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Abstract— Recent advances in multimodal large language
models (MLLMs) have opened new possibilities for
biomedical image interpretation without task-specific
training. This study explores the zero-shot visual reasoning
capabilities of a leading MLLM, the ChatGPT vision model,
for two challenging biomedical image classification tasks:
electroencephalogram (EEG) signal interpretation and
digital pathology (DPATH) image diagnosis. In this work,
datasets of single-frame and three-frame EEG images and
breast cancer pathology patches were used to benchmark
performance. We show that while zero-shot MLLMs lag
specialized models in accuracy, ChatGPT’s vision model
delivers moderate performance and meaningful
explanations compared to popular supervised computer
vision models (ViT, ResNet). We also apply parameter-
efficient fine-tuning (PEFT) to an open-source MLLM
(the Qwen model) to improve accuracy across both
domains. We find that off-the-shelf ChatGPT (03-mini-
high) can serve as a strong baseline model for biomedical
tasks, highlighting the potential for model adaptation
through lightweight supervised fine-tuning. The integration
of Al-generated reasoning can enhance explainability and
decision-making in clinical contexts.

Keywords— multimodal large language models, genera-
tive artificial intelligence, EEG, digital pathology

1. INTRODUCTION

The interpretation of biomedical images, including EEG
multichannel signals and high resolution digital
histopathological images, remains a challenging task that
is central to clinical practice. This complex task requires
domain expertise, large amounts of high-quality
annotated data, and robust modeling approaches. Modern
systems using deep learning architectures, such as
convolutional neural networks (CNNs) [1][2] and vision
transformers (ViT) [3] have improved classification
accuracy in domains such as cancer detection and seizure
classification [4][5]. However, these approaches demand
vast amounts of labeled training data and domain-
specific fine-tuning, limiting their scalability and
flexibility in low-resource settings. They also lack an
ability to accurately segment data and localize findings,
which prevents widespread use in clinical settings.

In contrast, MLLMs that integrate vision and language
inputs promise zero-shot generalization: the ability to
perform tasks outside their training domain, also known
as in-context learning, when provided only with prompt-
based guidance. These models can classify images using
concise textual instructions or expert-provided examples,
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without requiring additional task-specific training. In
biomedical applications, in-context learning enables
these models to generalize to unseen image types and
diagnostic categories simply by presenting a few
annotated examples or a detailed guideline along with
some example images. In contrast, conventional
supervised learning requires labeled datasets and explicit
model fine-tuning for each new classification task. This
paradigm shift offers a powerful new mechanism for
knowledge transfer and supports flexible deployment of
Al-driven decision support in clinical applications.

Recent literature provides empirical support for the zero-
shot potential of MLLMs for biomedical image
classification tasks. The systematic evaluation of
GPT-4V demonstrated that in-context learning is
sufficient to match or even outperform specialized neural
networks on histopathology classification tasks involving
colorectal and breast tumor images [6]. Zhu et al. [7]
showed diagnostic accuracy of 77.01% for USMLE-style
questions using GPT-4V and achieved an AUC of
76.80% in detecting abnormality in chest radiography
with zero-shot prompting. Researchers also confirmed
that  vision-language  approaches can  handle
classification, segmentation, report generation, and
visual question answering (QA) with zero-shot
performance across different domains such as
histopathology and radiology with minimal domain-
specific supervision [8].

Existing literature indicates that MLLMs, even without
training on medical images, can achieve reasonable zero-
shot accuracy and produce interpretable, clinically
relevant explanations. However, performance depends
strongly on prompt design, context, and few-shot
examples. Although zero-shot accuracy is generally
lower than that of domain-specific models, this approach
greatly reduces the need for large, labeled datasets and
costly fine-tuning.

In contrast to earlier work focused mainly on qualitative
or accuracy-based comparisons, our study introduces
statistical rigor to the MLLM evaluation process. We
apply pairwise Z-tests to measure the significance of
performance differences between models, showing that
improvements from  parameter-efficient fine-
tuning (PEFT) are statistically significant at a 99%
confidence interval. This approach provides a reliable
and reproducible framework for evaluating MLLMs in
biomedical imaging.
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2. DATASET DEVELOPMENT

In this study, we evaluate the zero-shot visual reasoning
capability of a ChatGPT vision model (03-mini-high) [9]
on two demanding biomedical classification tasks:
seizure detection in EEG signals [10] and breast
histopathology [5]. To begin, we briefly describe each
corpus to underscore the importance of accurate
segmentation in these tasks.

