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Abstract— This review briefly investigates how artificial
intelligence (AI) methods are being applied to microbiota-
based clinical tasks. We analyse a curated set of peer-
reviewed studies to characterize the models used, the nature
of microbiota-derived inputs, and the clinical goals
addressed. Our findings show a preference for classical
machine learning approaches, especially random forests,
due to their robustness and interpretability. Deep learning
methods are less frequent and primarily employed in
multimodal contexts. Most studies focus on disease
prediction or classification, though some explore treatment
response or drug-microbiota interactions. Gut-derived
profiles dominate the input data, with limited exploration of
other microbiota niches. Key challenges include the lack of
external validation, inconsistent preprocessing practices,
and limited use of explainability techniques. These
observations point to the need for more standardized,
transparent, and clinically grounded research to advance
the integration of AI with microbiome science.

Keywords— microbiota, microbiome, machine learning, deep
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1. INTRODUCTION

The human microbiota consists of trillions of
microorganisms that inhabit different body sites,
including the gut, skin, oral cavity, and urogenital tract
[1, 2]. These microbial communities play essential roles
in digestion, immune regulation, and protection against
pathogens [3]. Disruptions to this microbial ecosystem,
known as dysbiosis, have been associated with a wide
range of medical conditions, including colorectal cancer,
type 2 diabetes, and inflammatory bowel disease [4, 5].
Beyond disease association, information derived from
the microbiota can also support research into treatment
response, or patient stratification, broadening its potential
use in medical tasks [6, 7].

Despite the increasing interest in leveraging microbiota
information for clinical purposes, traditional analysis
techniques still face important limitations [8]. Statistical
and bioinformatic methods such as 16S rRNA gene
sequencing and metagenomic profiling have enabled
significant descriptive insights, but often fall short when
applied to predictive or diagnostic tasks [9]. These
approaches struggle with high-dimensional, sparse, and
noisy data, as well as inter-individual variability [8].
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Moreover, the compositional nature of microbial profiles
and the lack of standardized reference frameworks
complicate reproducibility and scalability, hindering
clinical translation [10].

Artificial intelligence (Al), encompassing machine
learning (ML) and deep learning (DL) techniques, offers
a powerful framework to address many of the challenges
associated with medical data analysis [11, 12]. By
learning patterns from complex, high-dimensional
datasets [13, 14], these methods can support tasks such
as classification, prediction, segmentation, and feature
selection [15, 16], potentially overcoming issues of
variability, sparsity, and non-linearity. In clinical
contexts, Al has the potential to assist in hypothesis
generation, patient stratification [17], and the
identification of microbiota-based signatures, paving the
way for more personalized and data-driven medical
interventions.

Given the emerging role of Al in medical research, this
review explores its integration with microbiota analysis.
While microbiome data holds increasing relevance for
understanding health and disease, the use of Al to
process, interpret, and extract meaningful insights from
such data remains a growing area of interest. In this
context, the present work offers a concise overview of
how AI methods are being applied to microbiota-based
studies, with attention to their clinical orientation,
methodological approaches, and application domains.
The objectives of this review are the following:

e Identify how Al is currently being used in conjunction
with microbiota data.

e Characterize the clinical purposes it supports.
e Examine the types of data and models involved.

e Discuss the limitations and open challenges reported in
the literature.

e Provide insights into the future direction of Al in
microbiota research.

II. METHODOLOGY

This review follows a structured process inspired by the
principles of the Preferred Reporting Items for
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Systematic Reviews and Meta-Analyses (PRISMA) [18].
In line with these guidelines, the study was designed
around explicit research questions, clear eligibility
criteria, and a systematic strategy for identifying and
organizing the literature.

First, we defined the following research questions to
guide the review:

e What artificial intelligence techniques have been
applied to human microbiota data for clinical purposes?

e How do traditional machine learning approaches
compare to deep learning methods in this domain?

e  What clinical tasks are addressed using microbiota-
based AI?

e What methodological challenges and limitations are
reported across studies?

e What open challenges and future directions emerge for
Al-driven microbiota analysis in clinical research?

