11: if is_nonstationary then

std_hist, cur-

1

12: search_window < 5

13: else

14: search_window + 1

15: end if

16: best_aic ¢ oo

17: for p in (current_order — search_window) to
(current_order+ search_window) do

18: Attempt to fit MVAR model of order p

19: if model fitting fails then

20 aic ¢— oo

21: else

22: aic +— AIC of fitted model

23: end if

24: il aic < best_aic then

25: best_aic <+ aic

26: best_order <+ p

27: end if

28: end for

29: return best_order

30: end procedure

were recorded at a sampling rate of 500 Hz with a
bandpass range of 0.1-100 Hz, using a 128-channel
HydroCel Geodesic EEG system (Electrical Geodesics
Inc.). After excluding outer electrodes, 109 channels
were retained for analysis. The scalp distribution of the
electrodes is shown in Fig. 2. Offline pre-processing was
performed following the pipeline established in our
previous work [21, 21, 23]. The PREP pipeline [24] was
used to detect and interpolate bad channels. The data
were then band-pass filtered between 1-70 Hz and notch
filtered at 60 Hz to remove power line noise. After
resampling to 256 Hz, the signals were re-referenced to
the average of all channels. Finally, artifact removal was
performed using the FAST-ICA algorithm. Although this
pre-processing was conducted offline, several studies
have demonstrated the feasibility of implementing these
steps in real-time [25, 26]. For this study, however, our
primary goal was to enable a fair comparison with a gold-
standard offline model, starting from similar pre-
processed input data.

The online MVARICA framework was implemented
using the O-PICARD algorithm for independent
component extraction, with a maximum of 10 iterations
and a convergence tolerance of 0.0001. Both the online
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Figure 2. Channel location of 128-channels in the dataset

and offline models were evaluated using 2-second, non-
overlapping EEG windows. To investigate model
accuracy, model orders were varied from 1 to 30 in
increments of 3. To reduce computational load, the
analysis focused on 12 EEG channels located primarily
in the right frontal region (E1, E2, E3, E4, ES5, ES8, E9,
E10, E14, E118, E123, and E124). The ridge
regularization parameter (J) was fixed at 0.12 for this
comparison. PDC values were computed and averaged
across standard EEG frequency bands: Delta (1-4,Hz),
Theta (4-8,Hz), Alpha (8-12,Hz), Beta (12-30,Hz),
Gamma (30-70,Hz), and the broadband range (1-70,Hz).

For hyperparameter optimization, the same 2-second
segmentation approach was applied. The offline model
optimized model order independently for each segment,
while the online model dynamically tested initial orders
from 1 to 30 (step size = 3) using a fixed 6 = 0.12. Online
0 optimization was implemented exclusively in the real-
time model. The algorithm was initialized with ¢ values
of 0.1, 5, 20, and 50, while keeping the model order fixed
at 1. The Adam optimizer was employed with learning
rates of 3, 0.1, and 0.001, and with momentum
parameters Bl = B2 = 0.6. A direct comparison of ¢
optimization between the online and offline
implementations was not pursued, as J primarily serves
as a stability parameter rather than a major driver of
connectivity differences. The focus was instead on
verifying stable convergence to practical J values
suitable for real-time use.

System latency was evaluated to assess real-time
performance under different computational loads. The
online model was executed using both the 12-channel
subset and the full 109-channel configuration. Data
intake was updated every 250 ms, with window overlaps
of 75% (effective l-second window) and 87.5%
(effective 2-second window). The PDC resolution was
set to nfft = 500 in all tests unless otherwise specified.
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All experiments were conducted on Google Colab using
an NVIDIA L4 GPU, with GPU acceleration handled
through the CuPy library in Python 3.11.13.

V. EXPERIMENTAL RESTULS

To evaluate the accuracy of the online model and its
consistency with the offline model, we calculated the
Mean Absolute Error (MAE) between their respective
PDC values. The MAE was 0.070, indicating a 7%
average deviation between the two models. Additionally,
the Pearson correlation coefficient was 0.910 (p <0.001),
suggesting a very strong agreement in the features
detected by both models.

To further assess their overall agreement, we used a
Bland-Altman plot (Fig. 3). The mean difference
between the online and offline PDC values was 0.009,
indicating no significant systematic bias. The 95% limits
of agreement ranged from -0.188 to 0.206. Fig. 4
illustrates the relationship between frequency bands and
model order. For lower frequencies, particularly in the
delta band, lower model orders yield better MAE scores,
suggesting that simpler models are more effective in
capturing low-frequency dynamics. In contrast, mid-
range frequencies such as theta and alpha exhibit
relatively stable MAE values across different model

Bland-Altman Plot: Online vs Offline PDC (no overlap)

0.00 =4

-0.25 1

Difference (Online - Offline)

~0.50 1

~0.75 4

Mean PDC

Figure 3. Bland-Altman plot for the online and offline models.
The res lines are the 95™ percentile of the agreement. The gray
dotted line is the mean of the agreement.