2.1. THE NATUS AMBULATORY CORPUS

A total of 104 EEG recordings were randomly selected
from the Natus Ambulatory EEG Corpus (NAEG:
v1.0.0) [12] maximizing the diversity of patients. This
sampling method ensures that the dataset captures inter-
patient variability in seizure and background activity.
NAEG was used because these are continuous recordings
that have been carefully annotated for seizure events.

For this study, the EEG annotation process follows the
guidelines developed by Ochal et al. [11] for the TUH
EEG Seizure Corpus. EEG signals are annotated using a
set of over 25 event types, including seizure subtypes
(e.g., focal non-specific, tonic-clonic) and non-epileptic
artifacts (e.g., muscle activity, eye blinks). Events are
annotated with precise start/stop times and localized to
specific channels.

Key criteria for identifying seizures include morphology
(e.g., spike-and-slow-wave), rhythmicity, synchrony
across channels of interest, evolution over time, and
duration (>3 secs for absence seizures or > 10 sec for
other types of seizures). In this study, non-seizure events
(e.g., artifacts, background rhythms) are grouped under a
unified class named background (bckg).

Figure 1(a) shows a typical example of an absence
seizure. This is one of three seizure types we asked
ChatGPT to identify. Absence seizures are characterized
by an abrupt onset and a 3 Hz spike-and-slow-wave
morphology. A typical example of “bckg” is also shown
in Figure 1(b). This class includes any activity that is not
ictal. In this example, we observe eye movements along
with muscle artifacts.

2.2. THE TUH DIGITAL PATHOLOGY CORPUS

The TUH Digital Pathology (TUDP) Corpus [13] was
developed to support machine learning in breast cancer
pathology by providing a standardized, well-informed
annotation of digital pathology slides. Annotation is
divided into three main categories: non-cancerous,
carcinogenic and benign structures. Non-cancerous
labels include norm (normal ducts/lobules with intact
architecture), bckg (background tissue such as stroma
and adipose tissue), null (indistinguishable tissue), and
artf (artifact like pen marks or dust). Cancerous labels
include dcis (ductal carcinoma in situ characterized by
high nuclear density and preserved ductal boundaries)
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(b) a typical example of background (bckg)
Figure 1. Typical examples of annotated events in TUSZ

and indc (invasive ductal carcinoma, showing cellular
growth into surrounding tissue, unconfined, and
disorganized). Neoplastic-associated or benign labels
encompass nneo (non-neoplastic changes such as
fibrosis, hyperplasia, and intraductal papilloma),
infl (inflammatory response to abnormalities), and
susp (suspicious regions with atypical features). Images
were created by an annotation team of trained
undergraduate  annotators, with oversight from
pathologists. The staining methods include hematoxylin
and eosin (H&E) and immunohistochemistry (IHC),
which help differentiate tissue architecture.

The annotation process is described in detail in [S][14].
JPEG image patches that capture the annotated regions
were used for model development. We selected 10-12
representative JPEG images per annotation label,
resulting in a total of 101 images. This dataset was
carefully curated to ensure diversity of histological stain,
variation in tissue architecture, and clear depiction of the
defining features of each label. Examples of three types
of labels are shown in Figure 2.

(a) dcis

(b) norm (c) indc

Figure 2. Typical examples of annotated events in TUDP
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3. EXPERIMENTAL DESIGN

We designed our experimentation in two stages:
(1) prompt engineering, and (2) parameter-efficient fine-
tuning of an open-source MLLM. The end-to-end
workflow is shown in Figure 3. First, we loaded
biomedical image datasets and initialize a chat session
with the annotation guidelines. Next, we presented one
image query at a time with explicit instructions and
incremented the annotation counter until we reach the
target sample size. We then had experts review the
responses from the chat sessions, curate a representative
reasoning subset as a training set for fine-tuning and
convert it into instruction tuning format. Finally, we
initialized a pretrained multimodal LLM backbone,
configure fine-tuning hyperparameters, and performed
supervised fine-tuning across multiple epochs until the
model completes the specified number of iterations.

For prompt engineering, we uploaded the annotation
guideline, followed by a general system message. Next,
we uploaded a query image with a specific prompt to
guide ChatGPT’s output. Our query prompt was:

Query Prompt: ‘<img/> As an output, give me a
dictionary as follows:

{"label": label, "reasoning": "Correct and accurate
medical reasoning to classify the image, think of yourself
as a cancer physician/EEG technologist, and give
reasoning."}. Do not give any extra output. I repeat, do
not give extra output. This is an important task for me. You
will be penalized if you give the wrong label.”

Empirical evidence [15] exists that suggests including
specific phrases in the query prompt improves
ChatGPT’s response. This motivated us to add a warning:
“You will be penalized if you give an incorrect label” at
the end of the query prompt.