Next, we established inclusion and exclusion criteria to
ensure consistency in the selection of works. The
inclusion criteria is as follows:

e Empirical studies presenting original experimental
work.

e Articles published in peer-reviewed scientific journals
or presented at scientific conferences.

e Articles explicitly applying Al methods (machine
learning or deep learning) to human microbiota data
with clinical relevance.

e Articles written in English.

Then, we established the following exclusion criteria to
filter out works that did not meet the scope of the review:

e Reviews, editorials, meta-analyses, commentaries, or
tutorials.

e Non-peer-reviewed sources (e.g., preprints, technical
reports).

e Articles lacking sufficient methodological or
experimental detail to allow meaningful interpretation.

The literature analyzed in this review was retrieved from
reputable databases to guarantee the quality and
reliability of the included works. Specifically, we
consulted PubMed, IEEE Xplore, ScienceDirect, and
SpringerLink. In addition, Google Scholar was employed
as a complementary tool to locate further relevant
studies. The search strategy relied on targeted keywords

and Boolean combinations, including: ‘human
microbiota,” ‘microbiome,” ‘artificial intelligence,’
‘machine learning,” ‘deep learning,” and ‘clinical
applications.’

All retrieved articles were manually screened for
relevance according to the inclusion and exclusion
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criteria. For each selected work, we extracted
information regarding: (i) the type of Al method
employed, (ii) the nature of the microbiota data analysed,
(iii) the clinical objective (e.g., diagnosis, prognosis,
treatment prediction), (iv) reported performance metrics,
and (v) acknowledged limitations or challenges. This
structured extraction provided the basis for the synthesis
and comparative analysis presented in the following
sections.

III. SURVEYED WORKS BY LEARNING PARADIGM

This section provides an overview of each selected study,
summarizing their main objectives, methodologies, and
key findings. To facilitate clarity and comparison, the
works are grouped according to the type of Al technique
employed. Two primary categories were identified:
studies based on traditional ML algorithms, and those
leveraging DL methods.

11I-A. Machine Learning

Most of the studies included in this review adopt ML as
their primary strategy, reflecting a notable preference for
classical and interpretable approaches over more
complex DL architectures.

The application of microbiota-derived features for
cancer-related prediction tasks gains notable traction
within the reviewed literature. In [19], gut microbial
strains are explored as pretreatment biomarkers to predict
patient response to combination immune checkpoint
blockade (CICB) therapies across multiple cancer types.
Using strain-level metagenomic profiles and random
forest (RF) classifiers, the study identifies a core set of
22 strains capable of achieving AUCs of 0.73 and 0.70
for response and 12-month progression-free survival,
respectively.

Complementarily, [20] presents DeepMicroCancer, a
multiclass classification framework trained on microbial
abundance profiles from over 11,000 tumor tissue
samples covering 21 cancer types. The method achieves
an AUC of 0.95 and demonstrates the utility of transfer
learning to improve predictions in blood-derived data,
notably increasing AUC for lung adenocarcinoma from
0.80 to 0.89. Finally, [21] addresses the use of gut
microbiota as a noninvasive biomarker for early-stage
lung cancer, training a support vector machine (SVM) on
OTUs selected through mRMR and achieving AUCs of
97.6% in the discovery cohort and 76.4% in validation.
This work further highlights microbial shifts in key taxa
and functional alterations in bile acid metabolism.

Other studies address liver-related diseases using
microbiota data and ML approaches. In [22], the authors
benchmark a range of ML algorithms for microbiome-
based host trait prediction, including cases of liver
cirrhosis. Using OTU tables from 16S rRNA sequencing
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across 17 datasets, the study compares RF, SVM, logistic
regression, gradient boosting, and neural networks (feed-
forward multilayer neural networks). RF consistently
yields strong performance, while neural networks require
substantial tuning.

