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Abstract— Recent advances in multimodal large language 
models (MLLMs) have opened new possibilities for 
biomedical image interpretation without task-specific 
training. This study explores the zero-shot visual reasoning 
capabilities of a leading MLLM, the ChatGPT vision model, 
for two challenging biomedical image classification tasks: 
electroencephalogram (EEG) signal interpretation and 
digital pathology (DPATH) image diagnosis. In this work, 
datasets of single-frame and three-frame EEG images and 
breast cancer pathology patches were used to benchmark 
performance. We show that while zero-shot MLLMs lag 
specialized models in accuracy, ChatGPT’s vision model 
delivers moderate performance and meaningful 
explanations compared to popular supervised computer 
vision models (ViT, ResNet). We also apply parameter-
efficient fine-tuning (PEFT) to an open-source MLLM 
(the Qwen model) to improve accuracy across both 
domains. We find that off-the-shelf ChatGPT (o3-mini-
high) can serve as a strong baseline model for biomedical 
tasks, highlighting the potential for model adaptation 
through lightweight supervised fine-tuning. The integration 
of AI-generated reasoning can enhance explainability and 
decision-making in clinical contexts. 

Keywords— multimodal large language models, genera-
tive artificial intelligence, EEG, digital pathology 

1. INTRODUCTION 

The interpretation of biomedical images, including EEG 
multichannel signals and high resolution digital 
histopathological images, remains a challenging task that 
is central to clinical practice. This complex task requires 
domain expertise, large amounts of high-quality 
annotated data, and robust modeling approaches. Modern 
systems using deep learning architectures, such as 
convolutional neural networks (CNNs) [1][2] and vision 
transformers (ViT) [3] have improved classification 
accuracy in domains such as cancer detection and seizure 
classification [4][5]. However, these approaches demand 
vast amounts of labeled training data and domain-
specific fine-tuning, limiting their scalability and 
flexibility in low-resource settings. They also lack an 
ability to accurately segment data and localize findings, 
which prevents widespread use in clinical settings.  

In contrast, MLLMs that integrate vision and language 
inputs promise zero-shot generalization: the ability to 
perform tasks outside their training domain, also known 
as in-context learning, when provided only with prompt-
based guidance. These models can classify images using 
concise textual instructions or expert-provided examples, 

without requiring additional task-specific training. In 
biomedical applications, in-context learning enables 
these models to generalize to unseen image types and 
diagnostic categories simply by presenting a few 
annotated examples or a detailed guideline along with 
some example images. In contrast, conventional 
supervised learning requires labeled datasets and explicit 
model fine-tuning for each new classification task. This 
paradigm shift offers a powerful new mechanism for 
knowledge transfer and supports flexible deployment of 
AI-driven decision support in clinical applications. 

Recent literature provides empirical support for the zero-
shot potential of MLLMs for biomedical image 
classification tasks. The systematic evaluation of 
GPT-4V demonstrated that in-context learning is 
sufficient to match or even outperform specialized neural 
networks on histopathology classification tasks involving 
colorectal and breast tumor images [6]. Zhu et al. [7] 
showed diagnostic accuracy of 77.01% for USMLE-style 
questions using GPT‑4V and achieved an AUC of 
76.80% in detecting abnormality in chest radiography 
with zero-shot prompting. Researchers also confirmed 
that vision-language approaches can handle 
classification, segmentation, report generation, and 
visual question answering (QA) with zero-shot 
performance across different domains such as 
histopathology and radiology with minimal domain-
specific supervision [8]. 

Existing literature indicates that MLLMs, even without 
training on medical images, can achieve reasonable zero-
shot accuracy and produce interpretable, clinically 
relevant explanations. However, performance depends 
strongly on prompt design, context, and few-shot 
examples. Although zero-shot accuracy is generally 
lower than that of domain-specific models, this approach 
greatly reduces the need for large, labeled datasets and 
costly fine-tuning. 