To evaluate the impact of fine-tuning, we conducted both
quantitative and qualitative analysis against prompt-
based zero-shot (ZS) responses as well as traditional deep
learning models.

3.1. CASE STUDY: EEG

To evaluate ChatGPT o3neteu-mini-high’s visual
reasoning capabilities in EEG classification, we designed
three experiments using annotated images from NAEG.
Each experiment involved prompting ChatGPT with
EEG screenshots and asking it to perform classification.

Exp. 1: SINGLE-FRAME, FOUR-WAY CLASSIFICATION

In this experiment, we classified single-frame EEG
images into one of four classes: (1) generalized seizure
(gnsz), (2) focal non-specific seizure (fnsz), (3) absence
seizure (absz), or (4) background (bckg). We utilized 104
randomly sampled images (26 per class) and obtained
25% accuracy.
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Figure 3. Workflow for prompt engineering and parameter-
efficient fine-tuning in biomedical image reasoning

ChatGPT struggled to classify absz correctly, often
mislabeling an event as musc (muscle artifact) or gped
(generalized periodic epileptiform discharges), due to its
expectation of seizure evolution. However, absz typically
starts and stops abruptly without evolution. Gnsz were
frequently misclassified as artf (artifact) or musc (muscle
artifact), especially when the image came from the mid-
ictal phase, where artifact content is high. Fnsz were
frequently missed due to the difficulty detecting low-
amplitude rhythmic activity, leading to misclassifications
such as slow (slowing) or artf (artifact). Bckg were
sometimes misinterpreted as fnsz, particularly when eye
movements or blinks were present.

We hypothesize that the lack of temporal context in
single frames limited ChatGPT’s ability to recognize
seizure evolution (pre- and postictal phases)

ExpP. 2: SINGLE-FRAME, BINARY CLASSIFICATION

To analyze how the 03-mini-high model performs when
we have binary cases, we use the same 104 images to
classify either “seizure” or “no seizure” and obtained
49% accuracy. Performance improved compared to the
first experiment due to the reduced classification
complexity. Removing seizure subtype differentiation
reduces confusion and allows accurate identification of
clear ictal vs. non-ictal signals. Simplifying the label
space helped ChatGPT focus on broad seizure indicators
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like  rhythmicity and

performance.

morphology, improving

EXxP. 3: TEMPORAL-CONTEXT, FOUR-WAY CLASSIFICATION

To identify how zero-shot prompting is affected by
context, we provided ChatGPT with three sequential
EEG screenshots (preictal, ictal, and postictal) and asked
for one of four labels: gnsz, fnsz, absz and bckg. For
conducting this experiment, we used 300 images across
100 cases (75 seizure, 25 background) and obtained an
accuracy of 35%.

Accuracy improved over the first experiment, confirming
the benefit of temporal context. Gnsz were better
recognized due to visible evolution. However, absence
seizures remained a challenge. Despite an increase in
context, abrupt onsets were frequently missed, and absz
were confused with gnsz. Context helped in some fnsz
cases where the buildup of focal rhythmic activity could
be seen over time.

Temporal input improved classification, but challenges
remained, particularly in capturing absz morphology and
onset cues. This suggests that future prompts might
benefit from emphasizing absz characteristics explicitly
or adjusting visualization (e.g., channel sensitivity).

ChatGPT achieved a high degree of accurate reasoning
when classifying gnsz as follows:

“The EEG demonstrates a clear evolution of rhythmic
epileptiform activity across nearly all channels, beginning
around 00:02:00 with low-amplitude rhythmic theta
activity that builds in amplitude and frequency into high-
amplitude, rhythmic discharges by 00:02:03 — 00:02:05.
This widespread symmetrical involvement without
localization — suggests a generalized onset. The
morphology — progressing from lower-voltage rhythmic
waves to high-voltage rhythmic spike-and-wave bursts
and then abruptly terminating — fits the pattern of a
generalized seizure. The absence of a tight 3 Hz spike-
and-wave pattern excludes typical absence, and there is
no focal evolution to indicate a partial seizure. Therefore,
the appropriate classification is a generalized non-
specific seizure (GNSZ).” (Experiment 1)

ChatGPT’s reasoning was inadequate when classifying
absz as gnsz:

"The high-amplitude spike-and-wave bursts emerge
nearly simultaneously across bilateral frontal, temporal,
and posterior channels with clear synchrony and
rhythmicity. This pattern is characteristic of a generalized
epileptic seizure rather than a focal discharge or artifact,
as it does not remain confined to a single region, nor does
it display the slower, asymmetric morphology of eye-
movement or muscle-artifact.” (Experiment 1)

Although all absence seizures are generalized, as they
involve synchronous activity across all channels,
ChatGPT should have been precise in this case. Absence
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seizures are specifically characterized by 3 Hz spike-and-
slow-wave discharges and an abrupt onset. Therefore,
this seizure should not be classified merely as a
generalized seizure, but more specifically as an absence
seizure as stated in the guidelines.