Additionally, a Hierarchical Feature Engineering (HFE)
strategy is proposed to reduce OTU dimensionality and
improve accuracy on sparse datasets. In a more specific
context, [23] analyses gut microbiota associations with
liver transcriptomic profiles and clinical outcomes in
HBV-related hepatocellular carcinoma (HCC). By
correlating 310 microbial OTUs with over 5,000 liver-
expressed genes, the study identifies genera like
Bacteroides and Clostridium XIVa as linked to smaller
tumors and favorable immune expression. These features
are then used in RF and SVM models to predict
prognosis, with AUCs of 0.81 for 5-year survival and
0.70 for 2-year disease-free survival.

Gastrointestinal  disorders are another focus of
microbiota-based ML. In [24], gut microbiota
composition is used to predict neratinib-induced diarrhea
in elderly patients with HER2-positive breast cancer.
Using 16S rRNA data from 50 stool samples across 11
individuals, an XGBoost classifier with SHAP-based
interpretability achieves AUROC = 0.88 and AUPRC =
0.95, identifying protective species like
Ruminiclostridium 9 and Bacteroides sp. HPS0048.
However, the study is limited by sample size and lack of
external validation. A broader effort is found in [25],
which applies ridge logistic regression to distinguish
Crohn’s disease (CD) from ulcerative colitis (UC) using
whole-metagenome data from 482 individuals. Reported
AUCs are 0.873 (training), 0.778 (test), and 0.633
(external). Distinct biomarkers include E. coli and
Shigella dysenteriae in CD, and Prevotella spp. in UC,
though challenges such as confounding, batch effects,
and microbial heterogeneity persist.

Other studies use oral microbiota as input for clinical
prediction. In [26], oral microbiota and salivary
metabolites are combined to diagnose oral lichen planus
(OLP). Using 16S rRNA sequencing and untargeted
metabolomics from 200 saliva samples, several ML
models (LASSO, SVM-RFE, XGBoost, RF, ANN) are
trained. A panel including Pseudomonas, Rhodococcus,
and the metabolite (£)10-HDoHE vyields an AUC of
0.890. OLP samples show reduced diversity and altered
metabolite profiles, with microbe-metabolite
associations pointing to inflammatory pathways.

In [27], oral microbiota is used to predict preterm birth
(PTB) from 59 pregnant women. An RF classifier trained
on selected taxa achieves 0.765 balanced accuracy and
87.5% accuracy on a twin pregnancy subset. PTB is
linked to the depletion of protective taxa rather than
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pathogenic  enrichment, indicating a preventive
microbiota signature.

Beyond organ-specific disorders, several studies

illustrate the versatility of microbiome-based ML in
diverse health contexts. In [4], data from over 4,100
individuals is used to examine microbial circadian
rhythms in type 2 diabetes (T2D). Loss of diurnal
rhythmicity in specific taxa enables the construction of a
logistic regression model (AUC = 0.79), improved to
0.87 with BMI and clinical features. External validation
supports microbial rthythmicity loss as an early biomarker
of metabolic dysfunction. For cardiovascular disease
(CVD), [28] trains a RF model on fecal microbiota,
achieving an AUC of 0.70 using the top 25 high-
contribution OTUs. CVD samples show enrichment of
Bacteroides and Veillonella, while Faecalibacterium and
Alistipes dominate in controls, underscoring the value of
OTU-level features.

Microbiome data have also been used to predict
pharmacological effects. [29] develops a ML classifier to
determine whether small-molecule drugs are susceptible
to microbial depletion via gut microbiota, through either
metabolism or bioaccumulation. The study compiles a
dataset of 455 compounds labeled and encodes them
using Morgan fingerprints and physicochemical
properties derived from SMILES strings. Among the
tested algorithms, the extra trees model performs best,
reaching an AUROC of 75.1%, with 80.2% precision and
79.2% recall after hyperparameter tuning. This enables
non-experimental, preclinical assessment of drug-
microbiota interactions, supporting informed decisions in
early-stage drug development.

