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Introduction

* Electroencephalography (EEG) is a low-amplitude,
: .. .. EEG Data
non-stationary brain signal that is highly vulnerable to

noise, especially in single channel recordings. eV TATATATIVASS

» Cardiac (ECG) artifacts appear in EEG due to volume
conduction, producing strong, periodic interference
that distorts neural features.

ECG Data
 Efficient denoising is critical for real-time, portable ”\/\/\“/\/\/V\”
single channel EEG systems requiring low-complexity, ECG artifact in EEG

hardware-friendly solutions. Figure 1. EEG recording and cardiac artifact contamination.

M. Nakamura and H. Shibasaki, “Elimination of EKG artifacts from EEG records: a new method of non-cephalic referential EEG recording,” Electroencephalography and clinical neurophysiology, pp. 89-92, 1987.
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Motivation

« Single channel EEG makes cardiac artifact removal difficult due to limited spatial information.

« Traditional time-domain CNNs are computationally expensive, limiting deployment on portable
and low-power EEG devices.

 Existing denoising methods struggle to balance artifact suppression and morphology
preservation, leading to signal distortion.

« There is a need for a lightweight, frequency-domain model that can efficiently remove ECG
artifacts while preserving neural information.
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Key Contributions

» A lightweight Fourier domain denoising CNN is introduced that operates entirely in the
spectral domain, reducing computational cost, memory usage, and latency.

» Introduces PhaseReLU for complex-phase nonlinear activation to preserve magnitude while
enabling non-linear phase transformations for improved cardiac artifact suppression.

« A morphology preserving loss (MPL) function is introduced that combines mean squared
error and correlation to jointly preserve amplitude fidelity and waveform morphology.
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Methods

» The proposed pipeline mixes ECG with clean EEG, processes it through FD-DCNN, and reconstructs artifact-free EEG.

EEG Data
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Figure 2. Flowchart of the proposed method.
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FD-DCNN

Proposed Method
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Figure 3. The architecture of the proposed FD-DCNN.
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Proposed Method: FD-DCNN (contd.)

» According to convolution theorem:

=)
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Figure 4. Block diagram of the FConviD layer. R(w) — Ok,R k,R(UJ) I(w) — Oék,IUk,I(CU)

« Qutput complex-valued spectrum:

Y(w) = YR(L{)) + jYI(w)

L. Chi, B. Jiang, and Y. Mu, “Fast fourier convolution,” Advances in Neural Information Processing Systems, vol. 33, pp. 4479-4488, 2020.
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Proposed Method: FD-DCNN (contd.)

* PhaseRelLU activation:

PhaseReLU (z) = |z|(cos(ReLU(¢,)) + isin(ReLU (¢,)))

where z = |z|e??* is a complex-valued spectral coefficient.

 Morphology Preserving Loss (MPL):

E — EMSE - )\Ecorr

e

<xclean ) 33>

chlean ” Hfﬁ'H

N
1 N
where Lysg = ﬁ n§:1: (xclean (n) - 'T(n))2 and ﬁcorr —

Y. Han and B.-W. Hong, “Deep learning based on fourier convolutional neural network incorporating random kernels,” Electronics, vol. 10, no. 16, p. 2004, 2021.
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Performance Metrics

To assess the effectiveness of our proposed method, the following performance metrics are employed:

 Relative Root Mean Square Error (RRMSE): (Measures amplitude deviation)

RRMSE, — Rﬂgﬁ(g(;)
_ RMS(PSD(z) — PSD(3))
REMSE; = =03 5(PSD(2))

« Correlation Coefficient (CC): (Measures waveform similarity)

o — cov(z, Z)

022022
 Average Power Ratio (APR): (Preserves EEG frequency bands)

Power in a speci fic frequency band

APR =
Total power across all frequencies

R. Acharjee and S. R. Ahamed, “Efficient muscle artifact removal from single channel EEG signals using deep long short-term memory network,” 2024 IEEE 21st India Council International Conference (INDICON), 2024
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Experimental Dataset

« EEGdenoiseNet and MIT-BIH Polysomnographic

datasets are used to generate simulated data.
(a) Uncontaminated EEG Signal

S s
3
Table 1. Summary of the experimental dataset. -y
£
Type EEGdenoiseNet MIT-BIH <
(b) Contaminating ECG Signal
Data Single channel EEG | Single-lead ECG ’>; ]
Bandpass filtering 1-80 Hz 1-80 Hz g o1
=51
. <
Resampling 256 Hz 256 Hz (c) Contaminated EEG Signal
Segment length 4 sec 4 sec E 5
d_ 0
E -5
° EEGnOiSy — EEGClean + 9 . ECG 0.0 0.5 1.0 1.5 TIrnZeO (S) 2.5 3.0 3.5 4.0
Figure 5. segment of (a) Uncontaminated EEG,
SNR = 10log RMS(fEGdem;) (b) Contaminating ECG, and (c) Contaminated EEG signal
RMS(6-ECG

 SNR range: 5-15 dB, epochs: 1128, train-val-test split: 80:10:10

H. Zhang, M. Zhao, C. Wei, D. Mantini, Z. Li, and Q. Liu, “EEGdenoiseNet: a benchmark dataset for deep learning solutions of EEG denoising,” Journal of Neural Engineering, vol. 18, no. 5, p. 056057, 2021.
A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals,” circulation, vol. 101, no. 23, 2000.
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Model Training

 The FD-DCNN architecture is implemented using
TensorFlow 2.0 framework and trained on Xeon Gold-
6248 CPU (2.5 GHz) and NVIDIA Tesla V100-PCle GPU
with 32 GB of VRAM.