ChatGPT was nonviable when classifying bckg as fnsz
and gave the following reasoning:

“These three snapshots show rhythmic spike-and-slow-
wave complexes that arise focally — most prominently in
the left frontotemporal leads (Fpl-F7, F7-T3)— and
then evolve in frequency and morphology over more than
10 seconds before spreading. The clear focal onset with
subsequent evolution without immediate bilateral
synchronous involvement is characteristic of a focal non-
specific seizure (fusz).” (Experiment 3)

The activity that ChatGPT classified as rhythmic spike-
and-slow-wave complexes in the frontal channels is, in
fact, simply eye blinks — normal background activity for
the patient. While eye blinks can appear rhythmic, they
lack evolution and typically do not exceed 2.5 Hz, which
is necessary for seizure classification. These distinctions
are clearly outlined in the guidelines, indicating that
ChatGPT misinterpreted the features in this case.

ANNOTATOR ANALYSIS

From an annotator’s perspective, ChatGPT’s reasoning
consistently demonstrated partial understanding of EEG
patterns — highlighting  concepts  like  spike-wave
morphology, synchrony, and regional distribution.
However, its limitations include: (1) rigid assumptions
about seizure evolution (especially problematic for absz),
(2) difficulty distinguishing low-frequency artifacts from
ictal activity, and (3) lack of adaptability to typical EEG
conventions such as sensitivity adjustments.

Despite these shortcomings, the model’s structured
reasoning outputs were often clinically interpretable and
occasionally insightful.

3.2. CASE STUDY: DPATH

To assess the performance of the multimodal language
model within the DPATH framework, 101 high-
resolution images and standardized annotation guidelines
were used. The model is prompted to generate three
outputs: (1) whether the image contains cancer or not,
(2) the appropriate diagnostic label from the predefined
classes, and (3) a concise, pathology-informed reasoning
for its decision. No additional output and utilization of
outside sources were permitted.

After review of 101 unknown images, o3-mini-high
returned accurate cancer vs non-cancerous prediction
54% of the time and achieved correct classification of the
nine diagnostic labels in 48% of the cases. In 40% of the
reasoning outputs, evaluation shows that 03-mini-high is
successful at providing detailed, histologically accurate
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rationales that directly correspond to the structures
visible in the image. For example, in one correct
prediction of both label and cancerous vs non-cancerous
inflammation, the model accurately stated:

“The image displays a dense inflammatory infiltrate
composed predominantly of Ilymphocytes within the
fibrous stroma, without any clear evidence of ductal
structures or atypical epithelial proliferation. There is no
architectural distortion, mitotic activity, or cytologic
atypia suggestive of malignancy. This pattern is consistent
with a benign inflammatory process, not cancer.”

The response not only identified the dominant cellular
population and its context within stroma but also
appropriately ruled out malignant characteristics through
negative reasoning, demonstrating an understanding of
the histopathological features associated with abnormal
tissue architecture and lymphocyte presence.

In some cases, the o3-mini-high model correctly
distinguished between cancerous cells confined within a
duct (dcis), compared to cancer invasion of surrounding
tissue (indc). This distinction represents an important
diagnostic feature of breast cancer, and it was unexpected
that an MLLM could learn to recognize it without explicit
task-specific training In one reasoning, the model
correctly identified the differentiation between the
borders of the basement membrane, surrounding tissue
and cancerous cells, stating:

“This image shows a duct completely filled with a
monomorphic population of atypical epithelial cells,
demonstrating cribriform and solid architecture with
clear preservation of the basement membrane — classic
features of DCIS. The nuclei are enlarged, irregular, and
hyperchromatic, consistent with neoplastic changes.
There is no evidence of stromal invasion, so this is non-
invasive but still classified as cancer (in situ).”

The model’s ability to generate decisions and
demonstrate  accurate  identification of  subtle
histomorphological features is notable. The ability to
differentiate the ductal unit from the surrounding stroma,
as well as distinct cellular boundaries and tissue
organization, reflects a level of understanding that
closely aligns with annotators perspective. When
describing a normal ductal formation, the model properly
identifies three separate aspects of normal ductal
formations to contextualize its decision:

“This image depicts small ductal and lobular units
embedded in fibrous stroma. The ducts and lobules show
bland nuclear morphology with clear luminal spaces, no
architectural distortion, and preservation of the dual cell
layers (epithelial and myoepithelial). The stromal
background is unremarkable. There are no cytologic
atypia or features of neoplasia. This is consistent with
normal breast tissue histology.”

