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Abstract— This review briefly investigates how artificial 

intelligence (AI) methods are being applied to microbiota-

based clinical tasks. We analyse a curated set of peer-

reviewed studies to characterize the models used, the nature 

of microbiota-derived inputs, and the clinical goals 

addressed. Our findings show a preference for classical 

machine learning approaches, especially random forests, 

due to their robustness and interpretability. Deep learning 

methods are less frequent and primarily employed in 

multimodal contexts. Most studies focus on disease 

prediction or classification, though some explore treatment 

response or drug-microbiota interactions. Gut-derived 

profiles dominate the input data, with limited exploration of 

other microbiota niches. Key challenges include the lack of 

external validation, inconsistent preprocessing practices, 

and limited use of explainability techniques. These 

observations point to the need for more standardized, 

transparent, and clinically grounded research to advance 

the integration of AI with microbiome science. 
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I. INTRODUCTION 

The human microbiota consists of trillions of 

microorganisms that inhabit different body sites, 

including the gut, skin, oral cavity, and urogenital tract 

[1, 2]. These microbial communities play essential roles 

in digestion, immune regulation, and protection against 

pathogens [3]. Disruptions to this microbial ecosystem, 

known as dysbiosis, have been associated with a wide 

range of medical conditions, including colorectal cancer, 

type 2 diabetes, and inflammatory bowel disease [4, 5]. 

Beyond disease association, information derived from 

the microbiota can also support research into treatment 

response, or patient stratification, broadening its potential 

use in medical tasks [6, 7]. 

Despite the increasing interest in leveraging microbiota 

information for clinical purposes, traditional analysis 

techniques still face important limitations [8]. Statistical 

and bioinformatic methods such as 16S rRNA gene 

sequencing and metagenomic profiling have enabled 

significant descriptive insights, but often fall short when 

applied to predictive or diagnostic tasks [9]. These 

approaches struggle with high-dimensional, sparse, and 

noisy data, as well as inter-individual variability [8]. 

Moreover, the compositional nature of microbial profiles 

and the lack of standardized reference frameworks 

complicate reproducibility and scalability, hindering 

clinical translation [10]. 

Artificial intelligence (AI), encompassing machine 

learning (ML) and deep learning (DL) techniques, offers 

a powerful framework to address many of the challenges 

associated with medical data analysis [11, 12]. By 

learning patterns from complex, high-dimensional 

datasets [13, 14], these methods can support tasks such 

as classification, prediction, segmentation, and feature 

selection [15, 16], potentially overcoming issues of 

variability, sparsity, and non-linearity. In clinical 

contexts, AI has the potential to assist in hypothesis 

generation, patient stratification [17], and the 

identification of microbiota-based signatures, paving the 

way for more personalized and data-driven medical 

interventions. 

Given the emerging role of AI in medical research, this 

review explores its integration with microbiota analysis. 

While microbiome data holds increasing relevance for 

understanding health and disease, the use of AI to 

process, interpret, and extract meaningful insights from 

such data remains a growing area of interest. In this 

context, the present work offers a concise overview of 

how AI methods are being applied to microbiota-based 

studies, with attention to their clinical orientation, 

methodological approaches, and application domains. 

The objectives of this review are the following: 

• Identify how AI is currently being used in conjunction 

with microbiota data. 

• Characterize the clinical purposes it supports. 

• Examine the types of data and models involved. 

• Discuss the limitations and open challenges reported in 

the literature. 

• Provide insights into the future direction of AI in 

microbiota research. 

II. METHODOLOGY 

This review follows a structured process inspired by the 

principles of the Preferred Reporting Items for 
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Systematic Reviews and Meta-Analyses (PRISMA) [18]. 

In line with these guidelines, the study was designed 

around explicit research questions, clear eligibility 

criteria, and a systematic strategy for identifying and 

organizing the literature.  

First, we defined the following research questions to 

guide the review:   

• What artificial intelligence techniques have been 

applied to human microbiota data for clinical purposes?   

• How do traditional machine learning approaches 

compare to deep learning methods in this domain?   

• What clinical tasks are addressed using microbiota-

based AI?  

• What methodological challenges and limitations are 

reported across studies?   