In contrast to earlier work focused mainly on qualitative 
or accuracy-based comparisons, our study introduces 
statistical rigor to the MLLM evaluation process. We 
apply pairwise Z-tests to measure the significance of 
performance differences between models, showing that 
improvements from parameter-efficient fine-
tuning (PEFT) are statistically significant at a 99% 
confidence interval. This approach provides a reliable 
and reproducible framework for evaluating MLLMs in 
biomedical imaging. 
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2. DATASET DEVELOPMENT 

In this study, we evaluate the zero-shot visual reasoning 
capability of a ChatGPT vision model (o3-mini-high) [9] 
on two demanding biomedical classification tasks: 
seizure detection in EEG signals [10] and breast 
histopathology [5]. To begin, we briefly describe each 
corpus to underscore the importance of accurate 
segmentation in these tasks. 

2.1. THE NATUS AMBULATORY CORPUS 

A total of 104 EEG recordings were randomly selected 
from the Natus Ambulatory EEG Corpus (NAEG: 
v1.0.0) [12] maximizing the diversity of patients. This 
sampling method ensures that the dataset captures inter-
patient variability in seizure and background activity. 
NAEG was used because these are continuous recordings 
that have been carefully annotated for seizure events. 

For this study, the EEG annotation process follows the 
guidelines developed by Ochal et al. [11] for the TUH 
EEG Seizure Corpus. EEG signals are annotated using a 
set of over 25 event types, including seizure subtypes 
(e.g., focal non-specific, tonic-clonic) and non-epileptic 
artifacts (e.g., muscle activity, eye blinks). Events are 
annotated with precise start/stop times and localized to 
specific channels. 

Key criteria for identifying seizures include morphology 
(e.g., spike-and-slow-wave), rhythmicity, synchrony 
across channels of interest, evolution over time, and 
duration (> 3 secs for absence seizures or > 10 sec for 
other types of seizures). In this study, non-seizure events 
(e.g., artifacts, background rhythms) are grouped under a 
unified class named background (bckg). 

Figure 1(a) shows a typical example of an absence 
seizure. This is one of three seizure types we asked 
ChatGPT to identify. Absence seizures are characterized 
by an abrupt onset and a 3 Hz spike-and-slow-wave 
morphology. A typical example of “bckg” is also shown 
in Figure 1(b). This class includes any activity that is not 
ictal. In this example, we observe eye movements along 
with muscle artifacts. 

2.2. THE TUH DIGITAL PATHOLOGY CORPUS 

 The TUH Digital Pathology (TUDP) Corpus [13] was 
developed to support machine learning in breast cancer 
pathology by providing a standardized, well-informed 
annotation of digital pathology slides. Annotation is 
divided into three main categories: non-cancerous, 
carcinogenic and benign structures. Non-cancerous 
labels include norm (normal ducts/lobules with intact 
architecture), bckg (background tissue such as stroma 
and adipose tissue), null (indistinguishable tissue), and 
artf (artifact like pen marks or dust). Cancerous labels 
include dcis (ductal carcinoma in situ characterized by 
high nuclear density and preserved ductal boundaries) 

and indc (invasive ductal carcinoma, showing cellular 
growth into surrounding tissue, unconfined, and 
disorganized). Neoplastic-associated or benign labels 
encompass nneo (non-neoplastic changes such as 
fibrosis, hyperplasia, and intraductal papilloma), 
infl (inflammatory response to abnormalities), and 
susp (suspicious regions with atypical features). Images 
were created by an annotation team of trained 
undergraduate annotators, with oversight from 
pathologists. The staining methods include hematoxylin 
and eosin (H&E) and immunohistochemistry (IHC), 
which help differentiate tissue architecture. 

The annotation process is described in detail in [5][14]. 
JPEG image patches that capture the annotated regions 
were used for model development. We selected 10-12 
representative JPEG images per annotation label, 
resulting in a total of 101 images. This dataset was 
carefully curated to ensure diversity of histological stain, 
variation in tissue architecture, and clear depiction of the 
defining features of each label. Examples of three types 
of labels are shown in Figure 2. 

