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Abstract— In this study, we developed and evaluated a real-

time implementation of the multivariate auto-regressive 

independent component analysis (MVARICA) model for 

estimating effective connectivity using Partial Directed 

Coherence (PDC). Each step of the MVARICA pipeline was 

adapted for online processing, with a focus on optimizing 

key hyperparameters, specifically model order and the 

delta ridge penalty in real time. The performance of the 

online model was benchmarked against a gold-standard 

offline MVARICA implementation. Our real-time model 

achieved a Mean Absolute Error (MAE) of 0.070 (7% 

error), with 95% of the value falling within a 20% deviation 

from the offline reference. Errors varied across frequency 

bands: Delta (MAE = 11.5%), Theta (9.1%), Alpha (7.8%), 

Beta (5.5%), and Gamma (3.6%). The Pearson correlation 

across all frequency bands exceeded 0.744, indicating 

strong agreement between the online and offline models. 

The real-time model successfully captured the key 

connectivity patterns identified by the offline version, 

converged reliably on hyperparameter optimization, and 

operated within real-time constraints for a low number of 

channels. Specifically, latency remained under 100 ms for 

low channel inputs but increased to approximately 1 second 

for high-density configurations. 

Keywords— EEG, Resting-state Functional Connectivity, 

MVARICA, CNN, and Deep Learning. 

I. INTRODUCTION 

Electroencephalography (EEG) is a non-invasive 

neuroimaging technique known for its high temporal 

resolution, widely used to study neural dynamics in 

neurological, developmental, and psychological 

disorders. Its ability to capture real-time electrical 

activity across the scalp makes EEG particularly valuable 

for brain–computer interfaces (BCIs) and assistive 

therapeutic technologies [1–4]. EEG enables real-time 

monitoring of neuronal oscillations and thus serves as a 

fundamental tool for neurofeedback and clinical 

diagnostics [5, 6]. 

A central method for interpreting EEG data is functional 

connectivity (FC), which quantifies statistical 

dependencies between distributed brain regions. While 

directed FC measures such as Granger causality and 

Partial Directed Coherence (PDC) estimate causal 

information flow in the frequency domain [7, 8], their 

computation is traditionally offline and computationally 

demanding. Moreover, methods combining Multivariate 

Autoregressive (MVAR) modeling with Independent 

Component Analysis (ICA), known as MVARICA, have 

shown promise in improving interpretability and 

reducing artifacts such as volume conduction [9]. 

However, despite their utility, existing MVARICA 

implementations remain limited to offline processing, 

making them unsuitable for real-time or closed-loop 

applications where immediate feedback is essential. 

In this study, we address this critical limitation by 

introducing a novel real-time implementation of 

MVARICA for estimating resting-state directed 

functional connectivity from high-density EEG. The 

proposed framework transforms the conventional offline 

MVARICA pipeline into an online, adaptive system 

optimized for low-latency processing. Specifically, each 

step of the MVARICA model—MVAR coefficient 

estimation, ICA decomposition, and PDC computation—

has been reengineered for real-time operation through 

algorithmic and computational optimizations. 

This real-time design enables dynamic tracking of brain 

network interactions with short update intervals (<250 

ms) with large data window (e.g. 2 seconds), bridging the 

gap between advanced EEG connectivity modeling and 

real-time applications such as neurofeedback and 

adaptive BCIs. This work is the first real-time framework 

and validation of MVARICA for directed functional 

connectivity in EEG in real-time, offering a complete 

redesign of the MVARICA pipeline for real-time 

operation, algorithmic innovations that enable stable, 

low-latency estimation of brain network dynamics, it also 

demonstrated the feasibility for integration into closed-

loop BCI and neurofeedback systems where immediate, 

causal feedback is required. 

II. BACKGROUND 

The foundation of MVARICA originates from Auto-

Regressive (AR) models, which describes the current 

value of a signal as a linear combination of its past values. 

For EEG data, the model MVAR was used, as to account 

for the multi-channel nature of the EEG data. The MVAR 

model for a signal of N time points and M channels is 

described in (1). 