• What open challenges and future directions emerge for 

AI-driven microbiota analysis in clinical research?   

Next, we established inclusion and exclusion criteria to 

ensure consistency in the selection of works. The 

inclusion criteria is as follows: 

• Empirical studies presenting original experimental 

work.  

• Articles published in peer-reviewed scientific journals 

or presented at scientific conferences.   

• Articles explicitly applying AI methods (machine 

learning or deep learning) to human microbiota data 

with clinical relevance.   

• Articles written in English. 

Then, we established the following exclusion criteria to 

filter out works that did not meet the scope of the review:  

• Reviews, editorials, meta-analyses, commentaries, or 

tutorials.  

• Non-peer-reviewed sources (e.g., preprints, technical 

reports).   

• Articles lacking sufficient methodological or 

experimental detail to allow meaningful interpretation.   

The literature analyzed in this review was retrieved from 

reputable databases to guarantee the quality and 

reliability of the included works. Specifically, we 

consulted PubMed, IEEE Xplore, ScienceDirect, and 

SpringerLink. In addition, Google Scholar was employed 

as a complementary tool to locate further relevant 

studies.  The search strategy relied on targeted keywords 

and Boolean combinations, including: ‘human 

microbiota,’ ‘microbiome,’ ‘artificial intelligence,’ 

‘machine learning,’ ‘deep learning,’ and ‘clinical 

applications.’ 

All retrieved articles were manually screened for 

relevance according to the inclusion and exclusion 

criteria. For each selected work, we extracted 

information regarding: (i) the type of AI method 

employed, (ii) the nature of the microbiota data analysed, 

(iii) the clinical objective (e.g., diagnosis, prognosis, 

treatment prediction), (iv) reported performance metrics, 

and (v) acknowledged limitations or challenges. This 

structured extraction provided the basis for the synthesis 

and comparative analysis presented in the following 

sections. 

III. SURVEYED WORKS BY LEARNING PARADIGM 

This section provides an overview of each selected study, 

summarizing their main objectives, methodologies, and 

key findings. To facilitate clarity and comparison, the 

works are grouped according to the type of AI technique 

employed. Two primary categories were identified: 

studies based on traditional ML algorithms, and those 

leveraging DL methods. 

III-A. Machine Learning 

Most of the studies included in this review adopt ML as 

their primary strategy, reflecting a notable preference for 

classical and interpretable approaches over more 

complex DL architectures. 

The application of microbiota-derived features for 

cancer-related prediction tasks gains notable traction 

within the reviewed literature. In [19], gut microbial 

strains are explored as pretreatment biomarkers to predict 

patient response to combination immune checkpoint 

blockade (CICB) therapies across multiple cancer types. 

Using strain-level metagenomic profiles and random 

forest (RF) classifiers, the study identifies a core set of 

22 strains capable of achieving AUCs of 0.73 and 0.70 

for response and 12-month progression-free survival, 

respectively.  

Complementarily, [20] presents DeepMicroCancer, a 

multiclass classification framework trained on microbial 

abundance profiles from over 11,000 tumor tissue 

samples covering 21 cancer types. The method achieves 

an AUC of 0.95 and demonstrates the utility of transfer 

learning to improve predictions in blood-derived data, 

notably increasing AUC for lung adenocarcinoma from 

0.80 to 0.89. Finally, [21] addresses the use of gut 

microbiota as a noninvasive biomarker for early-stage 

lung cancer, training a support vector machine (SVM) on 

OTUs selected through mRMR and achieving AUCs of 

97.6% in the discovery cohort and 76.4% in validation. 

This work further highlights microbial shifts in key taxa 

and functional alterations in bile acid metabolism. 

Other studies address liver-related diseases using 

microbiota data and ML approaches. In [22], the authors 

benchmark a range of ML algorithms for microbiome-

based host trait prediction, including cases of liver 

cirrhosis. Using OTU tables from 16S rRNA sequencing 



R. Janwadkar, et al.: A Review...  Page 3 of 8 

979-8-3315-7370-6/25/$31.00 ©2025 IEEE IEEE SPMB 2025 December 6, 2025 

across 17 datasets, the study compares RF, SVM, logistic 

regression, gradient boosting, and neural networks (feed-

forward multilayer neural networks). RF consistently 

yields strong performance, while neural networks require 

substantial tuning.  