However, the model’s output was not uniformly reliable.
Several responses included an improper description of
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tissue architecture. A common error pattern involved the
misclassification of benign, non-neoplastic structures as
malignant cells. Identifying any abnormality as either
suspicious (susp label or labeling it as cancer). In these
incorrect outputs, o3-mini-high’s reasoning accurately
described the characteristics associated with its predicted
label but failed to reflect the actual features present in the
image. When doing the analysis of a single normal duct,
ChatGPT 03 incorrectly predicted dcis and properly
described ductal carcinoma in situ, but the models
reasoning did not speak to the image. One reasoning
showing this is:

“The image reveals invasive epithelial structures with
irregular, angulated glands infiltrating a fibrotic stroma.
There is an absence of a continuous myoepithelial layer,
nuclear atypia, and loss of normal ductal architecture,
consistent with invasive ductal carcinoma (indc). These
features indicate malignant cells breaching the basement
membrane and invading surrounding tissue.”

In this instance, though the model correctly identified
cellular atypia, it frequently failed to distinguish between
benign and malignant processes. ChatGPT 03’s
predictions on the DPATH dataset generally fell into five
categories: (1) correct identification of the primary tissue
structure; (2) correct recognition of secondary features
such as background or artifact, while failing to classify
the main diagnostic structure; (3) misclassification of
non-neoplastic structure as malignant; (4) incorrect
labeling of an image with different or darker
immunohistochemical stains as cancerous; and
(5) complete mischaracterization of the content and label.

It is important to note that all the images only contained
a single morphological structure generally surrounded by
background stromal or adipose tissue. These errors may
prevent it from generalizing to complex contexts, and its
error rate is expected to increase if asked to analyze larger
images or whole slide images with a greater frequency of
morphological features.

ANNOTATOR ANALYSIS

From an annotator’s perspective, instances in which
ChatGPT correctly identifies pathological images are
impressive, particularly due to the depth and accuracy of
its reasoning. However, despite evaluating images of the
same label and structurally similar features, the model
frequently succeeds on one instance while failing on
another. This suggests that the ChatGPT interpretative
framework lacks generalizability across subtle changes in
tissue architecture, falling into one of the error categories
above. The reasoning behind the errors made does not
align with the structural element in the image. Therefore,
its ability to characterize pathological images appears to
vary substantially across cases. The inconsistencies show
limited model interpretability, emphasizing alignment
between human expertise and computational reasoning.
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4. FINE-TUNING USING EXPERT REASONING

We use the expert-validated subset from the previous step
as a parameter-efficient fine-tuning training dataset for
the Qwen2-VL [16] model. Following best practices for
instruction-tuning large multimodal models [17], each
training example was structured using a conversational
style: a system message provided the model with the
instruction of the classification task and valid label set, a
user message supplied the tissue image and a query
prompt, and an assistant message containing the correct
reasoning response as validated by the domain experts
and true class label. For both the EEG and DPATH
domains, we have followed the same data formatting and
training technique. One example of the preprocessed
training sample from DPATH dataset is given below:

System Prompt: "You are a medical professional
specialize in detecting cancer from pathology images.
Based on the provided pathology images and query, you
detect if the image contains label:{CLS NAMES). Also
you provide a factual reasoning about your decision.”

Query Prompt: "Given the tissue image, classify it into one
of the following categories: {CLS NAMES}. Provide a
valid JSON dictionary as output with two keys: 'label’: the
correct classification label for the digital pathology tissue
image. 'reasoning’: detailed clinical reasoning supporting
the classification, written as a pathologist would explain,

referencing histologic patterns, spatial distribution of
cells and structures, cellular morphology, and other
relevant tissue features. Output Format Example: {'label':

'dcis’, 'reasoning': 'The image shows enlarged, atypical
nuclei and increased cell density within ductal structures,

without stromal invasion—findings consistent with ductal
carcinoma in situ."}"

Assistant Response: {'label': 'right class, 'reasoning':
valid reasoning text'}"

We train the base model using a technique called Low-
Rank Adaptation (LoRA) [18], which is an effective
parameter-efficient fine-tuning technique for large
language and vision models. Instead of updating all the
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and mixed-precision training (using bf16 precision), both
of which helped keep memory usage low and speed up
training. All the training and evaluation were done on a
single NVIDIA GPU where the process took 12 GB of
memory, along with about 4 GB of system RAM. Each
epoch took around 2,212 seconds to complete. During
response generation, we used a max token size of 1,024,
and each response took around 48 seconds.