       
 (a) dcis (b) norm (c) indc 

Figure 2. Typical examples of annotated events in TUDP 

 

 
(a) a typical absence seizure (absz) 

 
(b) a typical example of background (bckg) 

Figure 1. Typical examples of annotated events in TUSZ 
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3. EXPERIMENTAL DESIGN 

We designed our experimentation in two stages: 
(1) prompt engineering, and (2) parameter-efficient fine-
tuning of an open-source MLLM. The end-to-end 
workflow is shown in Figure 3. First, we loaded 
biomedical image datasets and initialize a chat session 
with the annotation guidelines. Next, we presented one 
image query at a time with explicit instructions and 
incremented the annotation counter until we reach the 
target sample size. We then had experts review the 
responses from the chat sessions, curate a representative 
reasoning subset as a training set for fine-tuning and 
convert it into instruction tuning format. Finally, we 
initialized a pretrained multimodal LLM backbone, 
configure fine-tuning hyperparameters, and performed 
supervised fine-tuning across multiple epochs until the 
model completes the specified number of iterations.  

For prompt engineering, we uploaded the annotation 
guideline, followed by a general system message. Next, 
we uploaded a query image with a specific prompt to 
guide ChatGPT’s output. Our query prompt was: 
Query Prompt: ‘<img/> As an output, give me a 
dictionary as follows: 

{"label": label, "reasoning": "Correct and accurate 
medical reasoning to classify the image, think of yourself 
as a cancer physician/EEG technologist, and give 
reasoning."}. Do not give any extra output. I repeat, do 
not give extra output. This is an important task for me. You 
will be penalized if you give the wrong label.” 

Empirical evidence [15] exists that suggests including 
specific phrases in the query prompt improves 
ChatGPT’s response. This motivated us to add a warning: 
“You will be penalized if you give an incorrect label” at 
the end of the query prompt. 

To evaluate the impact of fine-tuning, we conducted both 
quantitative and qualitative analysis against prompt-
based zero-shot (ZS) responses as well as traditional deep 
learning models. 

3.1. CASE STUDY: EEG 

To evaluate ChatGPT o3neteu-mini-high’s visual 
reasoning capabilities in EEG classification, we designed 
three experiments using annotated images from NAEG. 
Each experiment involved prompting ChatGPT with 
EEG screenshots and asking it to perform classification.  

EXP. 1: SINGLE-FRAME, FOUR-WAY CLASSIFICATION 

In this experiment, we classified single-frame EEG 
images into one of four classes: (1) generalized seizure 
(gnsz), (2) focal non-specific seizure (fnsz), (3) absence 
seizure (absz), or (4) background (bckg). We utilized 104 
randomly sampled images (26 per class) and obtained 
25% accuracy. 

ChatGPT struggled to classify absz correctly, often 
mislabeling an event as musc (muscle artifact) or gped 
(generalized periodic epileptiform discharges), due to its 
expectation of seizure evolution. However, absz typically 
starts and stops abruptly without evolution. Gnsz were 
frequently misclassified as artf (artifact) or musc (muscle 
artifact), especially when the image came from the mid-
ictal phase, where artifact content is high. Fnsz were 
frequently missed due to the difficulty detecting low-
amplitude rhythmic activity, leading to misclassifications 
such as slow (slowing) or artf (artifact). Bckg were 
sometimes misinterpreted as fnsz, particularly when eye 
movements or blinks were present. 

We hypothesize that the lack of temporal context in 
single frames limited ChatGPT’s ability to recognize 
seizure evolution (pre- and postictal phases) 

EXP. 2: SINGLE-FRAME, BINARY CLASSIFICATION 

To analyze how the o3-mini-high model performs when 
we have binary cases, we use the same 104 images to 
classify either “seizure” or “no seizure” and obtained 
49% accuracy. Performance improved compared to the 
first experiment due to the reduced classification 
complexity. Removing seizure subtype differentiation 
reduces confusion and allows accurate identification of 
clear ictal vs. non-ictal signals. Simplifying the label 
space helped ChatGPT focus on broad seizure indicators 

 
Figure 3. Workflow for prompt engineering and parameter-
efficient fine-tuning in biomedical image reasoning 
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like rhythmicity and morphology, improving 
performance. 