Additionally, a Hierarchical Feature Engineering (HFE) 

strategy is proposed to reduce OTU dimensionality and 

improve accuracy on sparse datasets. In a more specific 

context, [23] analyses gut microbiota associations with 

liver transcriptomic profiles and clinical outcomes in 

HBV-related hepatocellular carcinoma (HCC). By 

correlating 310 microbial OTUs with over 5,000 liver-

expressed genes, the study identifies genera like 

Bacteroides and Clostridium XIVa as linked to smaller 

tumors and favorable immune expression. These features 

are then used in RF and SVM models to predict 

prognosis, with AUCs of 0.81 for 5-year survival and 

0.70 for 2-year disease-free survival. 

Gastrointestinal disorders are another focus of 

microbiota-based ML. In [24], gut microbiota 

composition is used to predict neratinib-induced diarrhea 

in elderly patients with HER2-positive breast cancer. 

Using 16S rRNA data from 50 stool samples across 11 

individuals, an XGBoost classifier with SHAP-based 

interpretability achieves AUROC = 0.88 and AUPRC = 

0.95, identifying protective species like 

Ruminiclostridium 9 and Bacteroides sp. HPS0048. 

However, the study is limited by sample size and lack of 

external validation. A broader effort is found in [25], 

which applies ridge logistic regression to distinguish 

Crohn’s disease (CD) from ulcerative colitis (UC) using 

whole-metagenome data from 482 individuals. Reported 

AUCs are 0.873 (training), 0.778 (test), and 0.633 

(external). Distinct biomarkers include E. coli and 

Shigella dysenteriae in CD, and Prevotella spp. in UC, 

though challenges such as confounding, batch effects, 

and microbial heterogeneity persist. 

Other studies use oral microbiota as input for clinical 

prediction. In [26], oral microbiota and salivary 

metabolites are combined to diagnose oral lichen planus 

(OLP). Using 16S rRNA sequencing and untargeted 

metabolomics from 200 saliva samples, several ML 

models (LASSO, SVM-RFE, XGBoost, RF, ANN) are 

trained. A panel including Pseudomonas, Rhodococcus, 

and the metabolite (±)10-HDoHE yields an AUC of 

0.890. OLP samples show reduced diversity and altered 

metabolite profiles, with microbe-metabolite 

associations pointing to inflammatory pathways. 

In [27], oral microbiota is used to predict preterm birth 

(PTB) from 59 pregnant women. An RF classifier trained 

on selected taxa achieves 0.765 balanced accuracy and 

87.5% accuracy on a twin pregnancy subset. PTB is 

linked to the depletion of protective taxa rather than 

pathogenic enrichment, indicating a preventive 

microbiota signature. 

Beyond organ-specific disorders, several studies 

illustrate the versatility of microbiome-based ML in 

diverse health contexts. In [4], data from over 4,100 

individuals is used to examine microbial circadian 

rhythms in type 2 diabetes (T2D). Loss of diurnal 

rhythmicity in specific taxa enables the construction of a 

logistic regression model (AUC = 0.79), improved to 

0.87 with BMI and clinical features. External validation 

supports microbial rhythmicity loss as an early biomarker 

of metabolic dysfunction. For cardiovascular disease 

(CVD), [28] trains a RF model on fecal microbiota, 

achieving an AUC of 0.70 using the top 25 high-

contribution OTUs. CVD samples show enrichment of 

Bacteroides and Veillonella, while Faecalibacterium and 

Alistipes dominate in controls, underscoring the value of 

OTU-level features. 

Microbiome data have also been used to predict 

pharmacological effects. [29] develops a ML classifier to 

determine whether small-molecule drugs are susceptible 

to microbial depletion via gut microbiota, through either 

metabolism or bioaccumulation. The study compiles a 

dataset of 455 compounds labeled and encodes them 

using Morgan fingerprints and physicochemical 

properties derived from SMILES strings. Among the 

tested algorithms, the extra trees model performs best, 

reaching an AUROC of 75.1%, with 80.2% precision and 

79.2% recall after hyperparameter tuning. This enables 

non-experimental, preclinical assessment of drug-

microbiota interactions, supporting informed decisions in 

early-stage drug development. 