In Table 1, we summarize several key insights about the
comparative strengths of MLLMs (03-mini-high and
Qwen) and traditional computer vision models (ResNet,
ViT) on complex biomedical classification tasks. For
EEG, we use two classes by collapsing “gnsz”, “absz”
and “fnsz” into “seiz”, alongside “bckg”. From the
prompt engineering (Step-1), we obtained expert
validated 25 correct reasoning texts generated by o03-
mini-high model. In these training samples, the label
distribution is: bckg (13) and seiz (12).

To evaluate the robustness of the observed performance
differences, we present pairwise Z-tests across all model
combinations for both datasets in Figure 4. The darker
cells represent higher p-values while “n.s.” denotes non-
significant results. For EEG, the fine-tuned Qwen model
significantly outperformed both its zero-shot variant (p =
0.0024) and the pretrained ResNet baseline
(» =0.0024). For DPATH, most inter-model
comparisons were significant at a 99% confidence
interval, demonstrating clear separability among multi-
modal and domain-specific models.

For EEG, the accuracy of the zero-shot (ZS) variant of
Qwen, which was 74% (77/104), matches the pretrained
version of ResNet. We used a ResNet model pretrained
on ImageNet. However, fine-tuning performed worse

Table 1. Performance  comparison  of  zero-shot (ZS)
prompting, a pretrained model (PT) and a domain-specific
fine-tuned (FT) model

model’s parameters, LoORA only adds and updates small, Acc | Prec | Rec | AUC
trainable adapters inside specific parts of the network. Data | System | Alg | (%) | (%) | (%) | (%)
For this experiment, we used Qwen2-VL-7B Instruct [16] o3 7S | 49.04 | 54.84| 55.96!| 55.96
as our base model, loaded it in an efficient 4-bit quantized Qwen | ZS | 7404 | 37.02] 50.00| 50.00
format to optimize memory usage, and applied LoRA E :

: : . E | Qwen | FT | 53.85 | 61.76| 64.02| 64.02
adapters to its cross-attention layers. The configuration G
for LoRA was set to a rank of 8, alpha of 16, and dropout ResNet| PT | 74.04 | 37.02| 50.00| 50.00
of 0.05, balancing training efficiency and capacity. After ResNet | FT |100.00| 100.00| 100.00 | 100.00
applying LoRA, 2.5M parameters were set as trainable 03 7S | 48.51 | 45.53| 42.03| 74.22
?}?tt()f t}le t%tal tagp(;gzjlma;tillly 8.3]?i pla’lrameters,tmeamng b Qwen | ZS | 5.94 1151 1429 48.64

at only about 0.03% of the model’s parameters were
updated during fine.tuning. p | Qwen | FT | 2871 | 4825| 3820 6243
A |ResNet| PT | 16.83 337 11.81| 47.08

We tra(lined ghe r?odel forl2? epo;:hs, uiﬂltng a ?itc? size of ITI ResNet | FT | 6832 | 77.13| 5931] 7623
one and gradient accumulation steps of two. The learning ViT | PT | 1285 | 1141| 1285 47.82
rate was set at 2e-04, a value chosen for stable training in -
low-data regions. We also enable gradient checkpointing ViT | FT | 75.25 | 79.16| 70.27| 82.45
979-8-3503-8857-2/24/$31.00 ©2025 IEEE IEEE SPMB 2025 December 6, 2025
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Figure 4. Statistical significance tests

than the ZS version for the Qwen model because the
training samples were limited. During evaluation, we
used 104 samples, with the majority belonging to “seiz”
(77 samples). The Qwen ZS version predicted all
evaluation samples as “seiz,” leading to high accuracy. In
contrast, the fine-tuned version correctly predicted
33 samples as “seiz” and 23 samples as “bckg”, with the
remaining samples misclassified. The precision score for
the fine-tuned and zero-shot versions was 61% and 37%,
respectively, which suggests that the fine-tuned Qwen
model is a better classifier than the ZS version.

For DPATH, we observe a similar pattern, with accuracy
improving after fine-tuning (from 6% ZS to 29%). From
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Step-1, we collected 48 correct reasoning texts, with the
majority belonging to “indc” (14), followed by “bckg”
(10), “norm” (8), “infl” (7), “dcis” (6), and “nneo” (3).
Both the ZS and FT versions show a bias toward “dcis”
as it was the most accurate class prediction during
evaluation, while “nneo” was the most misclassified
class, which is expected due to the limited number of
training samples. The AUC score of the Qwen fine-tuned
version (62%) is also comparable to that of the ResNet-
FT model (76%), suggesting that PEFT can achieve
statistically significant discriminative capability even
with limited training data.