EXP. 3: TEMPORAL-CONTEXT, FOUR-WAY CLASSIFICATION 

To identify how zero-shot prompting is affected by 
context, we provided ChatGPT with three sequential 
EEG screenshots (preictal, ictal, and postictal) and asked 
for one of four labels: gnsz, fnsz, absz and bckg. For 
conducting this experiment, we used 300 images across 
100 cases (75 seizure, 25 background) and obtained an 
accuracy of 35%. 

Accuracy improved over the first experiment, confirming 
the benefit of temporal context. Gnsz were better 
recognized due to visible evolution. However, absence 
seizures remained a challenge. Despite an increase in 
context, abrupt onsets were frequently missed, and absz 
were confused with gnsz. Context helped in some fnsz 
cases where the buildup of focal rhythmic activity could 
be seen over time. 

Temporal input improved classification, but challenges 
remained, particularly in capturing absz morphology and 
onset cues. This suggests that future prompts might 
benefit from emphasizing absz characteristics explicitly 
or adjusting visualization (e.g., channel sensitivity). 

ChatGPT achieved a high degree of accurate reasoning 
when classifying gnsz as follows: 
“The EEG demonstrates a clear evolution of rhythmic 
epileptiform activity across nearly all channels, beginning 
around 00:02:00 with low‐amplitude rhythmic theta 
activity that builds in amplitude and frequency into high‐
amplitude, rhythmic discharges by 00:02:03 – 00:02:05. 
This widespread symmetrical involvement without 
localization suggests a generalized onset. The 
morphology — progressing from lower‐voltage rhythmic 
waves to high‐voltage rhythmic spike‐and‐wave bursts 
and then abruptly terminating — fits the pattern of a 
generalized seizure. The absence of a tight 3 Hz spike‐
and‐wave pattern excludes typical absence, and there is 
no focal evolution to indicate a partial seizure. Therefore, 
the appropriate classification is a generalized non‐
specific seizure (GNSZ).” (Experiment 1) 

ChatGPT’s reasoning was inadequate when classifying 
absz as gnsz: 
”The high-amplitude spike‐and‐wave bursts emerge 
nearly simultaneously across bilateral frontal, temporal, 
and posterior channels with clear synchrony and 
rhythmicity. This pattern is characteristic of a generalized 
epileptic seizure rather than a focal discharge or artifact, 
as it does not remain confined to a single region, nor does 
it display the slower, asymmetric morphology of eye‐
movement or muscle‐artifact.” (Experiment 1) 

Although all absence seizures are generalized, as they 
involve synchronous activity across all channels, 
ChatGPT should have been precise in this case. Absence 

seizures are specifically characterized by 3 Hz spike-and-
slow-wave discharges and an abrupt onset. Therefore, 
this seizure should not be classified merely as a 
generalized seizure, but more specifically as an absence 
seizure as stated in the guidelines. 

ChatGPT was nonviable when classifying bckg as fnsz 
and gave the following reasoning: 
“These three snapshots show rhythmic spike-and-slow-
wave complexes that arise focally — most prominently in 
the left frontotemporal leads (Fp1–F7, F7–T3) — and 
then evolve in frequency and morphology over more than 
10 seconds before spreading. The clear focal onset with 
subsequent evolution without immediate bilateral 
synchronous involvement is characteristic of a focal non-
specific seizure (fnsz).” (Experiment 3) 

The activity that ChatGPT classified as rhythmic spike-
and-slow-wave complexes in the frontal channels is, in 
fact, simply eye blinks – normal background activity for 
the patient. While eye blinks can appear rhythmic, they 
lack evolution and typically do not exceed 2.5 Hz, which 
is necessary for seizure classification. These distinctions 
are clearly outlined in the guidelines, indicating that 
ChatGPT misinterpreted the features in this case. 

ANNOTATOR ANALYSIS 

From an annotator’s perspective, ChatGPT’s reasoning 
consistently demonstrated partial understanding of EEG 
patterns – highlighting concepts like spike-wave 
morphology, synchrony, and regional distribution. 
However, its limitations include: (1) rigid assumptions 
about seizure evolution (especially problematic for absz), 
(2) difficulty distinguishing low-frequency artifacts from 
ictal activity, and (3) lack of adaptability to typical EEG 
conventions such as sensitivity adjustments. 