MAE by Frequency Band and Model Order

Figure 4. MAE score based on the different model order, under
different frequency ranges.
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orders, indicating minimal sensitivity to model
complexity. For higher frequency bands, including beta,
gamma, and the full spectrum, the MAE improves as
model order increases, eventually reaching a plateau.
This suggests that higher model orders are necessary to
accurately capture the complexity of high-frequency
interactions, but beyond a certain point, additional
complexity offers diminishing returns.

The optimization results for model order are presented in
Fig. 5. As shown, the online model consistently
converges toward the optimal model order range
identified by the offline model and remains within that
range throughout, demonstrating stable and reliable
adaptation.

Fig. 6 illustrates the convergence behavior of the delta
parameter under different learning rates of the Adam
optimizer. Results revealed that when the initial delta
value is far from optimal, a higher learning rate is

Model Order Convergence

30 4

254

204

15 4

Model Order

10§

T T T T T T T T
0 50 100 150 200 250 300 350
Time (s)

Figure 5. Model order convergence of RAIC, where the blue
line shows the mean of the optimal selected model order of the
offline model, the two shaded lines show the upper standard
deviation and the zero line.

Adam Optimizer Convergence for Delta Parameter

50 4 Learning Rate
Initial Delta
0.1
20 5.0
— 20.0
50.0
Learning Rate
301 — o.001
= -——- 0.1
& - 3.0
20 4=t
10 4 et S
[ M N
T T T T T T T T
) 50 100 150 200 250 300 350

Time (s)

Figure 6. Delta convergence with Adam optimizer, under
different learning rate and starting values of delta.
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necessary to accelerate convergence. Nevertheless,
across all tested conditions, the Adam optimizer
consistently guides the delta parameter toward stable and
reasonable values, particularly suited for resting-state
EEG data segmented into 2-second windows.

Fig. 7 illustrates the convergence behavior of delta under
different learning rates, where the initial delta was set to
0.1. A high learning rate (Ir = 3) introduces significant
noise, resulting in unstable delta values, whereas lower
learning rates lead to more stable and consistent
convergence.

Adam Optimizer Convergence for initial Delta = 0.1

Learning Rate
0.001

0.8 4 — 0.1

— 3.0

0.6 4

Delta

0.2+

0.07

T T T T T T T T
0 50 100 150 200 250 300 350
Time (s)

Figure 7. Delta convergence with Adam optimizer, under
different learning rates for starting delta of 0.1.

Table 1 presents the latency performance of the online
model under various stress conditions. Results further
revealed that when using 12 channels, the model
maintains acceptable latency—remaining below the 250
ms threshold—even as the overlap increases, indicating
that overlap does not significantly impact performance in
this configuration. However, when the number of
channels is increased to 109, latency exceeds 250 ms,
demonstrating that the model no longer meets real- time
processing requirements under this higher computational
load. Fig. 8 shows the performance of the online model
under different model orders and stress conditions.

VI. DISCUSSION

The proposed real-time MVARICA framework
demonstrated strong agreement with the offline reference

Table 1. shows the performance of the online model under
different model orders and stress conditions.

MVAR Packet Optim.
Chan. Over- fitting ICA process. step Time
Num. lap (ms) (ms) (ms) (ms) (ms)
12 75% 10,6 30.5 419 446 86.7
12 87.5% 106, 328 442 446  88.8
109 75%  92.6 5234  643.0 291.5 9345
109 87.5%  99.5 6994 826.5 296.0 1222.5
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Time to Process a Data Packet (Every 250 ms)
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Figure 8. Latency under different model orders and different
stress conditions.

model, achieving a MAE of 7%, with 95% of PDC values
differing by less than 0.2. Although slightly higher
discrepancies were observed in the delta band (MAE =
11.5%), the overall correlation remained high (Pearson r
= 0.744), indicating that the online model reliably
captured the major directed connectivity patterns
detected offline. This level of accuracy is acceptable for
real-time neurofeedback and BCI applications, where
small deviations are tolerable in exchange for low-
latency processing. The increased delta-band error is
consistent with known limitations in low-frequency
connectivity estimation, where fewer oscillatory cycles
within short time windows increase susceptibility to
noise and temporal instability. Hence, the observed
differences reflect the intrinsic difficulty of modeling
slow oscillations rather than a shortcoming of the online
approach.