Another interesting observation for DPATH dataset is
that the zero-shot (ZS) performance of 03-mini-high and
Qwen is comparable to, and in some cases exceeds, that
of the pretrained ViT and ResNet models. Similar to the
MLLM models, ViT and ResNet are trained on natural
images rather than biomedical images. The 03-mini-high
ZS model achieved an AUC of 74%, which is
substantially higher than the pretrained ResNet (47%)
and ViT (48%) models. Pairwise Z-test analysis also
confirms that this improvement is statistically significant
at the 99% confidence interval, indicating the robustness
of the observed difference. Consequently, the 03-mini-
high ZS model should be considered as a baseline for
future biomedical image classification studies, besides
conventional architectures such as ResNet and ViT.

In both datasets, the domain-specific deep learning
models perform best, as they were trained with a large
number of EEG and DPATH images from classification
tasks. We developed these domain-specific models upon
using our open-source EEG [19] and digital pathology
toolboxes [13].

5. SUMMARY

In this paper, we have:

o introduced a two-step approach combining prompt
engineering and parameter-efficient fine-tuning to assess
and enhance the reasoning abilities of MLLMs;

o developed a structured ZS prompting framework that
uses annotation guidelines to provide ChatGPT with
additional context;

e benchmarked MLLMs against domain-specific
supervised vision models (ResNet and ViT);

o conducted expert reviews of the models’ reasoning
outputs to evaluate interpretability and provide
actionable clinical insights;

o performed pairwise Z-test analyses to assess statistical
significance  between models, confirming that
improvements from PEFT are significant at the 99%
confidence level.

Our study demonstrates that multimodal large language
models (MLLMs) such as ChatGPT-03 and Qwen can
perform ZS biomedical image classification and generate
clinically relevant reasoning, even without domain-
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specific training. Our findings show that, while MLLMs
currently lag supervised models in raw accuracy, they
can provide statistically significant classification results
along with insightful and human-interpretable
explanations. In particular, the ChatGPT model excelled
in digital pathology tasks, showing clear differentiation
between cancerous and non-cancerous features in breast
tissue images.

However, the model demonstrated reduced effectiveness
in interpreting EEG signals, likely due to the need for
temporal and contextual reasoning. The reason behind
this difference is that DPATH images offer visually rich
spatially organized patterns that align well with the
capabilities of MLLMs, while EEG interpretation
requires nuanced context and an understanding of
underlying signal dynamics, which current visual
language models do not fully capture. Experimenting
further with MLLMs for EEG analysis remains valuable,
as advances in model architecture and prompt design
could improve their ability to reason over signal data.

Our findings validate that the improvements achieved
through parameter-efficient fine-tuning are statistically
meaningful within the limits of small-sample evaluation.
However, given the dataset sizes (EEG =104,
DPATH = 101), we explicitly frame these results as a
proof-of-concept rather than conclusive evidence. We
propose that future work should integrate model-
generated reasoning as a structured, explainable output,
enabling experts to validate and fine-tune model
decisions. In addition, we plan to expand the dataset scale
and diversity, implement k-fold cross-validation, and
develop a systematic prompt-engineering framework to
reduce human bias and enhance reproducibility.

ACKNOWLEDGMENTS

This material is based on work supported by several
organizations over the years including the National
Science Foundation (grants nos. 2211841 and 1726188
and 1925494), the Temple University Catalytic
Collaborative Funding Initiative and most recently by the
Pennsylvania Breast Cancer Coalition Breast and
Cervical Cancer Research Initiative. Any opinions,
findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not
necessarily reflect the views of these organizations.

REFERENCES

[1] K.He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), Las Vegas, Nevada, USA, 2016, pp. 770-778.
doi: 10.1109/CVPR.2016.90.

[2] M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling
for Convolutional Neural Networks,” in Proceedings of the
International Conference on Machine Learning (ICML), K.
Chaudhuri and R. Salakhutdinov, Eds., in Proceedings of

979-8-3503-8857-2/24/$31.00 ©2025 IEEE

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

IEEE SPMB 2025

Page 8 of 9

Machine Learning Research, vol. 97. Long Beach, California,
USA: PMLR, May 2019, pp. 6105-6114. url: http://
proceedings.mlr.press/v97/tanl9a.html.

A. Dosovitskiy et al., “An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale,” in Proceedings of
the International Conference on Learning Representations
(ICLR), Vienna, Austria: OpenReview.net, 2021, pp. 1-21.
url: https://iclr.cc/virtual/2021/oral/3458.