Finally, [30] addresses multiclass disease classification
using a ML framework trained on fecal metagenomic
profiles to distinguish nine disease phenotypes within a
single model. Among the tested algorithms, RF yields the
best results, with AUROC scores between 0.90 and 0.99
on the internal test set. External validation across 12
datasets shows reasonable generalization, albeit with
some performance decline. The model identifies over 360
microbial species linked to specific diseases, enabling
detailed microbiota-phenotype mapping. Remaining
challenges include confounding variables, limited
phenotype diversity, and low biological interpretability.

III-B. Deep Learning

A small subset of the reviewed studies adopts DL as the
primary modeling strategy. Notably, these works rely on
convolutional neural networks (CNNs) as their core
predictive approach, often adapted to exploit the
structural and compositional characteristics  of
microbiome data.

The study in [31] presents MDeep, a phylogeny-aware
CNN that integrates microbial taxonomic hierarchies into

December 6, 2025



R. Janwadkar, et al.: A Review...

its architecture by aligning convolutional layers with
taxonomic ranks. Evaluated on both simulated and real
16S rRNA datasets, MDeep outperforms baselines like
RF and lasso in classification and regression tasks,
including disease prediction (e.g., rheumatoid arthritis,
kwashiorkor) and demographic traits (age, gender),
achieving higher F1 and R”2 scores and showing
robustness to preprocessing. However, its performance
declines with sparse microbial signals, and
interpretability is limited. In a different context, [32]
develops a CNN-based model for staging alcohol-
associated liver disease (ALD) and MASLD from gut
microbiota profiles. Among several classifiers, CNN
with PCA achieves the best results, with AUCs of 0.94-
0.97 for ALD and 0.93 for MASLD. External validation
confirms generalizability (AUC > 0.90 for ALD, 0.88 for
MASLD), highlighting CNNs’ effectiveness in modeling
complex microbial patterns.

In [33], CNNs are used to classify dermatological
conditions from microbiome and image data. Models like
VGG16 and InceptionV3 trained on nail images reach
AUCs up to 0.960 for fungal infection detection, while
gut microbiota profiles achieve 0.929 accuracy for
vitiligo diagnosis. These results showcase CNNs'
adaptability across modalities, though performance
declines with low-resolution inputs and underrepresented
groups, highlighting the need for broader datasets.
Similarly, [34] introduces MetaDR, a DL framework that
integrates taxonomic structure with microbial abundance
vectors using EPCNNs and a weighted RF for
interpretability. Applied to liver cirrhosis, colorectal
cancer, and T2D prediction, it achieves AUCs of 0.9535
and 0.9063 for the first two, outperforming models like
DeepMicro. Despite identifying key microbial
biomarkers, the lack of external validation and model
complexity raise overfitting and generalization concerns.

Beyond phenotype classification, DL has also been
applied to high-resolution analysis of microbiota
composition. [35] presents DERSI, a DL approach for
high-resolution identification of amplicon sequence
variants (ASVs) from 16S rRNA data. A CNN projects
input sequences into a 10D latent space trained on
117,000 reference V4 sequences, followed by denoising
and abundance estimation. DERSI outperforms
VSEARCH, DADA2, and UNOISE3 in precision and
recall on mock datasets (e.g., 99/95 on Mock-16),
achieves Bhattacharyya coefficients up to 99.78 for
abundance estimates, and enables phenotype separation
via PCA. It also reduces processing time on large-scale
datasets.

IV. CLINICAL PURPOSE OF Al INTEGRATION

A review of the selected studies reveals a diverse set of
clinical objectives underlying the integration of Al with
microbiota-related data. While disease detection remains
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a common focus, it is far from the only application
explored. Broadly, the studies reflect a spectrum of
diagnostic, prognostic, and therapeutic support goals,
highlighting the expanding role of microbiota in multiple
stages of clinical decision-making.