The frequency-dependent behavior observed in Fig. 4
further supports this interpretation. Delta-band activity
(1-4 Hz) typically requires longer analysis windows (10—
20 s) and higher model orders (20-30) for accurate
representation in offline conditions. In this study, both
models operated on 2-second windows to meet real-time
constraints, capturing only a few oscillatory cycles.
Under such conditions, higher model orders tend to
become numerically unstable, increasing estimation
variance. Conversely, lower model orders provided more
stable estimates, reducing overfitting. In higher
frequency ranges (e.g., beta and gamma), where more
cycles are contained within the same time window,
model stability improves, and the online and offline
estimates align closely. Importantly, the online model-
maintained flexibility for extending window duration
when computational resources allow, providing a tunable
balance between temporal precision and frequency
resolution.

The adaptive model-order optimization method, RAIC,
consistently converged toward the range identified by the
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offline model (Fig. 5), confirming its ability to track
optimal model complexity in real time. The relatively
stable convergence reflects the resting-state nature of the
dataset, where minimal non-stationarity reduces the need
for frequent adaptation. However, convergence speed can
vary depending on initialization; when the starting model
order deviates substantially from the optimal value,
convergence may take up to 50 seconds. To enhance
responsiveness under non-stationary or task-related
conditions, a two-stage adaptation strategy is
recommended: an initial broad search window during
early model stabilization, followed by an adaptive nar-
rowing phase once stationarity is achieved. This hybrid
approach could improve both accuracy and adaptability
for dynamic EEG paradigms.

Similarly, the ¢ -parameter optimization using the Adam
algorithm showed stable convergence across conditions
(Fig. 6), though convergence speed was influenced by
initialization and learning rate. High learning rates
accelerated adaptation but occasionally produced
oscillatory behavior or overshooting (Fig. 7). A
progressive learning-rate schedule—starting high and
gradually decreasing once stability is achieved—could
mitigate this trade-off. Such a configuration would
ensure rapid yet stable optimization, which is particularly
valuable in real-time neurofeedback applications where
responsiveness to changing brain states is critical.

Latency analysis confirmed that the number of EEG
channels was the primary determinant of computational
delay. With 12 channels, total latency remained below
100ms, well within real-time constraints for
neurofeedback and closed-loop BCI operation. However,
processing high-density EEG (109 channels) increased
latency to approximately 1 s, primarily due to the ICA
and optimization steps. While this exceeds the strict real-
time threshold, it remains acceptable for semi-online
analysis or slower feedback loops. In typical
neurofeedback systems that rely on fewer than 10
channels, the proposed framework comfortably supports
real-time performance.

Future work could further reduce latency by
incorporating dimensionality-reduction techniques—
such as Principal Component Analysis (PCA) or
autoencoder-based embeddings—to preserve essential
signal characteristics while reducing computational load.
Such strategies could enable scalability to high-density
EEG without compromising timing requirements.

Overall, these results establish the proposed real-time
MVARICA framework as a proof of concept that
achieves a practical balance between computational
efficiency, modeling  accuracy, and  system
responsiveness. The implementation demonstrates the
feasibility of translating complex offline connectivity
analyses into an adaptive, low-latency pipeline suitable
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for closed-loop neurofeedback and BCI applications. As
a foundational prototype, the current system provides
evidence that real-time directed connectivity estimation
from EEG is technically viable, while also revealing key
areas for improvement. Future work should extend this
framework beyond resting-state data to event-related and
task-based EEG, where transient neural responses and
rapid state changes pose additional challenges for online
modeling. Enhancements in adaptive hyperparameter
control, dimensionality reduction, and dynamic
windowing strategies will further strengthen the
scalability and robustness of real-time MVARICA in
large-scale and cognitively demanding
neurophysiological contexts.

VII. CONCLUSIONS

This study introduced a novel real-time implementation
of the Multivariate Autoregressive Independent
Component Analysis (MVARICA) framework for
estimating directed functional connectivity from high-
density EEG. The proposed system successfully
translated the traditionally offline MVARICA pipeline
into a fully online, adaptive model capable of computing
Partial Directed Coherence (PDC) in real time. The
online implementation demonstrated strong agreement
with its offline counterpart, achieving a mean absolute
error of 7% while maintaining stable convergence of key
hyperparameters, including model order and
regularization strength.

Although full real-time performance with 109 EEG
channels remains computationally demanding, the
framework operated reliably and within real-time
constraints using a 12-channel configuration. These
results confirm the feasibility of applying advanced
connectivity modeling in low-latency applications such
as closed-loop brain—computer interfaces (BCls) and
neurofeedback systems. The use of GPU acceleration
(NVIDIA L4) enabled high-throughput computation,
positioning the current implementation as a practical
solution for laboratory and clinical research
environments.
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