V. Khalkhali, N. Shawki, V. Shah, M. Golmohammadi, I. Obeid,
and J. Picone, “Low Latency Real-Time Seizure Detection Using
Transfer Deep Learning,” in Proceedings of the IEEE Signal
Processing in Medicine and Biology Symposium (SPMB), 1.
Obeid, 1. Selesnick, and J. Picone, Eds., Philadelphia,
Pennsylvania, USA: IEEE, 2021, pp. 1-7. doi: 10.1109/
SPMB52430.2021.9672285.

D. Hackel et al., “Enabling Microsegmentation: Digital Pathology
Corpora for Advanced Model Development,” in Signal
Processing in Medicine and Biology: Applications of Artificial
Intelligence in Medicine and Biology, vol. 1, New York City, New
York, USA: Springer, 2026, p. 50. [Online]. Available:
https://isip.piconepress.com/publications/book_sections/2026/sp
ringer/dpath/ (in publication).

D. Ferber et al., “In-context learning enables multimodal large
language models to classify cancer pathology images,” Nature
Communications, vol. 15, no. 1, p. 10104, Nov. 2024,
doi: 10.1038/541467-024-51465-9.

L. Zhu et al., “Step into the era of large multimodal models: a pilot
study on ChatGPT-4V(ision)’s ability to interpret radiological
images,” Int J Surg, vol. 110, no. 7, pp. 4096-4102, Mar. 2024,
doi: 10.1097/759.0000000000001359.

R. Al Saad et al., “Multimodal Large Language Models in Health
Care: Applications, Challenges, and Future Outlook,” J Med
Internet Res, vol. 26, p. €59505, Sep. 2024, doi: 10.2196/59505.

“OpenAl 03-mini.” Accessed: Aug. 01, 2025. [Online].
Available: https://openai.com/index/openai-o3-mini/.

J. Picone, “The Temple University Hospital EEG Corpus,” in
International Congress of Clinical Neurophysiology, Geneva,
Switzerland: International Federation of  Clinical
Neurophysiology, 2022, p.l. url: www.isip.piconepress.com/
publications/presentations_misc/2022/iccn/tuh_eeg/.

D. Ochal, S. Rahman, S. Ferrell, T. Elseify, I. Obeid, and J.
Picone, “The Temple University Hospital EEG Corpus:
Annotation Guidelines,” Temple University, Philadelphia,
Pennsylvania, USA, 2020. url: www.isip.piconepress.com/
publications/reports/2020/tuh_eeg/annotations.

A.-M. Melles et al.,, “Annotation of Ambulatory EEGs,” in
Proceedings of the IEEE Signal Processing in Medicine and
Biology Symposium, Philadelphia, Pennsylvania, USA: IEEE,
Dec. 2024, pp. 1-4. doi: 10.1109/SPMB62441.2024.10842264.
M. Bagritsevich, J. Picone, and I. Obeid, “The TUH Digital
Pathology Corpus.” [Online]. Available: www.isip.piconepress.
com/projects/nedc/html/tuh_dpath/.

S. S. Shalamzari et al, “Big Data Resources for Digital
Pathology,” in Proceedings of the IEEE Signal Processing in
Medicine and Biology Symposium, Philadelphia, Pennsylvania,
USA: IEEE, 2023, pp. 1-19. doi: 10.1109/SPMB59478.2023.
10372721.

C. Li et al., “Large Language Models Understand and Can be
Enhanced by Emotional Stimuli,” Nov. 12, 2023, arXiv:
arXiv:2307.11760. doi: 10.48550/arXiv.2307.11760.

A. Yang et al., “Qwen2 Technical Report,” Sep. 10, 2024, arXiv:
arXiv:2407.10671. doi: 10.48550/arXiv.2407.10671.

H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual Instruction Tuning,”
in Advances in Neural Information Processing Systems, A. Oh, T.
Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine,

December 6, 2025



S. Purba et al.: Assessing Visual Reasoning... Page 9 of 9

Eds., Curran Associates, Inc., 2023, pp. 34892-34916.
doi: 10.48550/arXiv.2304.08485.

[18] E. Hu et al., “LoRA: Low-Rank Adaptation of Large Language
Models.,” International Conference on Learning Representation
s5,2022. doi: 10.48550/arXiv.2106.09685.

[19] S. Rahman, M. Miranda, I. Obeid, and J. Picone, “Software and
Data Resources to Advance Machine Learning Research in
Electroencephalography,” in Proceedings of the IEEE Signal
Processing in Medicine and Biology Symposium (SPMB),
1. Obeid, 1. Selesnick, and J.Picone, Eds., Philadelphia,
Pennsylvania, USA:IEEE, 2019, pp. 1-4. doi: 10.1109/
SPMB47826.2019.9037851.

979-8-3503-8857-2/24/$31.00 ©2025 IEEE IEEE SPMB 2025 December 6, 2025