Most notably, several works center on disease diagnosis
or classification, targeting conditions such as colorectal
cancer, liver disease, inflammatory bowel disease, oral
lichen planus, and even dermatological conditions [21,
25-27, 32-34] In these cases, microbiota data is typically
used as a non-invasive biomarker source to distinguish
between healthy and pathological states. However, other
studies adopt more prognostic or predictive objectives,
such as therapy response, patient survival, or
cardiovascular risk prediction [4, 19, 23, 28].

A particularly relevant trend is the emergence of multi-
disease frameworks, where models attempt to handle
multiple diagnostic targets simultaneously, as seen in
studies on cancer subtype classification or general
disease phenotype identification [20, 30]. It is also
important to note that not all models aim to detect
pathology. Some are designed to distinguish between
disease stages, evaluate liver enzyme elevation, or assess
risk of adverse events such as drug-induced diarrhea or
preterm birth [24, 27, 31]. These objectives suggest that
Al is being used not only for binary classification but also
to refine diagnostic granularity or guide preventive
interventions in complex clinical scenarios.

In addition, the predictive modeling of drug-microbiota
interactions represents a distinct use case, emphasizing
the relevance of Al in pharmacological contexts and
early-stage therapeutic screening [29]. Overall, the
reviewed literature shows that Al applications in
microbiota studies are clinically varied and evolving,
with a clear trend toward supporting personalized and
predictive medicine across diagnostic, prognostic, and
therapeutic dimensions.

V. ANALYSIS OF MODELS AND APPROACHES

The reviewed studies span both classical ML and DL
paradigms, with a clear predominance of the former. RF
appears as the most frequently employed model across
studies, reflecting its flexibility and robustness to noise
in compositional and sparse microbiome datasets [19, 20,
22,23,27,28, 30]. Its widespread use may also relate to
its low tuning requirements and compatibility with
typical preprocessing pipelines such as OTU filtering and
log-ratio transformations. Moreover, RF models often
allow for the extraction of interpretable feature
importance scores, making them attractive in biomarker
discovery contexts.

Other classical models such as SVM, logistic regression,
and gradient boosting are also commonly used, albeit
with more modest adoption. SVMs tend to appear in

December 6, 2025



R. Janwadkar, et al.: A Review...

studies with smaller or more curated feature sets [21, 26],
where margin-based separation is advantageous. Logistic
regression is used mainly in baseline comparisons or
when simplicity and interpretability are prioritized [4,
25]. Ensemble techniques like XGBoost and Extra Trees
have also been adopted, particularly when paired with
SHAP or other model-agnostic interpretability tools [24,
29]. Nevertheless, while ML offers strong baseline
performance and interpretability, its reliance on
paradigms such as decision trees may hinder scalability
when dealing with very large feature sets.

In contrast, DL models are less common and typically
reserved for tasks requiring high representational
capacity or when multimodal data is involved. Most of
these studies rely on CNNs adapted to microbiome
structures or combined with dimensionality reduction
techniques like PCA [31-34]. Notably, several works
embed phylogenetic information directly into the
network architecture, enabling structured feature
extraction from metagenomic profiles [31, 34]. Despite
achieving strong performance in specific cases, deep
models remain limited by interpretability and risk of
overfitting, especially in settings with limited data or
class imbalance.

Interestingly, hybrid approaches that combine DL with
simpler interpretable models (e.g., using CNNs for
representation followed by RF for classification) begin to
emerge as a way to balance expressiveness and
transparency [34].

VI. DATA TYPES AND PROCESSING

Across the reviewed studies, the most prevalent source of
microbiota data is the gut, obtained predominantly via
stool samples. This is expected given its rich microbial
diversity and established relevance in systemic health.
For instance, in cancer and liver-related tasks [19, 23],
fecal samples were used to build predictive models for
treatment response and patient prognosis. A smaller
group of studies used oral [26, 27] or skin-derived [33]
microbiota, showing that alternative microbial niches are
gaining relevance in disease detection but remain less
explored.