Despite these shortcomings, the model’s structured 
reasoning outputs were often clinically interpretable and 
occasionally insightful. 

3.2. CASE STUDY: DPATH 

To assess the performance of the multimodal language 
model within the DPATH framework, 101 high-
resolution images and standardized annotation guidelines 
were used. The model is prompted to generate three 
outputs: (1) whether the image contains cancer or not, 
(2) the appropriate diagnostic label from the predefined 
classes, and (3) a concise, pathology-informed reasoning 
for its decision. No additional output and utilization of 
outside sources were permitted.  

After review of 101 unknown images, o3-mini-high 
returned accurate cancer vs non-cancerous prediction 
54% of the time and achieved correct classification of the 
nine diagnostic labels in 48% of the cases. In 40% of the 
reasoning outputs, evaluation shows that o3-mini-high is 
successful at providing detailed, histologically accurate 
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rationales that directly correspond to the structures 
visible in the image. For example, in one correct 
prediction of both label and cancerous vs non-cancerous 
inflammation, the model accurately stated:  
“The image displays a dense inflammatory infiltrate 
composed predominantly of lymphocytes within the 
fibrous stroma, without any clear evidence of ductal 
structures or atypical epithelial proliferation. There is no 
architectural distortion, mitotic activity, or cytologic 
atypia suggestive of malignancy. This pattern is consistent 
with a benign inflammatory process, not cancer.”  

The response not only identified the dominant cellular 
population and its context within stroma but also 
appropriately ruled out malignant characteristics through 
negative reasoning, demonstrating an understanding of 
the histopathological features associated with abnormal 
tissue architecture and lymphocyte presence.  

In some cases, the o3-mini-high model correctly 
distinguished between cancerous cells confined within a 
duct (dcis), compared to cancer invasion of surrounding 
tissue (indc). This distinction represents an important 
diagnostic feature of breast cancer, and it was unexpected 
that an MLLM could learn to recognize it without explicit 
task-specific training In one reasoning, the model 
correctly identified the differentiation between the 
borders of the basement membrane, surrounding tissue 
and cancerous cells, stating:  
“This image shows a duct completely filled with a 
monomorphic population of atypical epithelial cells, 
demonstrating cribriform and solid architecture with 
clear preservation of the basement membrane — classic 
features of DCIS. The nuclei are enlarged, irregular, and 
hyperchromatic, consistent with neoplastic changes. 
There is no evidence of stromal invasion, so this is non-
invasive but still classified as cancer (in situ).”  

The model’s ability to generate decisions and 
demonstrate accurate identification of subtle 
histomorphological features is notable. The ability to 
differentiate the ductal unit from the surrounding stroma, 
as well as distinct cellular boundaries and tissue 
organization, reflects a level of understanding that 
closely aligns with annotators perspective. When 
describing a normal ductal formation, the model properly 
identifies three separate aspects of normal ductal 
formations to contextualize its decision:  
“This image depicts small ductal and lobular units 
embedded in fibrous stroma. The ducts and lobules show 
bland nuclear morphology with clear luminal spaces, no 
architectural distortion, and preservation of the dual cell 
layers (epithelial and myoepithelial). The stromal 
background is unremarkable. There are no cytologic 
atypia or features of neoplasia. This is consistent with 
normal breast tissue histology.” 

However, the model’s output was not uniformly reliable. 
Several responses included an improper description of 

tissue architecture. A common error pattern involved the 
misclassification of benign, non-neoplastic structures as 
malignant cells. Identifying any abnormality as either 
suspicious (susp label or labeling it as cancer). In these 
incorrect outputs, o3-mini-high’s reasoning accurately 
described the characteristics associated with its predicted 
label but failed to reflect the actual features present in the 
image. When doing the analysis of a single normal duct, 
ChatGPT o3 incorrectly predicted dcis and properly 
described ductal carcinoma in situ, but the models 
reasoning did not speak to the image. One reasoning 
showing this is:  
“The image reveals invasive epithelial structures with 
irregular, angulated glands infiltrating a fibrotic stroma. 
There is an absence of a continuous myoepithelial layer, 
nuclear atypia, and loss of normal ductal architecture, 
consistent with invasive ductal carcinoma (indc). These 
features indicate malignant cells breaching the basement 
membrane and invading surrounding tissue.” 