𝑋(𝑡) = ∑ 𝐴(𝑘). 𝑋(𝑡 − 𝑘) + 𝐸(𝑡)
𝑝
𝑘=1  (1) 

where 𝑋(𝑡) is a vector of size 𝑀, at time point 𝑡, 𝑝, which 

is a model hyperparameter called model order, is the 
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number of past time points used to predict the current 

time point 𝑡, and 𝐴(𝑘) is the model coefficients, of 

dimensions (𝑀, 𝑀). 𝐸(𝑡) is the error vector, of size 𝑀. 

The AR coefficients are estimated using methods such as 

the Yule-Walker equations or least squares optimization 

[10]. The coefficients then served as the foundation for 

computing the connectivity by applying the Fourier 

transform to the coefficients. From the transformed 

coefficients, connectivity metrics like PDC [11] can be 

computed, as in (2).  

𝑃𝐷𝐶𝑖𝑗(𝑓) =
𝐵𝑖𝑗(𝑓)

√∑ |𝐵𝑖𝑗(𝑓)|
2𝑁

𝑘=1

 (2) 

where 𝑖 and 𝑗 are two EEG channels and 𝑁 is the number 

of channels. 

A distinctive feature of the MVARICA model was the 

application of Independent Component Analysis (ICA) 

on the residuals in the time domain to extract latent 

channel patterns not captured by the MVAR coefficients. 

These residual patterns were assumed to be non-Gaussian 

and statistically independent, making ICA a natural 

choice. Using the mixing and unmixing matrices derived 

from the ICA decomposition, we updated the MVAR 

coefficients to reflect contributions from the independent 

sources. 

To prevent overfitting the model coefficients to the data, 

we employed delta ridge regression [12], which 

incorporated a regularization parameter, δ. This 

parameter played a critical role in stabilizing the solution, 

particularly when the number of time points was limited 

or the predictors were highly collinear—a typical 

scenario in EEG data. We optimized two key 

hyperparameters—model order and δ—for accurate 

model performance. Model orders were selected using 

techniques such as leave-one-out cross-validation 

(LOOCV), which minimized the mean squared 

generalization error, or by minimizing the Akaike 

Information Criterion (AIC). The δ parameter was 

optimized using the bisection search method [13]. 

However, these conventional optimization strategies 

were not well-suited for real-time applications due to 

their computational demands. 

III. MATERIALS AND METHODS 

To adapt the MVARICA model for real-time 

applications, we modified the algorithm to operate within 

real-time constraints and optimized its hyperparameters 

during execution. Our objective was to run the complete 

MVARICA pipeline under 250 ms, even under varying 

computational stress conditions. A chart of the original 

offline algorithm is illustrated in Fig. 1, the primary 

computational bottlenecks in the model included the 

initial estimation of MVAR coefficients, fitting the ICA 

on the residuals, and computing the PDC. 

The offline model coefficients were computed using a 

least-squares solution. This was replaced by incremental 

QR updates based on Givens rotations [14]. The QR- 

based approach offers superior computational efficiency 

and numerical stability compared to solving the least- 

squares problem via the normal equations. Moreover, it 

aligns well with the real-time requirements of the system. 

In scenarios involving high window overlap—such as 

computing PDC on a 2-second window with 90% 

overlap, which is common in functional connectivity 

analyses—the majority of the data remains unchanged 

between successive windows. The incremental method 

leverages this by updating only the necessary ranks and 

discarding outdated ones, thereby optimizing 

performance for real-time applications.  

To modify the ICA step in the MVARICA, it is important 

to pick a method that is appropriate and fast. Several 

methods were considered, like Second Order Blind 

Identification (SOBA) [15], Independent Vector 

Analysis (IVA) [16], or Sparse ICA (SICA) [17]. 