In terms of profiling methods, 16S rRNA sequencing was
the most common approach [21, 24, 25], largely due to
its lower cost and availability. However, its taxonomic
resolution typically stops at the genus level, which
introduces limitations in clinical tasks that demand
strain-level specificity. This is evident in [21], where the
model's performance dropped substantially in external
validation, partly due to the inability to resolve microbial
features at finer taxonomic levels. In contrast, studies
using whole-metagenome sequencing [19, 25] achieved
better generalization and deeper insights, albeit with
increased cost and complexity.
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A few works integrated microbiome data with
complementary modalities. [26] combined microbial
abundance with metabolomics to diagnose oral
conditions, while [33] incorporated nail images for skin-
related classification tasks. Additionally, some studies
enriched microbial profiles with clinical metadata [4, 25],
improving interpretability and robustness. These
combinations illustrate a trend toward multi-source
integration to compensate for the limitations of
microbiome data alone.

Finally, preprocessing practices varied widely across
studies. Some used total-sum scaling or centered log-
ratio transformations [21, 25], but details were often
poorly reported, affecting reproducibility. Feature
selection was inconsistently applied, ranging from simple
abundance thresholds to complex statistical filtering [30].
This lack of standardization complicates cross-study
comparisons and model generalization. Greater
transparency in data handling remains a critical area for
improvement in microbiota-based ML.

VII. LIMITATIONS AND OPEN CHALLENGES

VII-A. Generalization and external validation

A key limitation across the reviewed studies is the scarce
use of external validation datasets. While most models
report high internal performance (often AUCs above
0.85), only a minority evaluate their generalizability on
independent cohorts. For instance, the multiclass model
in [30] showed performance drops when tested on 12
external datasets, despite strong internal metrics.
Similarly, [25] observed a decline from 0.873 AUC on
training to 0.633 on an external cohort. These findings
suggest overfitting to cohort-specific patterns, limiting
translational utility. Geographic, demographic, and
technical diversity in validation sets remains largely
unaddressed.

VII-B. Data size and heterogeneity

Many studies are constrained by limited sample sizes and
heterogeneous data sources. Works like [24] and [27]
rely on fewer than 60 subjects, restricting statistical
power and robustness. Even in larger datasets, variations
in sequencing platforms, preprocessing methods, and
taxonomic resolutions introduce noise that complicates
model training and reproducibility. Studies such as [25]
and [30] acknowledge batch effects and inter-study
differences as sources of performance degradation,
which hinder benchmarking and the development of
unified pipelines.

VII-C. Interpretability and transparency

Although some studies incorporate explainability tools
(e.g., SHAP in [24]), most lack systematic strategies for
interpreting predictions or validating selected features.
DL approaches, in particular, often prioritize
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performance over interpretability. For instance, CNN-
based models like those in [32] and [34] achieve high
AUCs but provide little insight into which microbial
features drive predictions. Moreover, few studies release
their code, feature selection procedures, or trained
models, limiting transparency and reproducibility.

VII-D. Biological noise and batch effects

Biological variability, sequencing artifacts, and the
absence of standardized procedures contribute to
inconsistent findings. In multiclass classifiers such as
[30], authors explicitly mention confounding effects and
restricted phenotype diversity as challenges. Likewise,
[25] notes heterogeneity in microbial communities and
the influence of clinical covariates. Without harmonized
preprocessing and annotation standards, microbiota-
based Al models remain vulnerable to batch effects that
compromise robustness.

VIII. FUTURE PROSPECTS

The challenges outlined above naturally point to the next
steps required to strengthen the field. Several directions
emerge as priorities for advancing the integration of Al
in microbiota-based clinical research.

First, the standardization of data processing workflows is
critical. Current pipelines for microbiota preprocessing,
feature selection, and taxonomic resolution remain
inconsistent, hampering reproducibility and
comparability across studies. Establishing community-
endorsed protocols would help ensure methodological
consistency and facilitate the aggregation of results
across cohorts and institutions. Specific practices such as
adopting log-ratio transformations (e.g., CLR, ALR) to
handle compositionality, and transitioning from OTU-
based to ASV-based pipelines to improve taxonomic
resolution and reduce ambiguity, could serve as concrete
steps toward such standardization.