Table 2. Model training parameters and hyperparameters.

Parameters/Hyperparameters Value
Activation Function PhaseRelLU
Loss Function MPL (A = 0.2)
Optimizer RMSprop
Learning Rate 0.0005

Batch Size 32

Epochs 50

Early Stopping No

Weight Initializer Glorot Uniform .
Random Seed 42

Trainable Parameters 656,010
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Figure 6. Training and validation loss curve.

The FD-DCNN obtained training loss of 0.0099 and
validation loss of 0.0177.




Performance Evaluation
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Figure 8. Time-frequency plots of noisy, cleaned, and ground-truth EEG
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Figure 7. Reconstructed clean EEG by the FD-DCNN model in
comparison with the noisy and ground-truth EEG,
(a) Time domain, and (b) Frequency domain representation.

IEEE SPMB 2025 [IT Guwahati



Performance Evaluation (contd.)

Table 3. Comparison of the proposed FD-DCNN with the baseline TD-CNN model. Table 4. Comparison with related works.

Metrics FD-DCNN TD-CNN Method RRMSE; | | RRMSE; | CCt

Total parameters 0.6TM 33.6TM FCNN 0.6832 0.6422 0.7266
Memory 2.50MB 128.42MB Simple LSTM 0.5668 0.5879 0.7951
FLOPs 231M 290.39M Simple CNN 0.5715 0.4826 0.8133
Inference latency (GPU) 2.46 ms/seg 16.12 ms/seg ResNet 0.5497 0.4728 0.8379
Throughput (GPU) 406.5 seg/s 62.03 seg/s 1D-CDAE 0.4622 0.4148 0.8442
RRMSE, 04301 0.5672 FD-DCNN 0.4301 0.3548 | 0.8879
RRMSE ¢ 0.3548 0.3748

Correlation 0.8879 0.7674

H. Zhang, M. Zhao, C. Wei, D. Mantini, Z. Li, and Q. Liu, “EEGdenoiseNet: a benchmark dataset for deep learning solutions of EEG denoising,” Journal of Neural Engineering, vol. 18, no. 5, p. 056057, 2021.
K. He et al., “Deep residual learning for image recognition,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2015.
R. Acharjee and S. R. Ahamed, “Automatic Eyeblink Artifact Removal from Single Channel EEG Signals Using One-Dimensional Convolutional Denoising Autoencoder,” ICCECE, 2024, pp. 1-7.
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Performance Evaluation (contd.)

Table 5. Average power ratios in different frequency bands for noisy EEG, EEE Noisy EEG
cleaned EEG, and the ground-truth EEG signals. 204 B Cleaned EEG
- < 1 Ground-truth
Frequency Bands Noisy Cleaned Ground- $ 0.3
EEG EEG truth §
Delta (1 — 4 Hz) 0.264 0.211 0.225 v 0-2
Theta (4 — 8 Hz) 0.168 0.151 0.163 3
Alpha (8 — 13 Hz) 0.314 0.440 0.426 301
Beta (13 — 30 Hz) 0.231 0.155 0.171
Gamma (30 — 80 Hz) | 0.045 0.094 0.072 00 Delta Theta Alpha Beta Gamma

Frequency Bands

Figure 9. Bar plot for comparison of APR between noisy,
cleaned, and ground-truth EEG in different frequency bands.
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Ablation Study

Table 6. Ablation study showing the effect of PhaseReLU, MPL (A variation), and skip connections on FD-DCNN performance.

Variant RRMSE; | RRMSE, | Correlation 1 Remarks
Baseline (PhaseReLU + MPL, A = 0.2, 0.4301 0.3548 0.8879 Full model
with residuals)
PhaseReL.U only, without MPL (A = 0, 0.4653 0.3813 0.8671 Tests effect of correlation term in MPL
MSE only)
: : Tests effect of PhaseReLLU by replacing
. . . =
ReLU (real and imag), with MPL 0.5119 0.4155 0.8267 with standard ReLU
X variation (0 — 1.0) 0.4301 0.3548 0.8879 Sensitivity Dt)\M_PI(‘] ‘;e‘ght’ best at
No Residuals 0.4721 0.3853 0.8434 Tests skip-connection effect

 PhaseRelLU, MPL, and skip connections significantly improve morphology preservation.
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Conclusion

« FD-DCNN performs all convolutions in the Fourier domain, replacing costly time-domain operations
with efficient complex multiplications, resulting in reduced FLOPs, memory, and parameters.

« Effectively suppresses cardiac (ECG) artifacts in single channel EEG while preserving essential
temporal and spectral neural information, outperforming existing CNN-based denoising approaches.

 The proposed MPL loss and PhaseReLU activation enable superior denoising, achieving lower RRMSE
and higher correlation than the baseline time-domain CNN while preserving EEG morphology.

* lIts lightweight and hardware-friendly design makes FD-DCNN ideal for real-time, low-power EEG
systems, outperforming conventional CNNSs in both accuracy and efficiency.

« The study uses synthetically contaminated EEG, which may limit real-world generalizability. Future work
includes testing on naturally contaminated EEG and deploying the model on FPGA/ASIC for real-time
portable applications.
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Thank You

Any Questions?