However, IVA assumes the sources are Gaussian, and 

SOBA also assumes the sources are not independent and 

non-Gaussian. While SICA does take an independent and 

non-Gaussian source, the residual cannot be considered 

sparse. An appropriate method was Orthogonal- 

Preconditioned ICA for Real Data (O-PICARD) [18, 19], 

which makes the same assumptions as regular ICA 

(FAST-ICA). As part of the MVAR coefficient update 

from the ICA, we leveraged the iterative nature of our 

application. Specifically, we used the unmixing matrix 

from the previous iteration as the initial guess for the 

subsequent iteration to O-PICARD, to accelerate 

convergence and improve computational efficiency. 

 

Figure 1. Flowchart of MVARICA. 
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The computation of the PDC was kept the same, as the 

PDC computation complexity is not related to the length 

of the data; instead, it is affected by the number of EEG 

channels and the model order.  

To enable real-time hyperparameter optimization, we 

implemented two distinct methods—one for each 

hyperparameter: model order and the delta regularization 

parameter. To optimize the model order, we introduced a 

Recursive-AIC (RAIC) method, as outlined in Algorithm 

1. The approach was based on minimizing the AIC score, 

similar to traditional offline approaches; however, the 

search window was significantly reduced to support real-

time performance. The core idea was to allow the model 

order to converge gradually over time rather than search 

exhaustively at every step. We employed an adaptive 

search window strategy guided by the heuristic: “If the 

underlying stationary characteristics of the signal do not 

change substantially, the optimal model order is unlikely 

to shift significantly.” To quantify such changes, we 

maintained a running history of the signal’s mean and 

standard deviation. If the current mean or standard 

deviation exceeded a predefined percentile threshold 

(e.g., the 90th percentile) of this historical distribution, 

the search window was dynamically expanded, allowing 

for faster convergence in response to more substantial 

shifts in signal properties. 

To optimize the delta hyperparameter, we used the 

standard ADAM optimizer [20], where the loss was 

computed from the Mean Squared Error (MSE) of the 

residual. 

IV. EXPERIMENTAL SETUP 

To evaluate the model, there are three aspects to validate: 

1. How accurate is the online system? 

2. How well does it optimize the hyperparameters? 

3. How fast is it? 

In order to evaluate the first question, we compared our 

real-time online model with an offline model. The offline 

model was based on our previous work [21, 21], which is 

based on the SCOT package implementation [9]. The 

comparison between the two models is done under the 

same hyperparameter conditions (i.e., no optimization 

was performed). To evaluate the second question, each 

hyperparameter optimization method was assessed 

independently, where we tested each method for 

accuracy, convergence, and stability. The third question 

was tested under different conditions of stress, using 

different number of channels and different overlap 

percentages. 

The dataset used in this study was obtained from the 

Healthy Brain Network (HBN) initiative [22]. We 

selected 265 resting-state EEG recordings from healthy 

children and adolescents aged 5 to 21 years. The data 

were recorded at a sampling rate of 500 Hz with a 

bandpass range of 0.1–100 Hz, using a 128-channel 

HydroCel Geodesic EEG system (Electrical Geodesics 

Inc.). After excluding outer electrodes, 109 channels 

were retained for analysis. The scalp distribution of the 

electrodes is shown in Fig. 2. Offline pre-processing was 

performed following the pipeline established in our 

previous work [21, 21, 23]. The PREP pipeline [24] was 

used to detect and interpolate bad channels. The data 

were then band-pass filtered between 1–70 Hz and notch 

filtered at 60 Hz to remove power line noise. After 

resampling  to 256 Hz, the signals were re-referenced to 

the average of all channels. Finally, artifact removal was 

performed using the FAST-ICA algorithm. Although this 

pre-processing was conducted offline, several studies 

have demonstrated the feasibility of implementing these 

steps in real-time [25, 26]. For this study, however, our 

primary goal was to enable a fair comparison with a gold-

standard offline model, starting from similar pre-

processed input data. 