Finally, [30] addresses multiclass disease classification 

using a ML framework trained on fecal metagenomic 

profiles to distinguish nine disease phenotypes within a 

single model. Among the tested algorithms, RF yields the 

best results, with AUROC scores between 0.90 and 0.99 

on the internal test set. External validation across 12 

datasets shows reasonable generalization, albeit with 

some performance decline. The model identifies over 360 

microbial species linked to specific diseases, enabling 

detailed microbiota-phenotype mapping. Remaining 

challenges include confounding variables, limited 

phenotype diversity, and low biological interpretability. 

III-B. Deep Learning 

A small subset of the reviewed studies adopts DL as the 

primary modeling strategy. Notably, these works rely on 

convolutional neural networks (CNNs) as their core 

predictive approach, often adapted to exploit the 

structural and compositional characteristics of 

microbiome data. 

The study in [31] presents MDeep, a phylogeny-aware 

CNN that integrates microbial taxonomic hierarchies into 
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its architecture by aligning convolutional layers with 

taxonomic ranks. Evaluated on both simulated and real 

16S rRNA datasets, MDeep outperforms baselines like 

RF and lasso in classification and regression tasks, 

including disease prediction (e.g., rheumatoid arthritis, 

kwashiorkor) and demographic traits (age, gender), 

achieving higher F1 and R^2 scores and showing 

robustness to preprocessing. However, its performance 

declines with sparse microbial signals, and 

interpretability is limited. In a different context, [32] 

develops a CNN-based model for staging alcohol-

associated liver disease (ALD) and MASLD from gut 

microbiota profiles. Among several classifiers, CNN 

with PCA achieves the best results, with AUCs of 0.94-

0.97 for ALD and 0.93 for MASLD. External validation 

confirms generalizability (AUC > 0.90 for ALD, 0.88 for 

MASLD), highlighting CNNs’ effectiveness in modeling 

complex microbial patterns. 

In [33], CNNs are used to classify dermatological 

conditions from microbiome and image data. Models like 

VGG16 and InceptionV3 trained on nail images reach 

AUCs up to 0.960 for fungal infection detection, while 

gut microbiota profiles achieve 0.929 accuracy for 

vitiligo diagnosis. These results showcase CNNs' 

adaptability across modalities, though performance 

declines with low-resolution inputs and underrepresented 

groups, highlighting the need for broader datasets. 

Similarly, [34] introduces MetaDR, a DL framework that 

integrates taxonomic structure with microbial abundance 

vectors using EPCNNs and a weighted RF for 

interpretability. Applied to liver cirrhosis, colorectal 

cancer, and T2D prediction, it achieves AUCs of 0.9535 

and 0.9063 for the first two, outperforming models like 

DeepMicro. Despite identifying key microbial 

biomarkers, the lack of external validation and model 

complexity raise overfitting and generalization concerns. 

Beyond phenotype classification, DL has also been 

applied to high-resolution analysis of microbiota 

composition. [35] presents DERSI, a DL approach for 

high-resolution identification of amplicon sequence 

variants (ASVs) from 16S rRNA data. A CNN projects 

input sequences into a 10D latent space trained on 

117,000 reference V4 sequences, followed by denoising 

and abundance estimation. DERSI outperforms 

VSEARCH, DADA2, and UNOISE3 in precision and 

recall on mock datasets (e.g., 99/95 on Mock-16), 

achieves Bhattacharyya coefficients up to 99.78 for 

abundance estimates, and enables phenotype separation 

via PCA. It also reduces processing time on large-scale 

datasets. 

IV. CLINICAL PURPOSE OF AI INTEGRATION 

A review of the selected studies reveals a diverse set of 

clinical objectives underlying the integration of AI with 

microbiota-related data. While disease detection remains 

a common focus, it is far from the only application 

explored. Broadly, the studies reflect a spectrum of 

diagnostic, prognostic, and therapeutic support goals, 

highlighting the expanding role of microbiota in multiple 

stages of clinical decision-making. 

