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Introduction

• Electroencephalography (EEG) is a low-amplitude,

non-stationary brain signal that is highly vulnerable to

noise, especially in single channel recordings.

• Cardiac (ECG) artifacts appear in EEG due to volume

conduction, producing strong, periodic interference

that distorts neural features.

• Efficient denoising is critical for real-time, portable

single channel EEG systems requiring low-complexity,

hardware-friendly solutions. Figure 1. EEG recording and cardiac artifact contamination.

M. Nakamura and H. Shibasaki, “Elimination of EKG artifacts from EEG records: a new method of non-cephalic referential EEG recording,” Electroencephalography and clinical neurophysiology, pp. 89–92, 1987.
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Motivation

• Single channel EEG makes cardiac artifact removal difficult due to limited spatial information.

• Traditional time-domain CNNs are computationally expensive, limiting deployment on portable

and low-power EEG devices.

• Existing denoising methods struggle to balance artifact suppression and morphology

preservation, leading to signal distortion.

• There is a need for a lightweight, frequency-domain model that can efficiently remove ECG

artifacts while preserving neural information.
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Key Contributions

• A lightweight Fourier domain denoising CNN is introduced that operates entirely in the

spectral domain, reducing computational cost, memory usage, and latency.

• Introduces PhaseReLU for complex-phase nonlinear activation to preserve magnitude while

enabling non-linear phase transformations for improved cardiac artifact suppression.

• A morphology preserving loss (MPL) function is introduced that combines mean squared

error and correlation to jointly preserve amplitude fidelity and waveform morphology.
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Methods

Figure 2. Flowchart of the proposed method.

• The proposed pipeline mixes ECG with clean EEG, processes it through FD-DCNN, and reconstructs artifact-free EEG.
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Figure 3. The architecture of the proposed FD-DCNN.

Proposed Method: FD-DCNN
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Figure 4. Block diagram of the FConv1D layer.

Proposed Method: FD-DCNN (contd.)

• According to convolution theorem:

• Filter output after element-wise complex multiplication:

• Channel-wise combination:

• Output complex-valued spectrum:

L. Chi, B. Jiang, and Y. Mu, “Fast fourier convolution,” Advances in Neural Information Processing Systems, vol. 33, pp. 4479–4488, 2020.
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• PhaseReLU activation:

where is a complex-valued spectral coefficient. 

• Morphology Preserving Loss (MPL):

where and

Y. Han and B.-W. Hong, “Deep learning based on fourier convolutional neural network incorporating random kernels,” Electronics, vol. 10, no. 16, p. 2004, 2021.

Proposed Method: FD-DCNN (contd.)
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Performance Metrics

• Relative Root Mean Square Error (RRMSE): (Measures amplitude deviation)

• Correlation Coefficient (CC): (Measures waveform similarity)

• Average Power Ratio (APR): (Preserves EEG frequency bands)

To assess the effectiveness of our proposed method, the following performance metrics are employed:

R. Acharjee and S. R. Ahamed, “Efficient muscle artifact removal from single channel EEG signals using deep long short-term memory network,” 2024 IEEE 21st India Council International Conference (INDICON), 2024
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Experimental Dataset

• EEGdenoiseNet and MIT-BIH Polysomnographic 

datasets are used to generate simulated data.

Type EEGdenoiseNet MIT-BIH

Data Single channel EEG Single-lead ECG

Bandpass filtering 1-80 Hz 1-80 Hz

Resampling 256 Hz 256 Hz

Segment length 4 sec 4 sec

Table 1. Summary of the experimental dataset.

Figure 5. segment of (a) Uncontaminated EEG, 

(b) Contaminating ECG, and (c) Contaminated EEG signal

• .

• SNR range: 5-15 dB, epochs: 1128, train-val-test split: 80:10:10

H. Zhang, M. Zhao, C. Wei, D. Mantini, Z. Li, and Q. Liu, “EEGdenoiseNet: a benchmark dataset for deep learning solutions of EEG denoising,” Journal of Neural Engineering, vol. 18, no. 5, p. 056057, 2021.

A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals,” circulation, vol. 101, no. 23, 2000.
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Model Training

• The FD-DCNN architecture is implemented using 

TensorFlow 2.0 framework and trained on Xeon Gold-

6248 CPU (2.5 GHz) and NVIDIA Tesla V100-PCIe GPU 

with 32 GB of VRAM.

Table 2. Model training parameters and hyperparameters.

Figure 6. Training and validation loss curve.

• The FD-DCNN obtained training loss of 0.0099 and 

validation loss of 0.0177.
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Performance Evaluation

Figure 7. Reconstructed clean EEG by the FD-DCNN model in 

comparison with the noisy and ground-truth EEG, 

(a) Time domain, and (b) Frequency domain representation.

Figure 8. Time-frequency plots of noisy, cleaned, and ground-truth EEG
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Performance Evaluation (contd.)

Table 3. Comparison of the proposed FD-DCNN with the baseline TD-CNN model. Table 4. Comparison with related works.

H. Zhang, M. Zhao, C. Wei, D. Mantini, Z. Li, and Q. Liu, “EEGdenoiseNet: a benchmark dataset for deep learning solutions of EEG denoising,” Journal of Neural Engineering, vol. 18, no. 5, p. 056057, 2021.

K. He et al., “Deep residual learning for image recognition,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2015.

R. Acharjee and S. R. Ahamed, “Automatic Eyeblink Artifact Removal from Single Channel EEG Signals Using One-Dimensional Convolutional Denoising Autoencoder,” ICCECE, 2024, pp. 1–7.
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Performance Evaluation (contd.)

Table 5. Average power ratios in different frequency bands for noisy EEG, 

cleaned EEG, and the ground-truth EEG signals.

Figure 9. Bar plot for comparison of APR between noisy,

cleaned, and ground-truth EEG in different frequency bands.
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Ablation Study

Table 6. Ablation study showing the effect of PhaseReLU, MPL (λ variation), and skip connections on FD-DCNN performance.

• PhaseReLU, MPL, and skip connections significantly improve morphology preservation.
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Conclusion

• FD-DCNN performs all convolutions in the Fourier domain, replacing costly time-domain operations

with efficient complex multiplications, resulting in reduced FLOPs, memory, and parameters.

• Effectively suppresses cardiac (ECG) artifacts in single channel EEG while preserving essential

temporal and spectral neural information, outperforming existing CNN-based denoising approaches.

• The proposed MPL loss and PhaseReLU activation enable superior denoising, achieving lower RRMSE

and higher correlation than the baseline time-domain CNN while preserving EEG morphology.

• Its lightweight and hardware-friendly design makes FD-DCNN ideal for real-time, low-power EEG

systems, outperforming conventional CNNs in both accuracy and efficiency.

• The study uses synthetically contaminated EEG, which may limit real-world generalizability. Future work

includes testing on naturally contaminated EEG and deploying the model on FPGA/ASIC for real-time

portable applications.
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Thank You

Any Questions?