The online MVARICA framework was implemented 

using the O-PICARD algorithm for independent 

component extraction, with a maximum of 10 iterations 

and a convergence tolerance of 0.0001. Both the online 
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and offline models were evaluated using 2-second, non-

overlapping EEG windows. To investigate model 

accuracy, model orders were varied from 1 to 30 in 

increments of 3. To reduce computational load, the 

analysis focused on 12 EEG channels located primarily 

in the right frontal region (E1, E2, E3, E4, E5, E8, E9, 

E10, E14, E118, E123, and E124). The ridge 

regularization parameter (δ) was fixed at 0.12 for this 

comparison. PDC values were computed and averaged 

across standard EEG frequency bands: Delta (1–4,Hz), 

Theta (4–8,Hz), Alpha (8–12,Hz), Beta (12–30,Hz), 

Gamma (30–70,Hz), and the broadband range (1–70,Hz). 

For hyperparameter optimization, the same 2-second 

segmentation approach was applied. The offline model 

optimized model order independently for each segment, 

while the online model dynamically tested initial orders 

from 1 to 30 (step size = 3) using a fixed δ = 0.12. Online 

δ optimization was implemented exclusively in the real-

time model. The algorithm was initialized with δ values 

of 0.1, 5, 20, and 50, while keeping the model order fixed 

at 1. The Adam optimizer was employed with learning 

rates of 3, 0.1, and 0.001, and with momentum 

parameters β1 = β2 = 0.6. A direct comparison of δ 

optimization between the online and offline 

implementations was not pursued, as δ primarily serves 

as a stability parameter rather than a major driver of 

connectivity differences. The focus was instead on 

verifying stable convergence to practical δ values 

suitable for real-time use. 

System latency was evaluated to assess real-time 

performance under different computational loads. The 

online model was executed using both the 12-channel 

subset and the full 109-channel configuration. Data 

intake was updated every 250 ms, with window overlaps 

of 75% (effective 1-second window) and 87.5% 

(effective 2-second window). The PDC resolution was 

set to nfft = 500 in all tests unless otherwise specified. 

All experiments were conducted on Google Colab using 

an NVIDIA L4 GPU, with GPU acceleration handled 

through the CuPy library in Python 3.11.13. 

V. EXPERIMENTAL RESTULS 

To evaluate the accuracy of the online model and its 

consistency with the offline model, we calculated the 

Mean Absolute Error (MAE) between their respective 

PDC values. The MAE was 0.070, indicating a 7% 

average deviation between the two models. Additionally, 

the Pearson correlation coefficient was 0.910 (p < 0.001), 

suggesting a very strong agreement in the features 

detected by both models.  

To further assess their overall agreement, we used a 

Bland-Altman plot (Fig. 3). The mean difference 

between the online and offline PDC values was 0.009, 

indicating no significant systematic bias. The 95% limits 

of agreement ranged from -0.188 to 0.206. Fig. 4 

illustrates the relationship between frequency bands and 

model order. For lower frequencies, particularly in the 

delta band, lower model orders yield better MAE scores, 

suggesting that simpler models are more effective in 

capturing low-frequency dynamics. In contrast, mid-

range frequencies such as theta and alpha exhibit 

relatively stable MAE values across different model 

 

Figure 2. Channel location of 128-channels in the dataset 

 

 

Figure 3. Bland-Altman plot for the online and offline models. 

The res lines are the 95th percentile of the agreement. The gray 

dotted line is the mean of the agreement. 

 

Figure 4. MAE score based on the different model order, under 

different frequency ranges. 
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orders, indicating minimal sensitivity to model 

complexity. For higher frequency bands, including beta, 

gamma, and the full spectrum, the MAE improves as 

model order increases, eventually reaching a plateau. 

This suggests that higher model orders are necessary to 

accurately capture the complexity of high-frequency 

interactions, but beyond a certain point, additional 

complexity offers diminishing returns. 

The optimization results for model order are presented in 

Fig. 5. As shown, the online model consistently 

converges toward the optimal model order range 

identified by the offline model and remains within that 

range throughout, demonstrating stable and reliable 

adaptation. 