Most notably, several works center on disease diagnosis 

or classification, targeting conditions such as colorectal 

cancer, liver disease, inflammatory bowel disease, oral 

lichen planus, and even dermatological conditions [21, 

25-27, 32-34] In these cases, microbiota data is typically 

used as a non-invasive biomarker source to distinguish 

between healthy and pathological states. However, other 

studies adopt more prognostic or predictive objectives, 

such as therapy response, patient survival, or 

cardiovascular risk prediction [4, 19, 23, 28]. 

A particularly relevant trend is the emergence of multi-

disease frameworks, where models attempt to handle 

multiple diagnostic targets simultaneously, as seen in 

studies on cancer subtype classification or general 

disease phenotype identification [20, 30]. It is also 

important to note that not all models aim to detect 

pathology. Some are designed to distinguish between 

disease stages, evaluate liver enzyme elevation, or assess 

risk of adverse events such as drug-induced diarrhea or 

preterm birth [24, 27, 31]. These objectives suggest that 

AI is being used not only for binary classification but also 

to refine diagnostic granularity or guide preventive 

interventions in complex clinical scenarios. 

In addition, the predictive modeling of drug-microbiota 

interactions represents a distinct use case, emphasizing 

the relevance of AI in pharmacological contexts and 

early-stage therapeutic screening [29]. Overall, the 

reviewed literature shows that AI applications in 

microbiota studies are clinically varied and evolving, 

with a clear trend toward supporting personalized and 

predictive medicine across diagnostic, prognostic, and 

therapeutic dimensions. 

V. ANALYSIS OF MODELS AND APPROACHES 

The reviewed studies span both classical ML and DL 

paradigms, with a clear predominance of the former. RF 

appears as the most frequently employed model across 

studies, reflecting its flexibility and robustness to noise 

in compositional and sparse microbiome datasets [19, 20, 

22, 23, 27, 28, 30]. Its widespread use may also relate to 

its low tuning requirements and compatibility with 

typical preprocessing pipelines such as OTU filtering and 

log-ratio transformations. Moreover, RF models often 

allow for the extraction of interpretable feature 

importance scores, making them attractive in biomarker 

discovery contexts. 

Other classical models such as SVM, logistic regression, 

and gradient boosting are also commonly used, albeit 

with more modest adoption. SVMs tend to appear in 
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studies with smaller or more curated feature sets [21, 26], 

where margin-based separation is advantageous. Logistic 

regression is used mainly in baseline comparisons or 

when simplicity and interpretability are prioritized [4, 

25]. Ensemble techniques like XGBoost and Extra Trees 

have also been adopted, particularly when paired with 

SHAP or other model-agnostic interpretability tools [24, 

29]. Nevertheless, while ML offers strong baseline 

performance and interpretability, its reliance on 

paradigms such as decision trees may hinder scalability 

when dealing with very large feature sets. 

In contrast, DL models are less common and typically 

reserved for tasks requiring high representational 

capacity or when multimodal data is involved. Most of 

these studies rely on CNNs adapted to microbiome 

structures or combined with dimensionality reduction 

techniques like PCA [31-34]. Notably, several works 

embed phylogenetic information directly into the 

network architecture, enabling structured feature 

extraction from metagenomic profiles [31, 34]. Despite 

achieving strong performance in specific cases, deep 

models remain limited by interpretability and risk of 

overfitting, especially in settings with limited data or 

class imbalance. 

Interestingly, hybrid approaches that combine DL with 

simpler interpretable models (e.g., using CNNs for 

representation followed by RF for classification) begin to 

emerge as a way to balance expressiveness and 

transparency [34]. 

VI. DATA TYPES AND PROCESSING 

Across the reviewed studies, the most prevalent source of 

microbiota data is the gut, obtained predominantly via 

stool samples. This is expected given its rich microbial 

diversity and established relevance in systemic health. 

For instance, in cancer and liver-related tasks [19, 23], 

fecal samples were used to build predictive models for 

treatment response and patient prognosis. A smaller 

group of studies used oral [26, 27] or skin-derived [33] 

microbiota, showing that alternative microbial niches are 

gaining relevance in disease detection but remain less 

explored. 