In this instance, though the model correctly identified 
cellular atypia, it frequently failed to distinguish between 
benign and malignant processes. ChatGPT o3’s 
predictions on the DPATH dataset generally fell into five 
categories: (1) correct identification of the primary tissue 
structure; (2) correct recognition of secondary features 
such as background or artifact, while failing to classify 
the main diagnostic structure; (3) misclassification of 
non-neoplastic structure as malignant; (4) incorrect 
labeling of an image with different or darker 
immunohistochemical stains as cancerous; and 
(5) complete mischaracterization of the content and label. 

It is important to note that all the images only contained 
a single morphological structure generally surrounded by 
background stromal or adipose tissue. These errors may 
prevent it from generalizing to complex contexts, and its 
error rate is expected to increase if asked to analyze larger 
images or whole slide images with a greater frequency of 
morphological features.  

ANNOTATOR ANALYSIS 

From an annotator’s perspective, instances in which 
ChatGPT correctly identifies pathological images are 
impressive, particularly due to the depth and accuracy of 
its reasoning. However, despite evaluating images of the 
same label and structurally similar features, the model 
frequently succeeds on one instance while failing on 
another. This suggests that the ChatGPT interpretative 
framework lacks generalizability across subtle changes in 
tissue architecture, falling into one of the error categories 
above. The reasoning behind the errors made does not 
align with the structural element in the image. Therefore, 
its ability to characterize pathological images appears to 
vary substantially across cases. The inconsistencies show 
limited model interpretability, emphasizing alignment 
between human expertise and computational reasoning.    
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4. FINE-TUNING USING EXPERT REASONING 

We use the expert-validated subset from the previous step 
as a parameter-efficient fine-tuning training dataset for 
the Qwen2-VL [16] model. Following best practices for 
instruction-tuning large multimodal models [17], each 
training example was structured using a conversational 
style: a system message provided the model with the 
instruction of the classification task and valid label set, a 
user message supplied the tissue image and a query 
prompt, and an assistant message containing the correct 
reasoning response as validated by the domain experts 
and true class label. For both the EEG and DPATH 
domains, we have followed the same data formatting and 
training technique. One example of the preprocessed 
training sample from DPATH dataset is given below: 
System Prompt: "You are a medical professional 
specialize in detecting cancer from pathology images. 
Based on the provided pathology images and query, you 
detect if the image contains label:{CLS_NAMES}. Also 
you provide a factual reasoning about your decision." 

Query Prompt: "Given the tissue image, classify it into one 
of the following categories: {CLS_NAMES}. Provide a 
valid JSON dictionary as output with two keys: 'label': the 
correct classification label for the digital pathology tissue 
image. 'reasoning': detailed clinical reasoning supporting 
the classification, written as a pathologist would explain, 
referencing histologic patterns, spatial distribution of 
cells and structures, cellular morphology, and other 
relevant tissue features. Output Format Example: {'label': 
'dcis', 'reasoning': 'The image shows enlarged, atypical 
nuclei and increased cell density within ductal structures, 
without stromal invasion—findings consistent with ductal 
carcinoma in situ.'}" 

Assistant Response: {'label': 'right class, 'reasoning': 
'valid reasoning text'}" 

We train the base model using a technique called Low-
Rank Adaptation (LoRA) [18], which is an effective 
parameter-efficient fine-tuning technique for large 
language and vision models. Instead of updating all the 
model’s parameters, LoRA only adds and updates small, 
trainable adapters inside specific parts of the network. 
For this experiment, we used Qwen2-VL-7B Instruct [16] 
as our base model, loaded it in an efficient 4-bit quantized 
format to optimize memory usage, and applied LoRA 
adapters to its cross-attention layers. The configuration 
for LoRA was set to a rank of 8, alpha of 16, and dropout 
of 0.05, balancing training efficiency and capacity. After 
applying LoRA, 2.5M parameters were set as trainable 
out of the total approximately 8.3B parameters, meaning 
that only about 0.03% of the model’s parameters were 
updated during fine-tuning. 