Fig. 6 illustrates the convergence behavior of the delta 

parameter under different learning rates of the Adam 

optimizer. Results revealed that when the initial delta 

value is far from optimal, a higher learning rate is 

necessary to accelerate convergence. Nevertheless, 

across all tested conditions, the Adam optimizer 

consistently guides the delta parameter toward stable and 

reasonable values, particularly suited for resting-state 

EEG data segmented into 2-second windows. 

Fig. 7 illustrates the convergence behavior of delta under 

different learning rates, where the initial delta was set to 

0.1. A high learning rate (lr = 3) introduces significant 

noise, resulting in unstable delta values, whereas lower 

learning rates lead to more stable and consistent 

convergence. 

Table 1 presents the latency performance of the online 

model under various stress conditions. Results further 

revealed that when using 12 channels, the model 

maintains acceptable latency—remaining below the 250 

ms threshold—even as the overlap increases, indicating 

that overlap does not significantly impact performance in 

this configuration. However, when the number of 

channels is increased to 109, latency exceeds 250 ms, 

demonstrating that the model no longer meets real- time 

processing requirements under this higher computational 

load. Fig. 8 shows the performance of the online model 

under different model orders and stress conditions. 

VI. DISCUSSION 

The proposed real-time MVARICA framework 

demonstrated strong agreement with the offline reference 

Table 1. shows the performance of the online model under 

different model orders and stress conditions. 

Chan. 

Num. 

Over-

lap 

MVAR 

fitting 

(ms) 

ICA 

(ms) 

Packet 

process. 

(ms) 

Optim. 

step 

(ms) 

Time 

(ms) 

12 75% 10.6 30.5 41.9 44.6 86.7 

12 87.5% 10.6 32.8 44.2 44.6 88.8 

109 75% 92.6 523.4 643.0 291.5 934.5 

109 87.5% 99.5 699.4 826.5 296.0 1222.5 

 

 

Figure 7. Delta convergence with Adam optimizer, under 

different learning rates for starting delta of 0.1. 

 

 

Figure 5. Model order convergence of RAIC, where the blue 

line shows the mean of the optimal selected model order of the 

offline model, the two shaded lines show the upper standard 

deviation and the zero line. 

 

Figure 6. Delta convergence with Adam optimizer, under 

different learning rate and starting values of delta. 
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model, achieving a MAE of 7%, with 95% of PDC values 

differing by less than 0.2. Although slightly higher 

discrepancies were observed in the delta band (MAE = 

11.5%), the overall correlation remained high (Pearson r 

= 0.744), indicating that the online model reliably 

captured the major directed connectivity patterns 

detected offline. This level of accuracy is acceptable for 

real-time neurofeedback and BCI applications, where 

small deviations are tolerable in exchange for low-

latency processing. The increased delta-band error is 

consistent with known limitations in low-frequency 

connectivity estimation, where fewer oscillatory cycles 

within short time windows increase susceptibility to 

noise and temporal instability. Hence, the observed 

differences reflect the intrinsic difficulty of modeling 

slow oscillations rather than a shortcoming of the online 

approach.  

The frequency-dependent behavior observed in Fig. 4 

further supports this interpretation. Delta-band activity 

(1–4 Hz) typically requires longer analysis windows (10–

20 s) and higher model orders (20–30) for accurate 

representation in offline conditions. In this study, both 

models operated on 2-second windows to meet real-time 

constraints, capturing only a few oscillatory cycles. 

Under such conditions, higher model orders tend to 

become numerically unstable, increasing estimation 

variance. Conversely, lower model orders provided more 

stable estimates, reducing overfitting. In higher 

frequency ranges (e.g., beta and gamma), where more 

cycles are contained within the same time window, 

model stability improves, and the online and offline 

estimates align closely. Importantly, the online model-

maintained flexibility for extending window duration 

when computational resources allow, providing a tunable 

balance between temporal precision and frequency 

resolution. 