In terms of profiling methods, 16S rRNA sequencing was 

the most common approach [21, 24, 25], largely due to 

its lower cost and availability. However, its taxonomic 

resolution typically stops at the genus level, which 

introduces limitations in clinical tasks that demand 

strain-level specificity. This is evident in [21], where the 

model's performance dropped substantially in external 

validation, partly due to the inability to resolve microbial 

features at finer taxonomic levels. In contrast, studies 

using whole-metagenome sequencing [19, 25] achieved 

better generalization and deeper insights, albeit with 

increased cost and complexity. 

A few works integrated microbiome data with 

complementary modalities. [26] combined microbial 

abundance with metabolomics to diagnose oral 

conditions, while [33] incorporated nail images for skin-

related classification tasks. Additionally, some studies 

enriched microbial profiles with clinical metadata [4, 25], 

improving interpretability and robustness. These 

combinations illustrate a trend toward multi-source 

integration to compensate for the limitations of 

microbiome data alone. 

Finally, preprocessing practices varied widely across 

studies. Some used total-sum scaling or centered log-

ratio transformations [21, 25], but details were often 

poorly reported, affecting reproducibility. Feature 

selection was inconsistently applied, ranging from simple 

abundance thresholds to complex statistical filtering [30]. 

This lack of standardization complicates cross-study 

comparisons and model generalization. Greater 

transparency in data handling remains a critical area for 

improvement in microbiota-based ML. 

VII. LIMITATIONS AND OPEN CHALLENGES 

VII-A. Generalization and external validation 

A key limitation across the reviewed studies is the scarce 

use of external validation datasets. While most models 

report high internal performance (often AUCs above 

0.85), only a minority evaluate their generalizability on 

independent cohorts. For instance, the multiclass model 

in [30] showed performance drops when tested on 12 

external datasets, despite strong internal metrics. 

Similarly, [25] observed a decline from 0.873 AUC on 

training to 0.633 on an external cohort. These findings 

suggest overfitting to cohort-specific patterns, limiting 

translational utility. Geographic, demographic, and 

technical diversity in validation sets remains largely 

unaddressed. 

VII-B. Data size and heterogeneity 

Many studies are constrained by limited sample sizes and 

heterogeneous data sources. Works like [24] and [27] 

rely on fewer than 60 subjects, restricting statistical 

power and robustness. Even in larger datasets, variations 

in sequencing platforms, preprocessing methods, and 

taxonomic resolutions introduce noise that complicates 

model training and reproducibility. Studies such as [25] 

and [30] acknowledge batch effects and inter-study 

differences as sources of performance degradation, 

which hinder benchmarking and the development of 

unified pipelines. 

VII-C. Interpretability and transparency 

Although some studies incorporate explainability tools 

(e.g., SHAP in [24]), most lack systematic strategies for 

interpreting predictions or validating selected features. 

DL approaches, in particular, often prioritize 
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performance over interpretability. For instance, CNN-

based models like those in [32] and [34] achieve high 

AUCs but provide little insight into which microbial 

features drive predictions. Moreover, few studies release 

their code, feature selection procedures, or trained 

models, limiting transparency and reproducibility. 

VII-D. Biological noise and batch effects 

Biological variability, sequencing artifacts, and the 

absence of standardized procedures contribute to 

inconsistent findings. In multiclass classifiers such as 

[30], authors explicitly mention confounding effects and 

restricted phenotype diversity as challenges. Likewise, 

[25] notes heterogeneity in microbial communities and 

the influence of clinical covariates. Without harmonized 

preprocessing and annotation standards, microbiota-

based AI models remain vulnerable to batch effects that 

compromise robustness. 

VIII. FUTURE PROSPECTS 

The challenges outlined above naturally point to the next 

steps required to strengthen the field. Several directions 

emerge as priorities for advancing the integration of AI 

in microbiota-based clinical research. 

First, the standardization of data processing workflows is 

critical. Current pipelines for microbiota preprocessing, 

feature selection, and taxonomic resolution remain 

inconsistent, hampering reproducibility and 

comparability across studies. Establishing community-

endorsed protocols would help ensure methodological 

consistency and facilitate the aggregation of results 

across cohorts and institutions. Specific practices such as 

adopting log-ratio transformations (e.g., CLR, ALR) to 

handle compositionality, and transitioning from OTU-

based to ASV-based pipelines to improve taxonomic 

resolution and reduce ambiguity, could serve as concrete 

steps toward such standardization. 