We trained the model for 20 epochs, using a batch size of 
one and gradient accumulation steps of two. The learning 
rate was set at 2e-04, a value chosen for stable training in 
low-data regions. We also enable gradient checkpointing 

and mixed-precision training (using bf16 precision), both 
of which helped keep memory usage low and speed up 
training. All the training and evaluation were done on a 
single NVIDIA GPU where the process took 12 GB of 
memory, along with about 4 GB of system RAM. Each 
epoch took around 2,212 seconds to complete. During 
response generation, we used a max token size of 1,024, 
and each response took around 48 seconds. 

In Table 1, we summarize several key insights about the 
comparative strengths of MLLMs (o3-mini-high and 
Qwen) and traditional computer vision models (ResNet, 
ViT) on complex biomedical classification tasks. For 
EEG, we use two classes by collapsing “gnsz”, “absz” 
and “fnsz” into “seiz”, alongside “bckg”. From the 
prompt engineering (Step-1), we obtained expert 
validated 25 correct reasoning texts generated by o3-
mini-high model. In these training samples, the label 
distribution is: bckg (13) and seiz (12).  

To evaluate the robustness of the observed performance 
differences, we present pairwise Z-tests across all model 
combinations for both datasets in Figure 4. The darker 
cells represent higher p-values while “n.s.” denotes non-
significant results. For EEG, the fine-tuned Qwen model 
significantly outperformed both its zero-shot variant (𝑝 =
0.0024) and the pretrained ResNet baseline 
 (𝑝 = 0.0024). For DPATH, most inter-model 
comparisons were significant at a 99% confidence 
interval, demonstrating clear separability among multi-
modal and domain-specific models.  

For EEG, the accuracy of the zero-shot (ZS) variant of 
Qwen, which was 74% (77/104), matches the pretrained 
version of ResNet. We used a ResNet model pretrained 
on ImageNet. However, fine-tuning performed worse 

Table 1. Performance comparison of zero-shot (ZS) 
prompting, a pretrained model (PT) and a domain-specific 
fine-tuned (FT) model 

Data System Alg 
Acc 
(%) 

Prec 
(%) 

Rec 
(%) 

AUC 
(%) 

E 
E 
G 

o3 ZS 49.04 54.84 55.96 55.96 
Qwen ZS 74.04 37.02 50.00 50.00 
Qwen FT 53.85 61.76 64.02 64.02 
ResNet PT 74.04 37.02 50.00 50.00 
ResNet FT 100.00 100.00 100.00 100.00 

D 
P 
A 
T 
H 

o3 ZS 48.51 45.53 42.03 74.22 
Qwen ZS 5.94 1.15 14.29 48.64 
Qwen FT 28.71 48.25 38.20 62.43 
ResNet PT 16.83 3.37 11.81 47.08 
ResNet FT 68.32 77.13 59.31 76.23 
ViT PT 14.85 11.41 12.85 47.82 
ViT FT 75.25 79.16 70.27 82.45 
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than the ZS version for the Qwen model because the 
training samples were limited. During evaluation, we 
used 104 samples, with the majority belonging to “seiz” 
(77 samples). The Qwen ZS version predicted all 
evaluation samples as “seiz,” leading to high accuracy. In 
contrast, the fine-tuned version correctly predicted 
33 samples as “seiz” and 23 samples as “bckg”, with the 
remaining samples misclassified. The precision score for 
the fine-tuned and zero-shot versions was 61% and 37%, 
respectively, which suggests that the fine-tuned Qwen 
model is a better classifier than the ZS version. 