The adaptive model-order optimization method, RAIC, 

consistently converged toward the range identified by the 

offline model (Fig. 5), confirming its ability to track 

optimal model complexity in real time. The relatively 

stable convergence reflects the resting-state nature of the 

dataset, where minimal non-stationarity reduces the need 

for frequent adaptation. However, convergence speed can 

vary depending on initialization; when the starting model 

order deviates substantially from the optimal value, 

convergence may take up to 50 seconds. To enhance 

responsiveness under non-stationary or task-related 

conditions, a two-stage adaptation strategy is 

recommended: an initial broad search window during 

early model stabilization, followed by an adaptive nar- 

rowing phase once stationarity is achieved. This hybrid 

approach could improve both accuracy and adaptability 

for dynamic EEG paradigms. 

Similarly, the δ -parameter optimization using the Adam 

algorithm showed stable convergence across conditions 

(Fig. 6), though convergence speed was influenced by 

initialization and learning rate. High learning rates 

accelerated adaptation but occasionally produced 

oscillatory behavior or overshooting (Fig. 7). A 

progressive learning-rate schedule—starting high and 

gradually decreasing once stability is achieved—could 

mitigate this trade-off. Such a configuration would 

ensure rapid yet stable optimization, which is particularly 

valuable in real-time neurofeedback applications where 

responsiveness to changing brain states is critical. 

Latency analysis confirmed that the number of EEG 

channels was the primary determinant of computational 

delay. With 12 channels, total latency remained below 

100ms, well within real-time constraints for 

neurofeedback and closed-loop BCI operation. However, 

processing high-density EEG (109 channels) increased 

latency to approximately 1 s, primarily due to the ICA 

and optimization steps. While this exceeds the strict real-

time threshold, it remains acceptable for semi-online 

analysis or slower feedback loops. In typical 

neurofeedback systems that rely on fewer than 10 

channels, the proposed framework comfortably supports 

real-time performance. 

Future work could further reduce latency by 

incorporating dimensionality-reduction techniques—

such as Principal Component Analysis (PCA) or 

autoencoder-based embeddings—to preserve essential 

signal characteristics while reducing computational load. 

Such strategies could enable scalability to high-density 

EEG without compromising timing requirements. 

Overall, these results establish the proposed real-time 

MVARICA framework as a proof of concept that 

achieves a practical balance between computational 

efficiency, modeling accuracy, and system 

responsiveness. The implementation demonstrates the 

feasibility of translating complex offline connectivity 

analyses into an adaptive, low-latency pipeline suitable 

 

Figure 8. Latency under different model orders and different 

stress conditions. 
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for closed-loop neurofeedback and BCI applications. As 

a foundational prototype, the current system provides 

evidence that real-time directed connectivity estimation 

from EEG is technically viable, while also revealing key 

areas for improvement. Future work should extend this 

framework beyond resting-state data to event-related and 

task-based EEG, where transient neural responses and 

rapid state changes pose additional challenges for online 

modeling. Enhancements in adaptive hyperparameter 

control, dimensionality reduction, and dynamic 

windowing strategies will further strengthen the 

scalability and robustness of real-time MVARICA in 

large-scale and cognitively demanding 

neurophysiological contexts. 

VII. CONCLUSIONS 

This study introduced a novel real-time implementation 

of the Multivariate Autoregressive Independent 

Component Analysis (MVARICA) framework for 

estimating directed functional connectivity from high-

density EEG. The proposed system successfully 

translated the traditionally offline MVARICA pipeline 

into a fully online, adaptive model capable of computing 

Partial Directed Coherence (PDC) in real time. The 

online implementation demonstrated strong agreement 

with its offline counterpart, achieving a mean absolute 

error of 7% while maintaining stable convergence of key 

hyperparameters, including model order and 

regularization strength. 

Although full real-time performance with 109 EEG 

channels remains computationally demanding, the 

framework operated reliably and within real-time 

constraints using a 12-channel configuration. These 

results confirm the feasibility of applying advanced 

connectivity modeling in low-latency applications such 

as closed-loop brain–computer interfaces (BCIs) and 

neurofeedback systems. The use of GPU acceleration 

(NVIDIA L4) enabled high-throughput computation, 

positioning the current implementation as a practical 

solution for laboratory and clinical research 

environments. 
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