Second, external validation must become routine. Many 

models remain confined to single-center datasets with 

limited demographic or geographic diversity, which 

reduces generalizability. Incorporating multicenter 

cohorts with well-characterized metadata would allow 

robust cross-population evaluations and help identify 

sources of variability. Beyond improving performance 

assessment, such validation is essential to ensure that 

models trained on microbiota data can be reliably 

translated into diverse clinical settings. 

Third, interpretability should be more systematically 

integrated. Although some works employ post hoc 

explanation methods, the field still lacks unified 

approaches to make predictions transparent and clinically 

actionable. Embedding interpretability frameworks into 

modeling pipelines is especially important in high-stakes 

applications such as early cancer detection, 

cardiovascular risk assessment, or psychiatric screening. 

Methods such as LIME, SHAP, or attention-based 

mechanisms could provide complementary insights and 

represent promising directions for improving trust and 

clinical adoption. 

In addition, predictive modeling of therapeutic responses 

remains underexplored. Only a small number of studies 

address treatment stratification using microbiota data, 

and most are limited to small cohorts or binary outcomes. 

Expanding this line of work to include longitudinal 

designs, multiclass endpoints, and causal inference 

frameworks could provide actionable insights for 

personalized treatment planning. Incorporating time-

resolved microbiota dynamics and integrating treatment 

metadata would further strengthen this line of research, 

enabling more precise identification of responders and 

non-responders in real-world clinical contexts. 

Beyond classification, future research should also 

address causality. Most current models remain focused 

on correlational tasks such as disease classification or 

prognosis, but causal machine learning and 

counterfactual analysis could provide deeper insights into 

the mechanisms linking microbiota to clinical outcomes. 

These approaches would help move from association to 

causation, enabling the identification of drivers rather 

than markers, which is essential for actionable 

interventions. 

In addition, research should expand beyond the gut to 

systematically include oral, skin, vaginal, and respiratory 

microbiota, which remain underrepresented despite their 

clinical relevance. Methodologically, new directions 

such as federated learning could facilitate cross-cohort 

studies without compromising data privacy, while graph-

based models offer powerful ways to capture microbial 

interaction networks. Together with causal inference, 

these approaches represent promising avenues for 

broadening both the scope of microbiota-based AI and its 

methodological toolkit. 

Finally, multimodal learning represents a promising but 

fragmented frontier. While some studies have combined 

microbiota data with clinical variables, metabolomics, or 

imaging, data fusion methods are still largely ad hoc and 

lack standardized evaluation frameworks. Future 

research should prioritize the development of unified 

architectures capable of learning coherent 

representations across modalities and systematically 

benchmarking their performance. Such approaches could 

better capture the interplay between microbiota and host 

factors, ultimately supporting more comprehensive 

models of disease risk, progression, and treatment 

response. 
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IX. CONCLUSIONS 

This review examines how artificial intelligence 

techniques are being applied to microbiota data for 

clinical purposes. To this end, we conducted a structured 

analysis of selected peer-reviewed studies, focusing on 

their clinical objectives, types of microbiota-derived 

inputs, modeling strategies, and validation procedures. 

Works were categorized to identify methodological 

patterns and assess the scope of current approaches in this 

emerging intersection between microbiome research and 

computational methods. 

Findings reveal that most studies focus on disease 

classification or prognosis, often favoring interpretable 

models such as decision trees and random forests. Deep 

learning remains less common but is employed in 

multimodal settings. Despite promising performance, 

external validation is infrequent, and dataset diversity is 

limited, reducing generalizability. Many studies lack 

standardized pipelines and report minimal 

reproducibility. Interpretability tools are rarely 

implemented, limiting clinical trust.  

Likewise, microbiota data are mainly derived from gut 

samples, though oral and skin microbiomes are gaining 

attention. Integration with metabolomics or imaging 

remains experimental, and predictive modeling of 

therapeutic response is still incipient. These trends 

highlight the need for more rigorous validation, broader 

data inclusion, and increased focus on explainability to 

support clinical translation. 
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