Second, external validation must become routine. Many
models remain confined to single-center datasets with
limited demographic or geographic diversity, which
reduces generalizability. Incorporating multicenter
cohorts with well-characterized metadata would allow
robust cross-population evaluations and help identify
sources of variability. Beyond improving performance
assessment, such validation is essential to ensure that
models trained on microbiota data can be reliably
translated into diverse clinical settings.

Third, interpretability should be more systematically
integrated. Although some works employ post hoc
explanation methods, the field still lacks unified
approaches to make predictions transparent and clinically
actionable. Embedding interpretability frameworks into
modeling pipelines is especially important in high-stakes
applications such as early cancer detection,
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cardiovascular risk assessment, or psychiatric screening.
Methods such as LIME, SHAP, or attention-based
mechanisms could provide complementary insights and
represent promising directions for improving trust and
clinical adoption.

In addition, predictive modeling of therapeutic responses
remains underexplored. Only a small number of studies
address treatment stratification using microbiota data,
and most are limited to small cohorts or binary outcomes.
Expanding this line of work to include longitudinal
designs, multiclass endpoints, and causal inference
frameworks could provide actionable insights for
personalized treatment planning. Incorporating time-
resolved microbiota dynamics and integrating treatment
metadata would further strengthen this line of research,
enabling more precise identification of responders and
non-responders in real-world clinical contexts.

Beyond classification, future research should also
address causality. Most current models remain focused
on correlational tasks such as disease classification or
prognosis, but causal machine learning and
counterfactual analysis could provide deeper insights into
the mechanisms linking microbiota to clinical outcomes.
These approaches would help move from association to
causation, enabling the identification of drivers rather
than markers, which 1is essential for actionable
interventions.

In addition, research should expand beyond the gut to
systematically include oral, skin, vaginal, and respiratory
microbiota, which remain underrepresented despite their
clinical relevance. Methodologically, new directions
such as federated learning could facilitate cross-cohort
studies without compromising data privacy, while graph-
based models offer powerful ways to capture microbial
interaction networks. Together with causal inference,
these approaches represent promising avenues for
broadening both the scope of microbiota-based Al and its
methodological toolkit.

Finally, multimodal learning represents a promising but
fragmented frontier. While some studies have combined
microbiota data with clinical variables, metabolomics, or
imaging, data fusion methods are still largely ad hoc and

lack standardized evaluation frameworks. Future
research should prioritize the development of unified
architectures  capable = of  learning  coherent

representations across modalities and systematically
benchmarking their performance. Such approaches could
better capture the interplay between microbiota and host
factors, ultimately supporting more comprehensive
models of disease risk, progression, and treatment
response.
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IX. CONCLUSIONS

This review examines how artificial intelligence
techniques are being applied to microbiota data for
clinical purposes. To this end, we conducted a structured
analysis of selected peer-reviewed studies, focusing on
their clinical objectives, types of microbiota-derived
inputs, modeling strategies, and validation procedures.
Works were categorized to identify methodological
patterns and assess the scope of current approaches in this
emerging intersection between microbiome research and
computational methods.

Findings reveal that most studies focus on disease
classification or prognosis, often favoring interpretable
models such as decision trees and random forests. Deep
learning remains less common but is employed in
multimodal settings. Despite promising performance,
external validation is infrequent, and dataset diversity is
limited, reducing generalizability. Many studies lack
standardized  pipelines and  report = minimal
reproducibility.  Interpretability  tools rarely
implemented, limiting clinical trust.

are

Likewise, microbiota data are mainly derived from gut
samples, though oral and skin microbiomes are gaining
attention. Integration with metabolomics or imaging
remains experimental, and predictive modeling of
therapeutic response is still incipient. These trends
highlight the need for more rigorous validation, broader
data inclusion, and increased focus on explainability to
support clinical translation.
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