For DPATH, we observe a similar pattern, with accuracy 
improving after fine-tuning (from 6% ZS to 29%). From 

Step-1, we collected 48 correct reasoning texts, with the 
majority belonging to “indc” (14), followed by “bckg” 
(10), “norm” (8), “infl” (7), “dcis” (6), and “nneo” (3). 
Both the ZS and FT versions show a bias toward “dcis” 
as it was the most accurate class prediction during 
evaluation, while “nneo” was the most misclassified 
class, which is expected due to the limited number of 
training samples. The AUC score of the Qwen fine-tuned 
version (62%) is also comparable to that of the ResNet-
FT model (76%), suggesting that PEFT can achieve 
statistically significant discriminative capability even 
with limited training data. 

Another interesting observation for DPATH dataset is 
that the zero-shot (ZS) performance of o3-mini-high and 
Qwen is comparable to, and in some cases exceeds, that 
of the pretrained ViT and ResNet models. Similar to the 
MLLM models, ViT and ResNet are trained on natural 
images rather than biomedical images. The o3-mini-high 
ZS model achieved an AUC of 74%, which is 
substantially higher than the pretrained ResNet (47%) 
and ViT (48%) models. Pairwise Z-test analysis also 
confirms that this improvement is statistically significant 
at the 99% confidence interval, indicating the robustness 
of the observed difference. Consequently, the o3-mini-
high ZS model should be considered as a baseline for 
future biomedical image classification studies, besides 
conventional architectures such as ResNet and ViT.  

In both datasets, the domain-specific deep learning 
models perform best, as they were trained with a large 
number of EEG and DPATH images from classification 
tasks. We developed these domain-specific models upon 
using our open-source EEG [19] and digital pathology 
toolboxes [13]. 

5. SUMMARY 

In this paper, we have: 
• introduced a two-step approach combining prompt 
engineering and parameter-efficient fine-tuning to assess 
and enhance the reasoning abilities of MLLMs; 

• developed a structured ZS prompting framework that 
uses annotation guidelines to provide ChatGPT with 
additional context; 

• benchmarked MLLMs against domain-specific 
supervised vision models (ResNet and ViT); 

• conducted expert reviews of the models’ reasoning 
outputs to evaluate interpretability and provide 
actionable clinical insights; 

• performed pairwise Z-test analyses to assess statistical 
significance between models, confirming that 
improvements from PEFT are significant at the 99% 
confidence level. 

Our study demonstrates that multimodal large language 
models (MLLMs) such as ChatGPT-o3 and Qwen can 
perform ZS biomedical image classification and generate 
clinically relevant reasoning, even without domain-

  
(a) Pairwise Z-test p-values (EEG) 

 
(b) Pairwise Z-test p-values (DPATH) 

Figure 4. Statistical significance tests 
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specific training. Our findings show that, while MLLMs 
currently lag supervised models in raw accuracy, they 
can provide statistically significant classification results 
along with insightful and human-interpretable 
explanations. In particular, the ChatGPT model excelled 
in digital pathology tasks, showing clear differentiation 
between cancerous and non-cancerous features in breast 
tissue images.  

However, the model demonstrated reduced effectiveness 
in interpreting EEG signals, likely due to the need for 
temporal and contextual reasoning. The reason behind 
this difference is that DPATH images offer visually rich 
spatially organized patterns that align well with the 
capabilities of MLLMs, while EEG interpretation 
requires nuanced context and an understanding of 
underlying signal dynamics, which current visual 
language models do not fully capture. Experimenting 
further with MLLMs for EEG analysis remains valuable, 
as advances in model architecture and prompt design 
could improve their ability to reason over signal data. 

Our findings validate that the improvements achieved 
through parameter-efficient fine-tuning are statistically 
meaningful within the limits of small-sample evaluation. 
However, given the dataset sizes (EEG = 104, 
DPATH = 101), we explicitly frame these results as a 
proof-of-concept rather than conclusive evidence. We 
propose that future work should integrate model-
generated reasoning as a structured, explainable output, 
enabling experts to validate and fine-tune model 
decisions. In addition, we plan to expand the dataset scale 
and diversity, implement k-fold cross-validation, and 
develop a systematic prompt-engineering framework to 
reduce human bias and enhance reproducibility. 
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